296 lines
13 KiB
Python
296 lines
13 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" KOSMOS-2 model configuration"""
|
||
|
|
||
|
import os
|
||
|
from typing import Union
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import KOSMOS2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class Kosmos2TextConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`Kosmos2TextModel`]. It is used to instantiate a
|
||
|
KOSMOS-2 text decoder according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the text decoder of the KOSMOS-2
|
||
|
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 65037):
|
||
|
Vocabulary size of the Kosmos2 model. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed when calling [`Kosmos2Model`].
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
embed_dim (`int`, *optional*, defaults to 2048):
|
||
|
Dimensionality of the layers and the pooler layer.
|
||
|
layers (`int`, *optional*, defaults to 24):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
ffn_dim (`int`, *optional*, defaults to 8192):
|
||
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
||
|
attention_heads (`int`, *optional*, defaults to 32):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||
|
dropout (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
activation_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for activations inside the fully connected layer.
|
||
|
layerdrop (`float`, *optional*, defaults to 0.0):
|
||
|
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
||
|
for more details.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
init_std (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
scale_embedding (`bool`, *optional*, defaults to `True`):
|
||
|
Scale embeddings by diving by sqrt(embed_dim).
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
||
|
```"""
|
||
|
|
||
|
model_type = "kosmos_2_text_model"
|
||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||
|
attribute_map = {
|
||
|
"num_attention_heads": "attention_heads",
|
||
|
"hidden_size": "embed_dim",
|
||
|
"num_hidden_layers": "layers",
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=65037,
|
||
|
max_position_embeddings=2048,
|
||
|
embed_dim=2048,
|
||
|
layers=24,
|
||
|
ffn_dim=8192,
|
||
|
attention_heads=32,
|
||
|
activation_function="gelu",
|
||
|
dropout=0.1,
|
||
|
attention_dropout=0.1,
|
||
|
activation_dropout=0.0,
|
||
|
layerdrop=0.0,
|
||
|
layer_norm_eps=1e-5,
|
||
|
init_std=0.02,
|
||
|
scale_embedding=True,
|
||
|
use_cache=True,
|
||
|
pad_token_id=1,
|
||
|
bos_token_id=0,
|
||
|
eos_token_id=2,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(
|
||
|
pad_token_id=pad_token_id,
|
||
|
bos_token_id=bos_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
self.vocab_size = vocab_size
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.embed_dim = embed_dim
|
||
|
self.layers = layers
|
||
|
self.ffn_dim = ffn_dim
|
||
|
self.attention_heads = attention_heads
|
||
|
self.activation_function = activation_function
|
||
|
self.dropout = dropout
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.activation_dropout = activation_dropout
|
||
|
self.layerdrop = layerdrop
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.init_std = init_std
|
||
|
self.scale_embedding = scale_embedding
|
||
|
self.use_cache = use_cache
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
||
|
cls._set_token_in_kwargs(kwargs)
|
||
|
|
||
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||
|
|
||
|
# get the text config dict if we are loading from Kosmos2Config
|
||
|
if config_dict.get("model_type") == "kosmos-2":
|
||
|
config_dict = config_dict["text_config"]
|
||
|
|
||
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||
|
logger.warning(
|
||
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||
|
)
|
||
|
|
||
|
return cls.from_dict(config_dict, **kwargs)
|
||
|
|
||
|
|
||
|
class Kosmos2VisionConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`Kosmos2VisionModel`]. It is used to instantiate a
|
||
|
KOSMOS-2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of the KOSMOS-2
|
||
|
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
hidden_size (`int`, *optional*, defaults to 1024):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
intermediate_size (`int`, *optional*, defaults to 4096):
|
||
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 24):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 16):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
num_channels (`int`, *optional*, defaults to 3):
|
||
|
The number of input channels.
|
||
|
image_size (`int`, *optional*, defaults to 224):
|
||
|
The size (resolution) of each image.
|
||
|
patch_size (`int`, *optional*, defaults to 14):
|
||
|
The size (resolution) of each patch.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
initializer_factor (`float`, *optional*, defaults to 1):
|
||
|
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
||
|
testing).
|
||
|
```"""
|
||
|
|
||
|
model_type = "kosmos_2_vision_model"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size=1024,
|
||
|
intermediate_size=4096,
|
||
|
num_hidden_layers=24,
|
||
|
num_attention_heads=16,
|
||
|
num_channels=3,
|
||
|
image_size=224,
|
||
|
patch_size=14,
|
||
|
hidden_act="quick_gelu",
|
||
|
layer_norm_eps=1e-5,
|
||
|
attention_dropout=0.0,
|
||
|
initializer_range=0.02,
|
||
|
initializer_factor=1.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.hidden_size = hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.num_channels = num_channels
|
||
|
self.patch_size = patch_size
|
||
|
self.image_size = image_size
|
||
|
self.initializer_range = initializer_range
|
||
|
self.initializer_factor = initializer_factor
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.hidden_act = hidden_act
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
||
|
cls._set_token_in_kwargs(kwargs)
|
||
|
|
||
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||
|
|
||
|
# get the vision config dict if we are loading from Kosmos2Config
|
||
|
if config_dict.get("model_type") == "kosmos-2":
|
||
|
config_dict = config_dict["vision_config"]
|
||
|
|
||
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||
|
logger.warning(
|
||
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||
|
)
|
||
|
|
||
|
return cls.from_dict(config_dict, **kwargs)
|
||
|
|
||
|
|
||
|
class Kosmos2Config(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`Kosmos2Model`]. It is used to instantiate a
|
||
|
KOSMOS-2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||
|
with the defaults will yield a similar configuration to that of the KOSMOS-2
|
||
|
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
|
||
|
|
||
|
Args:
|
||
|
text_config (`dict`, *optional*):
|
||
|
Dictionary of configuration options used to initialize [`Kosmos2TextConfig`].
|
||
|
vision_config (`dict`, *optional*):
|
||
|
Dictionary of configuration options used to initialize [`Kosmos2VisionConfig`].
|
||
|
latent_query_num (`int`, *optional*, defaults to 64):
|
||
|
The number of latent query tokens that represent the image features used in the text decoder component.
|
||
|
kwargs (*optional*):
|
||
|
Dictionary of keyword arguments.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import Kosmos2Config, Kosmos2Model
|
||
|
|
||
|
>>> # Initializing a Kosmos-2 kosmos-2-patch14-224 style configuration
|
||
|
>>> configuration = Kosmos2Config()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the kosmos-2-patch14-224 style configuration
|
||
|
>>> model = Kosmos2Model(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "kosmos-2"
|
||
|
is_composition = True
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
text_config=None,
|
||
|
vision_config=None,
|
||
|
latent_query_num=64,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
if text_config is None:
|
||
|
text_config = {}
|
||
|
logger.info("`text_config` is `None`. Initializing the `Kosmos2TextConfig` with default values.")
|
||
|
|
||
|
if vision_config is None:
|
||
|
vision_config = {}
|
||
|
logger.info("`vision_config` is `None`. Initializing the `Kosmos2VisionConfig` with default values.")
|
||
|
|
||
|
self.text_config = Kosmos2TextConfig(**text_config)
|
||
|
self.vision_config = Kosmos2VisionConfig(**vision_config)
|
||
|
|
||
|
self.latent_query_num = latent_query_num
|