1600 lines
68 KiB
Python
1600 lines
68 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch Funnel Transformer model."""
|
||
|
|
||
|
import os
|
||
|
from dataclasses import dataclass
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_outputs import (
|
||
|
BaseModelOutput,
|
||
|
MaskedLMOutput,
|
||
|
MultipleChoiceModelOutput,
|
||
|
QuestionAnsweringModelOutput,
|
||
|
SequenceClassifierOutput,
|
||
|
TokenClassifierOutput,
|
||
|
)
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
add_code_sample_docstrings,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_funnel import FunnelConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CONFIG_FOR_DOC = "FunnelConfig"
|
||
|
_CHECKPOINT_FOR_DOC = "funnel-transformer/small"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
INF = 1e6
|
||
|
|
||
|
|
||
|
def load_tf_weights_in_funnel(model, config, tf_checkpoint_path):
|
||
|
"""Load tf checkpoints in a pytorch model."""
|
||
|
try:
|
||
|
import re
|
||
|
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
except ImportError:
|
||
|
logger.error(
|
||
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
||
|
"https://www.tensorflow.org/install/ for installation instructions."
|
||
|
)
|
||
|
raise
|
||
|
tf_path = os.path.abspath(tf_checkpoint_path)
|
||
|
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
||
|
# Load weights from TF model
|
||
|
init_vars = tf.train.list_variables(tf_path)
|
||
|
names = []
|
||
|
arrays = []
|
||
|
for name, shape in init_vars:
|
||
|
logger.info(f"Loading TF weight {name} with shape {shape}")
|
||
|
array = tf.train.load_variable(tf_path, name)
|
||
|
names.append(name)
|
||
|
arrays.append(array)
|
||
|
|
||
|
_layer_map = {
|
||
|
"k": "k_head",
|
||
|
"q": "q_head",
|
||
|
"v": "v_head",
|
||
|
"o": "post_proj",
|
||
|
"layer_1": "linear_1",
|
||
|
"layer_2": "linear_2",
|
||
|
"rel_attn": "attention",
|
||
|
"ff": "ffn",
|
||
|
"kernel": "weight",
|
||
|
"gamma": "weight",
|
||
|
"beta": "bias",
|
||
|
"lookup_table": "weight",
|
||
|
"word_embedding": "word_embeddings",
|
||
|
"input": "embeddings",
|
||
|
}
|
||
|
|
||
|
for name, array in zip(names, arrays):
|
||
|
name = name.split("/")
|
||
|
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
||
|
# which are not required for using pretrained model
|
||
|
if any(
|
||
|
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
||
|
for n in name
|
||
|
):
|
||
|
logger.info(f"Skipping {'/'.join(name)}")
|
||
|
continue
|
||
|
if name[0] == "generator":
|
||
|
continue
|
||
|
pointer = model
|
||
|
skipped = False
|
||
|
for m_name in name[1:]:
|
||
|
if not isinstance(pointer, FunnelPositionwiseFFN) and re.fullmatch(r"layer_\d+", m_name):
|
||
|
layer_index = int(re.search(r"layer_(\d+)", m_name).groups()[0])
|
||
|
if layer_index < config.num_hidden_layers:
|
||
|
block_idx = 0
|
||
|
while layer_index >= config.block_sizes[block_idx]:
|
||
|
layer_index -= config.block_sizes[block_idx]
|
||
|
block_idx += 1
|
||
|
pointer = pointer.blocks[block_idx][layer_index]
|
||
|
else:
|
||
|
layer_index -= config.num_hidden_layers
|
||
|
pointer = pointer.layers[layer_index]
|
||
|
elif m_name == "r" and isinstance(pointer, FunnelRelMultiheadAttention):
|
||
|
pointer = pointer.r_kernel
|
||
|
break
|
||
|
elif m_name in _layer_map:
|
||
|
pointer = getattr(pointer, _layer_map[m_name])
|
||
|
else:
|
||
|
try:
|
||
|
pointer = getattr(pointer, m_name)
|
||
|
except AttributeError:
|
||
|
print(f"Skipping {'/'.join(name)}", array.shape)
|
||
|
skipped = True
|
||
|
break
|
||
|
if not skipped:
|
||
|
if len(pointer.shape) != len(array.shape):
|
||
|
array = array.reshape(pointer.shape)
|
||
|
if m_name == "kernel":
|
||
|
array = np.transpose(array)
|
||
|
pointer.data = torch.from_numpy(array)
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
class FunnelEmbeddings(nn.Module):
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||
|
self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
||
|
|
||
|
def forward(
|
||
|
self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None
|
||
|
) -> torch.Tensor:
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
embeddings = self.layer_norm(inputs_embeds)
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class FunnelAttentionStructure(nn.Module):
|
||
|
"""
|
||
|
Contains helpers for `FunnelRelMultiheadAttention `.
|
||
|
"""
|
||
|
|
||
|
cls_token_type_id: int = 2
|
||
|
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.sin_dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.cos_dropout = nn.Dropout(config.hidden_dropout)
|
||
|
# Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was
|
||
|
# divided.
|
||
|
self.pooling_mult = None
|
||
|
|
||
|
def init_attention_inputs(
|
||
|
self,
|
||
|
inputs_embeds: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
) -> Tuple[torch.Tensor]:
|
||
|
"""Returns the attention inputs associated to the inputs of the model."""
