349 lines
16 KiB
Python
349 lines
16 KiB
Python
|
# coding=utf-8
|
|||
|
# Copyright 2024 The HuggingFace Inc. team.
|
|||
|
#
|
|||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
# you may not use this file except in compliance with the License.
|
|||
|
# You may obtain a copy of the License at
|
|||
|
#
|
|||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
#
|
|||
|
# Unless required by applicable law or agreed to in writing, software
|
|||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
# See the License for the specific language governing permissions and
|
|||
|
# limitations under the License.
|
|||
|
"""
|
|||
|
Processor class for IDEFICS2.
|
|||
|
"""
|
|||
|
|
|||
|
from typing import TYPE_CHECKING, Dict, List, Optional, Union
|
|||
|
|
|||
|
from ...feature_extraction_utils import BatchFeature
|
|||
|
from ...image_utils import ImageInput, is_valid_image, load_image
|
|||
|
from ...processing_utils import ProcessorMixin
|
|||
|
from ...tokenization_utils_base import AddedToken, BatchEncoding, PaddingStrategy, TextInput, TruncationStrategy
|
|||
|
from ...utils import TensorType, logging
|
|||
|
|
|||
|
|
|||
|
if TYPE_CHECKING:
|
|||
|
from ...pipelines.conversational import Conversation
|
|||
|
from ...tokenization_utils_base import PreTokenizedInput
|
|||
|
|
|||
|
|
|||
|
logger = logging.get_logger(__name__)
|
|||
|
|
|||
|
|
|||
|
def is_url(val) -> bool:
|
|||
|
return isinstance(val, str) and val.startswith("http")
|
|||
|
|
|||
|
|
|||
|
def is_image_or_image_url(elem):
|
|||
|
return is_url(elem) or is_valid_image(elem)
|
|||
|
|
|||
|
|
|||
|
class Idefics2Processor(ProcessorMixin):
|
|||
|
r"""
|
|||
|
Constructs a IDEFICS2 processor which wraps a LLama tokenizer and IDEFICS2 image processor into a single processor.
|
|||
|
|
|||
|
[`IdeficsProcessor`] offers all the functionalities of [`Idefics2ImageProcessor`] and [`LlamaTokenizerFast`]. See
|
|||
|
the docstring of [`~IdeficsProcessor.__call__`] and [`~IdeficsProcessor.decode`] for more information.
|
|||
|
|
|||
|
Args:
|
|||
|
image_processor (`Idefics2ImageProcessor`):
|
|||
|
An instance of [`Idefics2ImageProcessor`]. The image processor is a required input.
|
|||
|
tokenizer (`PreTrainedTokenizerBase`, *optional*):
|
|||
|
An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input.
|
|||
|
image_seq_len (`int`, *optional*, defaults to 64):
|
|||
|
The length of the image sequence i.e. the number of <image> tokens per image in the input.
|
|||
|
This parameter is used to build the string from the input prompt and image tokens and should match the
|
|||
|
config.perceiver_config.resampler_n_latents value for the model used.
|
|||
|
"""
|
|||
|
|
|||
|
attributes = ["image_processor", "tokenizer"]
|
|||
|
image_processor_class = "Idefics2ImageProcessor"
|
|||
|
tokenizer_class = "AutoTokenizer"
|
|||
|
|
|||
|
def __init__(self, image_processor, tokenizer=None, image_seq_len: int = 64, **kwargs):
|
|||
|
if image_processor is None:
|
|||
|
raise ValueError("You need to specify an `image_processor`.")
|
|||
|
if tokenizer is None:
|
|||
|
raise ValueError("You need to specify a `tokenizer`.")