|
||
|
# inputs_embeds has shape batch_size x seq_len x d_model
|
||
|
# attention_mask and token_type_ids have shape batch_size x seq_len
|
||
|
self.pooling_mult = 1
|
||
|
self.seq_len = seq_len = inputs_embeds.size(1)
|
||
|
position_embeds = self.get_position_embeds(seq_len, inputs_embeds.dtype, inputs_embeds.device)
|
||
|
token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None
|
||
|
cls_mask = (
|
||
|
nn.functional.pad(inputs_embeds.new_ones([seq_len - 1, seq_len - 1]), (1, 0, 1, 0))
|
||
|
if self.config.separate_cls
|
||
|
else None
|
||
|
)
|
||
|
return (position_embeds, token_type_mat, attention_mask, cls_mask)
|
||
|
|
||
|
def token_type_ids_to_mat(self, token_type_ids: torch.Tensor) -> torch.Tensor:
|
||
|
"""Convert `token_type_ids` to `token_type_mat`."""
|
||
|
token_type_mat = token_type_ids[:, :, None] == token_type_ids[:, None]
|
||
|
# Treat <cls> as in the same segment as both A & B
|
||
|
cls_ids = token_type_ids == self.cls_token_type_id
|
||
|
cls_mat = cls_ids[:, :, None] | cls_ids[:, None]
|
||
|
return cls_mat | token_type_mat
|
||
|
|
||
|
def get_position_embeds(
|
||
|
self, seq_len: int, dtype: torch.dtype, device: torch.device
|
||
|
) -> Union[Tuple[torch.Tensor], List[List[torch.Tensor]]]:
|
||
|
"""
|
||
|
Create and cache inputs related to relative position encoding. Those are very different depending on whether we
|
||
|
are using the factorized or the relative shift attention:
|
||
|
|
||
|
For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2,
|
||
|
final formula.
|
||
|
|
||
|
For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final
|
||
|
formula.
|
||
|
|
||
|
Paper link: https://arxiv.org/abs/2006.03236
|
||
|
"""
|
||
|
d_model = self.config.d_model
|
||
|
if self.config.attention_type == "factorized":
|
||
|
# Notations from the paper, appending A.2.2, final formula.
|
||
|
# We need to create and return the matrices phi, psi, pi and omega.
|
||
|
pos_seq = torch.arange(0, seq_len, 1.0, dtype=torch.int64, device=device).to(dtype)
|
||
|
freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype)
|
||
|
inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
|
||
|
sinusoid = pos_seq[:, None] * inv_freq[None]
|
||
|
sin_embed = torch.sin(sinusoid)
|
||
|
sin_embed_d = self.sin_dropout(sin_embed)
|
||
|
cos_embed = torch.cos(sinusoid)
|
||
|
cos_embed_d = self.cos_dropout(cos_embed)
|
||
|
# This is different from the formula on the paper...
|
||
|
phi = torch.cat([sin_embed_d, sin_embed_d], dim=-1)
|
||
|
psi = torch.cat([cos_embed, sin_embed], dim=-1)
|
||
|
pi = torch.cat([cos_embed_d, cos_embed_d], dim=-1)
|
||
|
omega = torch.cat([-sin_embed, cos_embed], dim=-1)
|
||
|
return (phi, pi, psi, omega)
|
||
|
else:
|
||
|
# Notations from the paper, appending A.2.1, final formula.
|
||
|
# We need to create and return all the possible vectors R for all blocks and shifts.
|
||
|
freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype)
|
||
|
inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
|
||
|
# Maximum relative positions for the first input
|
||
|
rel_pos_id = torch.arange(-seq_len * 2, seq_len * 2, 1.0, dtype=torch.int64, device=device).to(dtype)
|
||
|
zero_offset = seq_len * 2
|
||
|
sinusoid = rel_pos_id[:, None] * inv_freq[None]
|
||
|
sin_embed = self.sin_dropout(torch.sin(sinusoid))
|
||
|
cos_embed = self.cos_dropout(torch.cos(sinusoid))
|
||
|
pos_embed = torch.cat([sin_embed, cos_embed], dim=-1)
|
||
|
|
||
|
pos = torch.arange(0, seq_len, dtype=torch.int64, device=device).to(dtype)
|
||
|
pooled_pos = pos
|
||
|
position_embeds_list = []
|
||
|
for block_index in range(0, self.config.num_blocks):
|
||
|
# For each block with block_index > 0, we need two types position embeddings:
|
||
|
# - Attention(pooled-q, unpooled-kv)
|
||
|
# - Attention(pooled-q, pooled-kv)
|
||
|
# For block_index = 0 we only need the second one and leave the first one as None.
|
||
|
|
||
|
# First type
|
||
|
if block_index == 0:
|
||
|
position_embeds_pooling = None
|
||
|
else:
|
||
|
pooled_pos = self.stride_pool_pos(pos, block_index)
|
||
|
|
||
|
# construct rel_pos_id
|
||
|
stride = 2 ** (block_index - 1)
|
||
|
rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2)
|
||
|
rel_pos = rel_pos[:, None] + zero_offset
|
||
|
rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
|
||
|
position_embeds_pooling = torch.gather(pos_embed, 0, rel_pos)
|
||
|
|
||
|
# Second type
|
||
|
pos = pooled_pos
|
||
|
stride = 2**block_index
|
||
|
rel_pos = self.relative_pos(pos, stride)
|
||
|
|
||
|
rel_pos = rel_pos[:, None] + zero_offset
|
||
|
rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
|
||
|
position_embeds_no_pooling = torch.gather(pos_embed, 0, rel_pos)
|
||
|
|
||
|
position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling])
|
||
|
return position_embeds_list
|
||
|
|
||
|
def stride_pool_pos(self, pos_id: torch.Tensor, block_index: int):
|
||
|
"""
|
||
|
Pool `pos_id` while keeping the cls token separate (if `config.separate_cls=True`).
|
||
|
"""
|
||
|
if self.config.separate_cls:
|
||
|
# Under separate <cls>, we treat the <cls> as the first token in
|
||
|
# the previous block of the 1st real block. Since the 1st real
|
||
|
# block always has position 1, the position of the previous block
|
||
|
# will be at `1 - 2 ** block_index`.
|
||
|
cls_pos = pos_id.new_tensor([-(2**block_index) + 1])
|
||
|
pooled_pos_id = pos_id[1:-1] if self.config.truncate_seq else pos_id[1:]
|
||
|
return torch.cat([cls_pos, pooled_pos_id[::2]], 0)
|
||
|
else:
|
||
|
return pos_id[::2]
|
||
|
|
||
|
def relative_pos(self, pos: torch.Tensor, stride: int, pooled_pos=None, shift: int = 1) -> torch.Tensor:
|
||
|
"""
|
||
|
Build the relative positional vector between `pos` and `pooled_pos`.
|
||
|
"""
|
||
|
if pooled_pos is None:
|
||
|
pooled_pos = pos
|
||
|
|
||
|
ref_point = pooled_pos[0] - pos[0]
|
||
|
num_remove = shift * len(pooled_pos)
|
||
|
max_dist = ref_point + num_remove * stride
|
||
|
min_dist = pooled_pos[0] - pos[-1]
|
||
|
|
||
|
return torch.arange(max_dist, min_dist - 1, -stride, dtype=torch.long, device=pos.device)
|
||
|
|
||
|
def stride_pool(
|
||
|
self,
|
||
|
tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]],
|
||
|
axis: Union[int, Tuple[int], List[int]],
|
||
|
) -> torch.Tensor:
|
||
|
"""
|
||
|
Perform pooling by stride slicing the tensor along the given axis.
|
||
|
"""
|
||
|
if tensor is None:
|
||
|
return None
|
||
|
|
||
|
# Do the stride pool recursively if axis is a list or a tuple of ints.
|
||
|
if isinstance(axis, (list, tuple)):
|
||
|
for ax in axis:
|
||
|
tensor = self.stride_pool(tensor, ax)
|
||
|
return tensor
|
||
|
|
||
|
# Do the stride pool recursively if tensor is a list or tuple of tensors.
|
||
|
if isinstance(tensor, (tuple, list)):
|
||
|
return type(tensor)(self.stride_pool(x, axis) for x in tensor)
|
||
|
|
||
|
# Deal with negative axis
|
||
|
axis %= tensor.ndim
|
||
|
|
||
|
axis_slice = (
|
||
|
slice(None, -1, 2) if self.config.separate_cls and self.config.truncate_seq else slice(None, None, 2)
|
||
|
)
|
||
|
enc_slice = [slice(None)] * axis + [axis_slice]
|
||
|
if self.config.separate_cls:
|
||
|
cls_slice = [slice(None)] * axis + [slice(None, 1)]
|
||
|
tensor = torch.cat([tensor[cls_slice], tensor], axis=axis)
|
||
|
return tensor[enc_slice]
|
||
|
|
||
|
def pool_tensor(
|
||
|
self, tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], mode: str = "mean", stride: int = 2
|
||
|
) -> torch.Tensor:
|
||
|
"""Apply 1D pooling to a tensor of size [B x T (x H)]."""
|
||
|
if tensor is None:
|
||
|
return None
|
||
|
|
||
|
# Do the pool recursively if tensor is a list or tuple of tensors.
|
||
|
if isinstance(tensor, (tuple, list)):
|
||
|
return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor)
|
||
|
|
||
|
if self.config.separate_cls:
|
||
|
suffix = tensor[:, :-1] if self.config.truncate_seq else tensor
|
||
|
tensor = torch.cat([tensor[:, :1], suffix], dim=1)
|
||
|
|
||
|
ndim = tensor.ndim
|
||
|
if ndim == 2:
|
||
|
tensor = tensor[:, None, :, None]
|
||
|
elif ndim == 3:
|
||
|
tensor = tensor[:, None, :, :]
|
||
|
# Stride is applied on the second-to-last dimension.
|
||
|
stride = (stride, 1)
|
||
|
|
||
|
if mode == "mean":
|
||
|
tensor = nn.functional.avg_pool2d(tensor, stride, stride=stride, ceil_mode=True)
|
||
|
elif mode == "max":
|
||
|
tensor = nn.functional.max_pool2d(tensor, stride, stride=stride, ceil_mode=True)
|
||
|
elif mode == "min":
|
||
|
tensor = -nn.functional.max_pool2d(-tensor, stride, stride=stride, ceil_mode=True)
|
||
|
else:
|
||
|
raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.")
|
||
|
|
||
|
if ndim == 2:
|
||
|
return tensor[:, 0, :, 0]
|
||
|
elif ndim == 3:
|
||
|
return tensor[:, 0]
|
||
|
return tensor
|
||
|
|
||
|
def pre_attention_pooling(
|
||
|
self, output, attention_inputs: Tuple[torch.Tensor]
|
||
|
) -> Tuple[torch.Tensor, Tuple[torch.Tensor]]:
|
||
|
"""Pool `output` and the proper parts of `attention_inputs` before the attention layer."""
|
||
|
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
||
|
if self.config.pool_q_only:
|
||
|
if self.config.attention_type == "factorized":
|
||
|
position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:]
|
||
|
token_type_mat = self.stride_pool(token_type_mat, 1)
|
||
|
cls_mask = self.stride_pool(cls_mask, 0)
|
||
|
output = self.pool_tensor(output, mode=self.config.pooling_type)
|
||
|
else:
|
||
|
self.pooling_mult *= 2
|
||
|
if self.config.attention_type == "factorized":
|
||
|
position_embeds = self.stride_pool(position_embeds, 0)
|
||
|
token_type_mat = self.stride_pool(token_type_mat, [1, 2])
|
||
|
cls_mask = self.stride_pool(cls_mask, [1, 2])
|
||
|
attention_mask = self.pool_tensor(attention_mask, mode="min")
|
||
|
output = self.pool_tensor(output, mode=self.config.pooling_type)
|
||
|
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
|
||
|
return output, attention_inputs
|
||
|
|
||
|
def post_attention_pooling(self, attention_inputs: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]:
|
||
|
"""Pool the proper parts of `attention_inputs` after the attention layer."""