|
|||
|
|
|||
|
self.fake_image_token = AddedToken("<fake_token_around_image>", normalized=False, special=True)
|
|||
|
self.image_token = AddedToken("<image>", normalized=False, special=True)
|
|||
|
self.end_of_utterance_token = AddedToken("<end_of_utterance>", normalized=False, special=True)
|
|||
|
self.image_seq_len = image_seq_len
|
|||
|
|
|||
|
tokens_to_add = {
|
|||
|
"additional_special_tokens": [self.fake_image_token, self.image_token, self.end_of_utterance_token]
|
|||
|
}
|
|||
|
tokenizer.add_special_tokens(tokens_to_add)
|
|||
|
|
|||
|
# Stores a Jinja template that formats chat histories into tokenizable strings
|
|||
|
self.chat_template = kwargs.pop("chat_template", None)
|
|||
|
|
|||
|
super().__init__(image_processor, tokenizer)
|
|||
|
|
|||
|
def _extract_images_from_prompts(self, prompts):
|
|||
|
prompt_images = []
|
|||
|
for prompt in prompts:
|
|||
|
images = []
|
|||
|
for elem in prompt:
|
|||
|
if is_valid_image(elem):
|
|||
|
images.append(elem)
|
|||
|
elif is_url(elem):
|
|||
|
images.append(load_image(elem))
|
|||
|
prompt_images.append(images)
|
|||
|
return prompt_images
|
|||
|
|
|||
|
def __call__(
|
|||
|
self,
|
|||
|
text: Union[TextInput, "PreTokenizedInput", List[TextInput], List["PreTokenizedInput"]] = None,
|
|||
|
images: Union[ImageInput, List[ImageInput], List[List[ImageInput]]] = None,
|
|||
|
image_seq_len: Optional[int] = None,
|
|||
|
padding: Union[bool, str, PaddingStrategy] = False,
|
|||
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
|||
|
max_length: Optional[int] = None,
|
|||
|
is_split_into_words: bool = False,
|
|||
|
add_special_tokens: bool = True,
|
|||
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|||
|
) -> BatchEncoding:
|
|||
|
"""
|
|||
|
Processes the input prompts and returns a BatchEncoding.
|
|||
|
|
|||
|
Example:
|
|||
|
|
|||
|
```python
|
|||
|
>>> import requests
|
|||
|
>>> from transformers import Idefics2Processor
|
|||
|
>>> from transformers.image_utils import load_image
|
|||
|
|
|||
|
>>> processor = Idefics2Processor.from_pretrained("HuggingFaceM4/idefics2-8b", image_seq_len=2)
|
|||
|
>>> processor.image_processor.do_image_splitting = False # Force as False to simplify the example
|
|||
|
|
|||
|
>>> url1 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
|||
|
>>> url2 = "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg"
|
|||
|
|
|||
|
>>> image1, image2 = load_image(url1), load_image(url2)
|
|||
|
>>> images = [[image1], [image2]]
|
|||
|
|
|||
|
>>> text = [
|
|||
|
... "<image>In this image, we see",
|
|||
|
... "bla bla bla<image>",
|
|||
|
... ]
|
|||
|
>>> outputs = processor(text=text, images=images, return_tensors="pt", padding=True)
|
|||
|
>>> input_ids = outputs.input_ids
|
|||
|
>>> input_tokens = processor.tokenizer.batch_decode(input_ids)
|
|||
|
>>> print(input_tokens)
|
|||
|
['<s><fake_token_around_image><image><image><fake_token_around_image> In this image, we see', '<s> bla bla bla<fake_token_around_image><image><image><fake_token_around_image>']
|
|||
|
```
|
|||
|
|
|||
|
Args:
|
|||
|
text (`Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]`, *optional*):
|
|||
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|||
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|||
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|||
|
|
|||
|
Wherever an image token, `<image>` is encountered it is expanded to
|
|||
|
`<fake_token_around_image>` + `<image>` * `image_seq_len` * <fake_token_around_image>`.
|
|||
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
|
|||
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
|||
|
tensor. If is of type `List[ImageInput]`, it's assumed that this is for a single prompt i.e. of batch size 1.
|
|||
|
image_seq_len (`int`, *optional*):
|
|||
|
The length of the image sequence. If not provided, the default value is used.
|
|||
|
padding (`Union[bool, str, PaddingStrategy]`, *optional*, defaults to `False`):
|
|||
|
Padding strategy applied to the input ids. See [`PreTrainedTokenizerFast.pad`] for more information.
|
|||
|
truncation (`Union[bool, str, TruncationStrategy]`, *optional*):
|
|||
|
Truncation strategy applied to the input ids. See [`PreTrainedTokenizerFast.truncate`] for more information.
|
|||
|
max_length (`int`, *optional*):
|
|||
|
Maximum length of the returned list and optionally padding/truncation length. See
|
|||
|
[`PreTrainedTokenizerFast.__call__`] for more information.
|
|||
|
is_split_into_words (`bool`, *optional*, defaults to `False`):
|
|||
|
Whether the input text is split into words or not. If set to `True`, the tokenizer will skip the
|
|||
|
tokenization process and assume the input is already tokenized.