|
||
|
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
||
|
if self.config.pool_q_only:
|
||
|
self.pooling_mult *= 2
|
||
|
if self.config.attention_type == "factorized":
|
||
|
position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0)
|
||
|
token_type_mat = self.stride_pool(token_type_mat, 2)
|
||
|
cls_mask = self.stride_pool(cls_mask, 1)
|
||
|
attention_mask = self.pool_tensor(attention_mask, mode="min")
|
||
|
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
|
||
|
return attention_inputs
|
||
|
|
||
|
|
||
|
def _relative_shift_gather(positional_attn: torch.Tensor, context_len: int, shift: int) -> torch.Tensor:
|
||
|
batch_size, n_head, seq_len, max_rel_len = positional_attn.shape
|
||
|
# max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j
|
||
|
|
||
|
# What's next is the same as doing the following gather, which might be clearer code but less efficient.
|
||
|
# idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1)
|
||
|
# # matrix of context_len + i-j
|
||
|
# return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len]))
|
||
|
|
||
|
positional_attn = torch.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len])
|
||
|
positional_attn = positional_attn[:, :, shift:, :]
|
||
|
positional_attn = torch.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift])
|
||
|
positional_attn = positional_attn[..., :context_len]
|
||
|
return positional_attn
|
||
|
|
||
|
|
||
|
class FunnelRelMultiheadAttention(nn.Module):
|
||
|
def __init__(self, config: FunnelConfig, block_index: int) -> None:
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.block_index = block_index
|
||
|
d_model, n_head, d_head = config.d_model, config.n_head, config.d_head
|
||
|
|
||
|
self.hidden_dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
||
|
|
||
|
self.q_head = nn.Linear(d_model, n_head * d_head, bias=False)
|
||
|
self.k_head = nn.Linear(d_model, n_head * d_head)
|
||
|
self.v_head = nn.Linear(d_model, n_head * d_head)
|
||
|
|
||
|
self.r_w_bias = nn.Parameter(torch.zeros([n_head, d_head]))
|
||
|
self.r_r_bias = nn.Parameter(torch.zeros([n_head, d_head]))
|
||
|
self.r_kernel = nn.Parameter(torch.zeros([d_model, n_head, d_head]))
|
||
|
self.r_s_bias = nn.Parameter(torch.zeros([n_head, d_head]))
|
||
|
self.seg_embed = nn.Parameter(torch.zeros([2, n_head, d_head]))
|
||
|
|
||
|
self.post_proj = nn.Linear(n_head * d_head, d_model)
|
||
|
self.layer_norm = nn.LayerNorm(d_model, eps=config.layer_norm_eps)
|
||
|
self.scale = 1.0 / (d_head**0.5)
|
||
|
|
||
|
def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None):
|
||
|
"""Relative attention score for the positional encodings"""
|
||
|
# q_head has shape batch_size x sea_len x n_head x d_head
|
||
|
if self.config.attention_type == "factorized":
|
||
|
# Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236)
|
||
|
# phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model
|
||
|
phi, pi, psi, omega = position_embeds
|
||
|
# Shape n_head x d_head
|
||
|
u = self.r_r_bias * self.scale
|
||
|
# Shape d_model x n_head x d_head
|
||
|
w_r = self.r_kernel
|
||
|
|
||
|
# Shape batch_size x sea_len x n_head x d_model
|
||
|
q_r_attention = torch.einsum("binh,dnh->bind", q_head + u, w_r)
|
||
|
q_r_attention_1 = q_r_attention * phi[:, None]
|
||
|
q_r_attention_2 = q_r_attention * pi[:, None]
|
||
|
|
||
|
# Shape batch_size x n_head x seq_len x context_len
|
||
|
positional_attn = torch.einsum("bind,jd->bnij", q_r_attention_1, psi) + torch.einsum(
|
||
|
"bind,jd->bnij", q_r_attention_2, omega
|
||
|
)
|
||
|
else:
|
||
|
shift = 2 if q_head.shape[1] != context_len else 1
|
||
|
# Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236)
|
||
|
# Grab the proper positional encoding, shape max_rel_len x d_model
|
||
|
r = position_embeds[self.block_index][shift - 1]
|
||
|
# Shape n_head x d_head
|
||
|
v = self.r_r_bias * self.scale
|
||
|
# Shape d_model x n_head x d_head
|
||
|
w_r = self.r_kernel
|
||
|
|
||
|
# Shape max_rel_len x n_head x d_model
|
||
|
r_head = torch.einsum("td,dnh->tnh", r, w_r)
|
||
|
# Shape batch_size x n_head x seq_len x max_rel_len
|
||
|
positional_attn = torch.einsum("binh,tnh->bnit", q_head + v, r_head)
|
||
|
# Shape batch_size x n_head x seq_len x context_len
|
||
|
positional_attn = _relative_shift_gather(positional_attn, context_len, shift)
|
||
|
|
||
|
if cls_mask is not None:
|
||
|
positional_attn *= cls_mask
|
||
|
return positional_attn
|
||
|
|
||
|
def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None):
|
||
|
"""Relative attention score for the token_type_ids"""
|
||
|
if token_type_mat is None:
|
||
|
return 0
|
||
|
batch_size, seq_len, context_len = token_type_mat.shape
|
||
|
# q_head has shape batch_size x seq_len x n_head x d_head
|
||
|
# Shape n_head x d_head
|
||
|
r_s_bias = self.r_s_bias * self.scale
|
||
|
|
||
|
# Shape batch_size x n_head x seq_len x 2
|
||
|
token_type_bias = torch.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed)
|
||
|
# Shape batch_size x n_head x seq_len x context_len
|
||
|
token_type_mat = token_type_mat[:, None].expand([batch_size, q_head.shape[2], seq_len, context_len])
|
||
|
# Shapes batch_size x n_head x seq_len
|
||
|
diff_token_type, same_token_type = torch.split(token_type_bias, 1, dim=-1)
|
||
|
# Shape batch_size x n_head x seq_len x context_len
|
||
|
token_type_attn = torch.where(
|
||
|
token_type_mat, same_token_type.expand(token_type_mat.shape), diff_token_type.expand(token_type_mat.shape)
|
||
|
)
|
||
|
|
||
|
if cls_mask is not None:
|
||
|
token_type_attn *= cls_mask
|
||
|
return token_type_attn
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
query: torch.Tensor,
|
||
|
key: torch.Tensor,
|
||
|
value: torch.Tensor,
|
||
|
attention_inputs: Tuple[torch.Tensor],
|
||
|
output_attentions: bool = False,
|
||
|
) -> Tuple[torch.Tensor, ...]:
|
||
|
# query has shape batch_size x seq_len x d_model
|
||
|
# key and value have shapes batch_size x context_len x d_model
|
||
|
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
||
|
|
||
|
batch_size, seq_len, _ = query.shape
|
||
|
context_len = key.shape[1]
|
||
|
n_head, d_head = self.config.n_head, self.config.d_head
|
||
|
|
||
|
# Shape batch_size x seq_len x n_head x d_head
|
||
|
q_head = self.q_head(query).view(batch_size, seq_len, n_head, d_head)
|
||
|
# Shapes batch_size x context_len x n_head x d_head
|
||
|
k_head = self.k_head(key).view(batch_size, context_len, n_head, d_head)
|
||
|
v_head = self.v_head(value).view(batch_size, context_len, n_head, d_head)
|
||
|
|
||
|
q_head = q_head * self.scale
|
||
|
# Shape n_head x d_head
|
||
|
r_w_bias = self.r_w_bias * self.scale
|
||
|
# Shapes batch_size x n_head x seq_len x context_len
|
||
|
content_score = torch.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head)
|
||
|
positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask)
|
||
|
token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask)
|
||
|
|
||
|
# merge attention scores
|
||
|
attn_score = content_score + positional_attn + token_type_attn
|
||
|
|
||
|
# precision safe in case of mixed precision training
|
||
|
dtype = attn_score.dtype
|
||
|
attn_score = attn_score.float()
|
||
|
# perform masking
|
||
|
if attention_mask is not None:
|
||
|
attn_score = attn_score - INF * (1 - attention_mask[:, None, None].float())
|
||
|
# attention probability
|
||
|
attn_prob = torch.softmax(attn_score, dim=-1, dtype=dtype)
|
||
|
attn_prob = self.attention_dropout(attn_prob)
|
||
|
|
||
|
# attention output, shape batch_size x seq_len x n_head x d_head
|
||
|
attn_vec = torch.einsum("bnij,bjnd->bind", attn_prob, v_head)
|
||
|
|
||
|
# Shape shape batch_size x seq_len x d_model
|
||
|
attn_out = self.post_proj(attn_vec.reshape(batch_size, seq_len, n_head * d_head))
|
||
|
attn_out = self.hidden_dropout(attn_out)
|
||
|
|
||
|
output = self.layer_norm(query + attn_out)
|
||
|
return (output, attn_prob) if output_attentions else (output,)
|
||
|
|
||
|
|
||
|
class FunnelPositionwiseFFN(nn.Module):
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.linear_1 = nn.Linear(config.d_model, config.d_inner)
|
||
|
self.activation_function = ACT2FN[config.hidden_act]
|
||
|
self.activation_dropout = nn.Dropout(config.activation_dropout)
|
||
|
self.linear_2 = nn.Linear(config.d_inner, config.d_model)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.layer_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps)
|
||
|
|
||
|
def forward(self, hidden: torch.Tensor) -> torch.Tensor:
|
||
|
h = self.linear_1(hidden)
|
||
|
h = self.activation_function(h)
|
||
|
h = self.activation_dropout(h)
|
||
|
h = self.linear_2(h)
|
||
|
h = self.dropout(h)
|
||
|
return self.layer_norm(hidden + h)
|
||
|
|
||
|
|
||
|
class FunnelLayer(nn.Module):
|
||
|
def __init__(self, config: FunnelConfig, block_index: int) -> None:
|
||
|
super().__init__()
|
||
|
self.attention = FunnelRelMultiheadAttention(config, block_index)
|
||
|
self.ffn = FunnelPositionwiseFFN(config)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
query: torch.Tensor,
|
||
|
key: torch.Tensor,
|
||
|
value: torch.Tensor,
|
||
|
attention_inputs,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Tuple:
|
||
|
attn = self.attention(query, key, value, attention_inputs, output_attentions=output_attentions)
|
||
|
output = self.ffn(attn[0])
|
||
|
return (output, attn[1]) if output_attentions else (output,)
|
||
|
|
||
|
|
||
|
class FunnelEncoder(nn.Module):
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.attention_structure = FunnelAttentionStructure(config)
|
||
|
self.blocks = nn.ModuleList(
|
||
|
[
|
||
|
nn.ModuleList([FunnelLayer(config, block_index) for _ in range(block_size)])
|
||
|
for block_index, block_size in enumerate(config.block_sizes)
|
||
|
]
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
inputs_embeds: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
output_hidden_states: bool = False,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