|
|||
|
add_special_tokens (`bool`, *optional*, defaults to `True`):
|
|||
|
Whether to add special tokens or not. See [`PreTrainedTokenizerFast.__call__`] for more information.
|
|||
|
return_tensors (`Union[str, TensorType]`, *optional*):
|
|||
|
If set, will return tensors of a particular framework. See [`PreTrainedTokenizerFast.__call__`] for more
|
|||
|
information.
|
|||
|
"""
|
|||
|
image_seq_len = image_seq_len if image_seq_len is not None else self.image_seq_len
|
|||
|
|
|||
|
n_images_in_text = []
|
|||
|
inputs = BatchFeature()
|
|||
|
|
|||
|
if text is not None:
|
|||
|
if isinstance(text, str):
|
|||
|
text = [text]
|
|||
|
elif not isinstance(text, list) and not isinstance(text[0], str):
|
|||
|
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
|||
|
|
|||
|
# Replace the image token with fake tokens around the expanded image token sequence of length `image_seq_len`
|
|||
|
fake_image_token = self.fake_image_token.content
|
|||
|
image_token = self.image_token.content
|
|||
|
image_str = f"{fake_image_token}{image_token * image_seq_len}{fake_image_token}"
|
|||
|
|
|||
|
if self.image_processor.do_image_splitting:
|
|||
|
# A single image token is split into 4 patches + 1 original image
|
|||
|
image_str = image_str * 5
|
|||
|
|
|||
|
prompt_strings = []
|
|||
|
for sample in text:
|
|||
|
n_images_in_text.append(sample.count(image_token))
|
|||
|
sample = sample.replace(image_token, image_str)
|
|||
|
# Remove any double fake tokens if images are adjacent
|
|||
|
sample = sample.replace(f"{fake_image_token}{fake_image_token}", f"{fake_image_token}")
|
|||
|
prompt_strings.append(sample)
|
|||
|
|
|||
|
text_inputs = self.tokenizer(
|
|||
|
text=prompt_strings,
|
|||
|
add_special_tokens=add_special_tokens,
|
|||
|
padding=padding,
|
|||
|
truncation=truncation,
|
|||
|
max_length=max_length,
|
|||
|
is_split_into_words=is_split_into_words,
|
|||
|
return_tensors=return_tensors,
|
|||
|
)
|
|||
|
inputs.update(text_inputs)
|
|||
|
|
|||
|
if images is not None:
|
|||
|
if is_image_or_image_url(images):
|
|||
|
images = [[images]]
|
|||
|
elif isinstance(images, list) and is_image_or_image_url(images[0]):
|
|||
|
images = [images]
|
|||
|
elif (
|
|||
|
not isinstance(images, list)
|
|||
|
and not isinstance(images[0], list)
|
|||
|
and not is_image_or_image_url(images[0][0])
|
|||
|
):
|
|||
|
raise ValueError(
|
|||
|
"Invalid input images. Please provide a single image or a list of images or a list of list of images."
|
|||
|
)
|
|||
|
|
|||
|
n_images_in_images = [len(sample) for sample in images]
|
|||
|
if text is not None and not n_images_in_images == n_images_in_text:
|
|||
|
raise ValueError(
|
|||
|
f"The number of images in the text {n_images_in_text} and images {n_images_in_images} should be the same."
|
|||
|
)
|
|||
|
|
|||
|
# Load images if they are URLs
|
|||
|
images = [[load_image(im) for im in sample] for sample in images]
|
|||
|
image_inputs = self.image_processor(images, return_tensors=return_tensors)
|
|||
|
inputs.update(image_inputs)
|
|||
|
|
|||
|
return inputs
|
|||
|
|
|||
|
def batch_decode(self, *args, **kwargs):
|
|||
|
"""
|
|||
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
|||
|
refer to the docstring of this method for more information.
|
|||
|
"""
|
|||
|
return self.tokenizer.batch_decode(*args, **kwargs)
|
|||
|
|
|||
|
def decode(self, *args, **kwargs):
|
|||
|
"""
|
|||
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
|||
|
the docstring of this method for more information.
|
|||
|
"""
|
|||
|
return self.tokenizer.decode(*args, **kwargs)
|
|||
|
|
|||
|
@property
|
|||
|
def model_input_names(self):
|
|||
|
tokenizer_input_names = self.tokenizer.model_input_names
|
|||
|
image_processor_input_names = self.image_processor.model_input_names
|
|||
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
|||
|
|
|||
|
def apply_chat_template(
|
|||
|
self,
|
|||
|
conversation: Union[List[Dict[str, str]], "Conversation"],
|
|||
|
chat_template: Optional[str] = None,
|
|||
|
tokenize: bool = False,
|
|||
|
**kwargs,
|
|||
|
) -> str:
|
|||
|
"""
|
|||
|
Overrides the tokenizer's `apply_chat_template` method to apply the IDEFICS2 chat template by default
|
|||
|
if no chat template is provided.