# The pooling is not implemented on long tensors, so we convert this mask.
|
||
|
attention_mask = attention_mask.type_as(inputs_embeds)
|
||
|
attention_inputs = self.attention_structure.init_attention_inputs(
|
||
|
inputs_embeds,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
)
|
||
|
hidden = inputs_embeds
|
||
|
|
||
|
all_hidden_states = (inputs_embeds,) if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
|
||
|
for block_index, block in enumerate(self.blocks):
|
||
|
pooling_flag = hidden.size(1) > (2 if self.config.separate_cls else 1)
|
||
|
pooling_flag = pooling_flag and block_index > 0
|
||
|
if pooling_flag:
|
||
|
pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling(
|
||
|
hidden, attention_inputs
|
||
|
)
|
||
|
for layer_index, layer in enumerate(block):
|
||
|
for repeat_index in range(self.config.block_repeats[block_index]):
|
||
|
do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag
|
||
|
if do_pooling:
|
||
|
query = pooled_hidden
|
||
|
key = value = hidden if self.config.pool_q_only else pooled_hidden
|
||
|
else:
|
||
|
query = key = value = hidden
|
||
|
layer_output = layer(query, key, value, attention_inputs, output_attentions=output_attentions)
|
||
|
hidden = layer_output[0]
|
||
|
if do_pooling:
|
||
|
attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + layer_output[1:]
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
|
||
|
return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
|
||
|
|
||
|
|
||
|
def upsample(
|
||
|
x: torch.Tensor, stride: int, target_len: int, separate_cls: bool = True, truncate_seq: bool = False
|
||
|
) -> torch.Tensor:
|
||
|
"""
|
||
|
Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension.
|
||
|
"""
|
||
|
if stride == 1:
|
||
|
return x
|
||
|
if separate_cls:
|
||
|
cls = x[:, :1]
|
||
|
x = x[:, 1:]
|
||
|
output = torch.repeat_interleave(x, repeats=stride, dim=1)
|
||
|
if separate_cls:
|
||
|
if truncate_seq:
|
||
|
output = nn.functional.pad(output, (0, 0, 0, stride - 1, 0, 0))
|
||
|
output = output[:, : target_len - 1]
|
||
|
output = torch.cat([cls, output], dim=1)
|
||
|
else:
|
||
|
output = output[:, :target_len]
|
||
|
return output
|
||
|
|
||
|
|
||
|
class FunnelDecoder(nn.Module):
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.attention_structure = FunnelAttentionStructure(config)
|
||
|
self.layers = nn.ModuleList([FunnelLayer(config, 0) for _ in range(config.num_decoder_layers)])
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
final_hidden: torch.Tensor,
|
||
|
first_block_hidden: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
output_hidden_states: bool = False,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
upsampled_hidden = upsample(
|
||
|
final_hidden,
|
||
|
stride=2 ** (len(self.config.block_sizes) - 1),
|
||
|
target_len=first_block_hidden.shape[1],
|
||
|
separate_cls=self.config.separate_cls,
|
||
|
truncate_seq=self.config.truncate_seq,
|
||
|
)
|
||
|
|
||
|
hidden = upsampled_hidden + first_block_hidden
|
||
|
all_hidden_states = (hidden,) if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
|
||
|
attention_inputs = self.attention_structure.init_attention_inputs(
|
||
|
hidden,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
)
|
||
|
|
||
|
for layer in self.layers:
|
||
|
layer_output = layer(hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions)
|
||
|
hidden = layer_output[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + layer_output[1:]
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
|
||
|
return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
|
||
|
|
||
|
|
||
|
class FunnelDiscriminatorPredictions(nn.Module):
|
||
|
"""Prediction module for the discriminator, made up of two dense layers."""
|
||
|
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.dense = nn.Linear(config.d_model, config.d_model)
|
||
|
self.dense_prediction = nn.Linear(config.d_model, 1)
|
||
|
|
||
|
def forward(self, discriminator_hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(discriminator_hidden_states)
|
||
|
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
|
||
|
logits = self.dense_prediction(hidden_states).squeeze(-1)
|
||
|
return logits
|
||
|
|
||
|
|
||
|
class FunnelPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = FunnelConfig
|
||
|
load_tf_weights = load_tf_weights_in_funnel
|
||
|
base_model_prefix = "funnel"
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
classname = module.__class__.__name__
|
||
|
if classname.find("Linear") != -1:
|
||
|
if getattr(module, "weight", None) is not None:
|
||
|
if self.config.initializer_std is None:
|
||
|
fan_out, fan_in = module.weight.shape
|
||
|
std = np.sqrt(1.0 / float(fan_in + fan_out))
|
||
|
else:
|
||
|
std = self.config.initializer_std
|
||
|
nn.init.normal_(module.weight, std=std)
|
||
|
if getattr(module, "bias", None) is not None:
|
||
|
nn.init.constant_(module.bias, 0.0)
|
||
|
elif classname == "FunnelRelMultiheadAttention":
|
||
|
nn.init.uniform_(module.r_w_bias, b=self.config.initializer_range)
|
||
|
nn.init.uniform_(module.r_r_bias, b=self.config.initializer_range)
|
||
|
nn.init.uniform_(module.r_kernel, b=self.config.initializer_range)
|
||
|
nn.init.uniform_(module.r_s_bias, b=self.config.initializer_range)
|
||
|
nn.init.uniform_(module.seg_embed, b=self.config.initializer_range)
|
||
|
elif classname == "FunnelEmbeddings":
|
||
|
std = 1.0 if self.config.initializer_std is None else self.config.initializer_std
|
||
|
nn.init.normal_(module.word_embeddings.weight, std=std)
|
||
|
if module.word_embeddings.padding_idx is not None:
|
||
|
module.word_embeddings.weight.data[module.padding_idx].zero_()
|
||
|
|
||
|
|
||
|
class FunnelClassificationHead(nn.Module):
|
||
|
def __init__(self, config: FunnelConfig, n_labels: int) -> None:
|
||
|
super().__init__()
|
||
|
self.linear_hidden = nn.Linear(config.d_model, config.d_model)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.linear_out = nn.Linear(config.d_model, n_labels)
|
||
|
|
||
|
def forward(self, hidden: torch.Tensor) -> torch.Tensor:
|
||
|
hidden = self.linear_hidden(hidden)
|
||
|
hidden = torch.tanh(hidden)
|
||
|
hidden = self.dropout(hidden)
|
||
|
return self.linear_out(hidden)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class FunnelForPreTrainingOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of [`FunnelForPreTraining`].
|
||
|
|
||
|
Args:
|
||
|
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
||
|
Total loss of the ELECTRA-style objective.
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Prediction scores of the head (scores for each token before SoftMax).
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
FUNNEL_START_DOCSTRING = r"""
|
||
|
|
||
|
The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
|
||
|
Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
||
|
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`FunnelConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
FUNNEL_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
||
|
Indices of input sequence tokens in the vocabulary.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
||
|
1]`:
|
||
|
|
||
|
- 0 corresponds to a *sentence A* token,
|
||
|
- 1 corresponds to a *sentence B* token.
|
||
|
|
||
|
[What are token type IDs?](../glossary#token-type-ids)
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called
|
||
|
decoder) or any task-specific head on top.
|
||
|
""",
|
||
|
FUNNEL_START_DOCSTRING,
|
||
|
)
|
||
|
class FunnelBaseModel(FunnelPreTrainedModel):
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.embeddings = FunnelEmbeddings(config)
|
||
|
self.encoder = FunnelEncoder(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Embedding:
|
||
|
return self.embeddings.word_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
||
|
self.embeddings.word_embeddings = new_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint="funnel-transformer/small-base",
|
||
|
output_type=BaseModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||
|
elif input_ids is not None:
|
||
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
||
|
input_shape = input_ids.size()
|
||
|
elif inputs_embeds is not None:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
else:
|
||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(input_shape, device=device)
|
||
|
if token_type_ids is None:
|
||
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
||
|
|
||
|
# TODO: deal with head_mask
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.embeddings(input_ids)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
inputs_embeds,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
return encoder_outputs
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
FUNNEL_START_DOCSTRING,
|
||
|
)
|
||
|
class FunnelModel(FunnelPreTrainedModel):
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
self.embeddings = FunnelEmbeddings(config)
|
||
|
self.encoder = FunnelEncoder(config)
|
||
|
self.decoder = FunnelDecoder(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Embedding:
|
||
|
return self.embeddings.word_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
||
|
self.embeddings.word_embeddings = new_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=BaseModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||
|
elif input_ids is not None:
|
||
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
||
|
input_shape = input_ids.size()
|
||
|
elif inputs_embeds is not None:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
else:
|
||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(input_shape, device=device)
|
||
|
if token_type_ids is None:
|
||
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
||
|
|
||
|
# TODO: deal with head_mask
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.embeddings(input_ids)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
inputs_embeds,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=True,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
decoder_outputs = self.decoder(
|
||
|
final_hidden=encoder_outputs[0],
|
||
|
first_block_hidden=encoder_outputs[1][self.config.block_sizes[0]],
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
idx = 0
|
||
|
outputs = (decoder_outputs[0],)
|
||
|
if output_hidden_states:
|
||
|
idx += 1
|
||
|
outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],)
|
||
|
if output_attentions:
|
||
|
idx += 1
|
||
|
outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],)
|
||
|
return outputs
|
||
|
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=decoder_outputs[0],
|
||
|
hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states)
|
||
|
if output_hidden_states
|
||
|
else None,
|
||
|
attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None,
|
||
|
)
|
||
|
|
||
|
|
||
|
add_start_docstrings(
|
||
|
"""
|
||
|
Funnel Transformer model with a binary classification head on top as used during pretraining for identifying
|
||
|
generated tokens.
|
||
|
""",
|
||
|
FUNNEL_START_DOCSTRING,
|
||
|
)
|
||
|
|
||
|
|
||
|
class FunnelForPreTraining(FunnelPreTrainedModel):
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.funnel = FunnelModel(config)
|
||
|
self.discriminator_predictions = FunnelDiscriminatorPredictions(config)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@replace_return_docstrings(output_type=FunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, FunnelForPreTrainingOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the ELECTRA-style loss. Input should be a sequence of tokens (see `input_ids`
|
||
|
docstring) Indices should be in `[0, 1]`:
|
||
|
|
||
|
- 0 indicates the token is an original token,
|
||
|
- 1 indicates the token was replaced.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, FunnelForPreTraining
|
||
|
>>> import torch
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
|
||
|
>>> model = FunnelForPreTraining.from_pretrained("funnel-transformer/small")
|
||
|
|
||
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
||
|
>>> logits = model(**inputs).logits
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
discriminator_hidden_states = self.funnel(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
discriminator_sequence_output = discriminator_hidden_states[0]
|
||
|
|
||
|
logits = self.discriminator_predictions(discriminator_sequence_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = nn.BCEWithLogitsLoss()
|
||
|
if attention_mask is not None:
|
||
|
active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
|
||
|
active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
|
||
|
active_labels = labels[active_loss]
|
||
|
loss = loss_fct(active_logits, active_labels.float())
|
||
|
else:
|
||
|
loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + discriminator_hidden_states[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return FunnelForPreTrainingOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=discriminator_hidden_states.hidden_states,
|
||
|
attentions=discriminator_hidden_states.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings("""Funnel Transformer Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING)
|
||
|
class FunnelForMaskedLM(FunnelPreTrainedModel):
|
||
|
_tied_weights_keys = ["lm_head.weight"]
|
||
|
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.funnel = FunnelModel(config)
|
||
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_output_embeddings(self) -> nn.Linear:
|
||
|
return self.lm_head
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
||
|
self.lm_head = new_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=MaskedLMOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
mask="<mask>",
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, MaskedLMOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
||
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
||
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.funnel(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = outputs[0]
|
||
|
prediction_logits = self.lm_head(last_hidden_state)
|
||
|
|
||
|
masked_lm_loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
||
|
masked_lm_loss = loss_fct(prediction_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (prediction_logits,) + outputs[1:]
|
||
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
||
|
|
||
|
return MaskedLMOutput(
|
||
|
loss=masked_lm_loss,
|
||
|
logits=prediction_logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Funnel Transformer Model with a sequence classification/regression head on top (two linear layer on top of the
|
||
|
first timestep of the last hidden state) e.g. for GLUE tasks.