|
|||
|
|
|||
|
By default, the output isn't tokenized. This is because the IDEFICS2 chat template is designed to insert
|
|||
|
the image token <image> into the sequence according to the message, but does not handle expanding the image
|
|||
|
tokens to the sequence length or adding the surrounding tokens e.g. <fake_image_token>.
|
|||
|
|
|||
|
Args:
|
|||
|
conversation (`Union[List[Dict, str, str], "Conversation"]`):
|
|||
|
The conversation to format.
|
|||
|
chat_template (`Optional[str]`, *optional*):
|
|||
|
The Jinja template to use for formatting the conversation. If not provided, the default chat template
|
|||
|
is used.
|
|||
|
tokenize (`bool`, *optional*, defaults to `False`):
|
|||
|
Whether to tokenize the output or not.
|
|||
|
**kwargs:
|
|||
|
Additional keyword arguments for the tokenizer's `apply_chat_template` method.
|
|||
|
"""
|
|||
|
|
|||
|
if chat_template is None:
|
|||
|
if self.chat_template is not None:
|
|||
|
chat_template = self.chat_template
|
|||
|
else:
|
|||
|
chat_template = self.default_chat_template
|
|||
|
|
|||
|
return self.tokenizer.apply_chat_template(
|
|||
|
conversation, chat_template=chat_template, tokenize=tokenize, **kwargs
|
|||
|
)
|
|||
|
|
|||
|
@property
|
|||
|
def default_chat_template(self):
|
|||
|
"""
|
|||
|
This template formats inputs in the form of a chat history. For each message in the chat history:
|
|||
|
* the template will output the role of the speaker followed by the content of the message.
|
|||
|
* content can be a single string or a list of strings and images.
|
|||
|
* If the content element is an image, the template will output a sequence of <image> tokens and <fake_token_around_image> token before and after each image
|
|||
|
* The template will output an <end_of_utterance> token at the end of each message.
|
|||
|
|
|||
|
Example:
|
|||
|
|
|||
|
```python
|
|||
|
messages = [{
|
|||
|
"role": "user",
|
|||
|
"content": [
|
|||
|
{"type": "text", "text": "What’s in this image?"},
|
|||
|
{"type": "image"},
|
|||
|
{"type": "image"},
|
|||
|
],
|
|||
|
},
|
|||
|
{
|
|||
|
"role": "assistant",
|
|||
|
"content": [{"type": "text", "text": "This picture depicts Idefix, the dog of Obelix in Asterix and Obelix. Idefix is running on the ground."},]
|
|||
|
}]
|
|||
|
```
|
|||
|
|
|||
|
Will create outputs like:
|
|||
|
```
|
|||
|
User: What is in this Image?<image><image><end_of_utterance>
|
|||
|
Assistant: This picture depicts Idefix, the dog of Obelix in Asterix and Obelix. Idefix is running on the ground.<end_of_utterance>
|
|||
|
```
|
|||
|
"""
|
|||
|
# fmt: off
|
|||
|
return (
|
|||
|
"{% for message in messages %}"
|
|||
|
"{{message['role'].capitalize()}}"
|
|||
|
"{% if message['content'][0]['type'] == 'image' %}"
|
|||
|
"{{':'}}"
|
|||
|
"{% else %}"
|
|||
|
"{{': '}}"
|
|||
|
"{% endif %}"
|
|||
|
"{% for line in message['content'] %}"
|
|||
|
"{% if line['type'] == 'text' %}"
|
|||
|
"{{line['text']}}"
|
|||
|
"{% elif line['type'] == 'image' %}"
|
|||
|
"{{ '<image>' }}"
|
|||
|
"{% endif %}"
|
|||
|
"{% endfor %}"
|
|||
|
"<end_of_utterance>\n"
|
|||
|
"{% endfor %}"
|
|||
|
|
|||
|
"{% if add_generation_prompt %}"
|
|||
|
"{{ 'Assistant:' }}"
|
|||
|
"{% endif %}"
|
|||
|
)
|
|||
|
# fmt: on
|