|
||
|
""",
|
||
|
FUNNEL_START_DOCSTRING,
|
||
|
)
|
||
|
class FunnelForSequenceClassification(FunnelPreTrainedModel):
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
self.config = config
|
||
|
|
||
|
self.funnel = FunnelBaseModel(config)
|
||
|
self.classifier = FunnelClassificationHead(config, config.num_labels)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint="funnel-transformer/small-base",
|
||
|
output_type=SequenceClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, SequenceClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.funnel(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = outputs[0]
|
||
|
pooled_output = last_hidden_state[:, 0]
|
||
|
logits = self.classifier(pooled_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
if self.config.problem_type is None:
|
||
|
if self.num_labels == 1:
|
||
|
self.config.problem_type = "regression"
|
||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||
|
self.config.problem_type = "single_label_classification"
|
||
|
else:
|
||
|
self.config.problem_type = "multi_label_classification"
|
||
|
|
||
|
if self.config.problem_type == "regression":
|
||
|
loss_fct = MSELoss()
|
||
|
if self.num_labels == 1:
|
||
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||
|
else:
|
||
|
loss = loss_fct(logits, labels)
|
||
|
elif self.config.problem_type == "single_label_classification":
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
elif self.config.problem_type == "multi_label_classification":
|
||
|
loss_fct = BCEWithLogitsLoss()
|
||
|
loss = loss_fct(logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return SequenceClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Funnel Transformer Model with a multiple choice classification head on top (two linear layer on top of the first
|
||
|
timestep of the last hidden state, and a softmax) e.g. for RocStories/SWAG tasks.
|
||
|
""",
|
||
|
FUNNEL_START_DOCSTRING,
|
||
|
)
|
||
|
class FunnelForMultipleChoice(FunnelPreTrainedModel):
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.funnel = FunnelBaseModel(config)
|
||
|
self.classifier = FunnelClassificationHead(config, 1)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint="funnel-transformer/small-base",
|
||
|
output_type=MultipleChoiceModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
||
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
||
|
`input_ids` above)
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
||
|
|
||
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
||
|
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
||
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
||
|
inputs_embeds = (
|
||
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
||
|
if inputs_embeds is not None
|
||
|
else None
|
||
|
)
|
||
|
|
||
|
outputs = self.funnel(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = outputs[0]
|
||
|
pooled_output = last_hidden_state[:, 0]
|
||
|
logits = self.classifier(pooled_output)
|
||
|
reshaped_logits = logits.view(-1, num_choices)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(reshaped_logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (reshaped_logits,) + outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return MultipleChoiceModelOutput(
|
||
|
loss=loss,
|
||
|
logits=reshaped_logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Funnel Transformer Model with a token classification head on top (a linear layer on top of the hidden-states
|
||
|
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
||
|
""",
|
||
|
FUNNEL_START_DOCSTRING,
|
||
|
)
|
||
|
class FunnelForTokenClassification(FunnelPreTrainedModel):
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.funnel = FunnelModel(config)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=TokenClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, TokenClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.funnel(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = outputs[0]
|
||
|
last_hidden_state = self.dropout(last_hidden_state)
|
||
|
logits = self.classifier(last_hidden_state)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return TokenClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Funnel Transformer Model with a span classification head on top for extractive question-answering tasks like SQuAD
|
||
|
(a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
||
|
""",
|
||
|
FUNNEL_START_DOCSTRING,
|
||
|
)
|
||
|
class FunnelForQuestionAnswering(FunnelPreTrainedModel):
|
||
|
def __init__(self, config: FunnelConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.funnel = FunnelModel(config)
|
||
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=QuestionAnsweringModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
start_positions: Optional[torch.Tensor] = None,
|
||
|
end_positions: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
||
|
r"""
|
||
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.funnel(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = outputs[0]
|
||
|
|
||
|
logits = self.qa_outputs(last_hidden_state)
|
||
|
start_logits, end_logits = logits.split(1, dim=-1)
|
||
|
start_logits = start_logits.squeeze(-1).contiguous()
|
||
|
end_logits = end_logits.squeeze(-1).contiguous()
|
||
|
|
||
|
total_loss = None
|
||
|
if start_positions is not None and end_positions is not None:
|
||
|
# If we are on multi-GPU, split add a dimension
|
||
|
if len(start_positions.size()) > 1:
|
||
|
start_positions = start_positions.squeze(-1)
|
||
|
if len(end_positions.size()) > 1:
|
||
|
end_positions = end_positions.squeeze(-1)
|
||
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
||
|
ignored_index = start_logits.size(1)
|
||
|
start_positions = start_positions.clamp(0, ignored_index)
|
||
|
end_positions = end_positions.clamp(0, ignored_index)
|
||
|
|
||
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
||
|
start_loss = loss_fct(start_logits, start_positions)
|
||
|
end_loss = loss_fct(end_logits, end_positions)
|
||
|
total_loss = (start_loss + end_loss) / 2
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (start_logits, end_logits) + outputs[1:]
|
||
|
return ((total_loss,) + output) if total_loss is not None else output
|
||
|
|
||
|
return QuestionAnsweringModelOutput(
|
||
|
loss=total_loss,
|
||
|
start_logits=start_logits,
|
||
|
end_logits=end_logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|