199 lines
9.0 KiB
Python
199 lines
9.0 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2010, The Microsoft Research Asia LayoutLM Team authors
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" LayoutLM model configuration"""
|
||
|
from collections import OrderedDict
|
||
|
from typing import Any, List, Mapping, Optional
|
||
|
|
||
|
from ... import PretrainedConfig, PreTrainedTokenizer
|
||
|
from ...onnx import OnnxConfig, PatchingSpec
|
||
|
from ...utils import TensorType, is_torch_available, logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class LayoutLMConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`LayoutLMModel`]. It is used to instantiate a
|
||
|
LayoutLM model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||
|
with the defaults will yield a similar configuration to that of the LayoutLM
|
||
|
[microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`BertConfig`] for more information.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 30522):
|
||
|
Vocabulary size of the LayoutLM model. Defines the different tokens that can be represented by the
|
||
|
*inputs_ids* passed to the forward method of [`LayoutLMModel`].
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 512):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
type_vocab_size (`int`, *optional*, defaults to 2):
|
||
|
The vocabulary size of the `token_type_ids` passed into [`LayoutLMModel`].
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
pad_token_id (`int`, *optional*, defaults to 0):
|
||
|
The value used to pad input_ids.
|
||
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
||
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
||
|
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
||
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
||
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
||
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||
|
relevant if `config.is_decoder=True`.
|
||
|
max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
|
||
|
The maximum value that the 2D position embedding might ever used. Typically set this to something large
|
||
|
just in case (e.g., 1024).
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import LayoutLMConfig, LayoutLMModel
|
||
|
|
||
|
>>> # Initializing a LayoutLM configuration
|
||
|
>>> configuration = LayoutLMConfig()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the configuration
|
||
|
>>> model = LayoutLMModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "layoutlm"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=30522,
|
||
|
hidden_size=768,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
intermediate_size=3072,
|
||
|
hidden_act="gelu",
|
||
|
hidden_dropout_prob=0.1,
|
||
|
attention_probs_dropout_prob=0.1,
|
||
|
max_position_embeddings=512,
|
||
|
type_vocab_size=2,
|
||
|
initializer_range=0.02,
|
||
|
layer_norm_eps=1e-12,
|
||
|
pad_token_id=0,
|
||
|
position_embedding_type="absolute",
|
||
|
use_cache=True,
|
||
|
max_2d_position_embeddings=1024,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.type_vocab_size = type_vocab_size
|
||
|
self.initializer_range = initializer_range
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.position_embedding_type = position_embedding_type
|
||
|
self.use_cache = use_cache
|
||
|
self.max_2d_position_embeddings = max_2d_position_embeddings
|
||
|
|
||
|
|
||
|
class LayoutLMOnnxConfig(OnnxConfig):
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: PretrainedConfig,
|
||
|
task: str = "default",
|
||
|
patching_specs: List[PatchingSpec] = None,
|
||
|
):
|
||
|
super().__init__(config, task=task, patching_specs=patching_specs)
|
||
|
self.max_2d_positions = config.max_2d_position_embeddings - 1
|
||
|
|
||
|
@property
|
||
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
||
|
return OrderedDict(
|
||
|
[
|
||
|
("input_ids", {0: "batch", 1: "sequence"}),
|
||
|
("bbox", {0: "batch", 1: "sequence"}),
|
||
|
("attention_mask", {0: "batch", 1: "sequence"}),
|
||
|
("token_type_ids", {0: "batch", 1: "sequence"}),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
def generate_dummy_inputs(
|
||
|
self,
|
||
|
tokenizer: PreTrainedTokenizer,
|
||
|
batch_size: int = -1,
|
||
|
seq_length: int = -1,
|
||
|
is_pair: bool = False,
|
||
|
framework: Optional[TensorType] = None,
|
||
|
) -> Mapping[str, Any]:
|
||
|
"""
|
||
|
Generate inputs to provide to the ONNX exporter for the specific framework
|
||
|
|
||
|
Args:
|
||
|
tokenizer: The tokenizer associated with this model configuration
|
||
|
batch_size: The batch size (int) to export the model for (-1 means dynamic axis)
|
||
|
seq_length: The sequence length (int) to export the model for (-1 means dynamic axis)
|
||
|
is_pair: Indicate if the input is a pair (sentence 1, sentence 2)
|
||
|
framework: The framework (optional) the tokenizer will generate tensor for
|
||
|
|
||
|
Returns:
|
||
|
Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
|
||
|
"""
|
||
|
|
||
|
input_dict = super().generate_dummy_inputs(
|
||
|
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
||
|
)
|
||
|
|
||
|
# Generate a dummy bbox
|
||
|
box = [48, 84, 73, 128]
|
||
|
|
||
|
if not framework == TensorType.PYTORCH:
|
||
|
raise NotImplementedError("Exporting LayoutLM to ONNX is currently only supported for PyTorch.")
|
||
|
|
||
|
if not is_torch_available():
|
||
|
raise ValueError("Cannot generate dummy inputs without PyTorch installed.")
|
||
|
import torch
|
||
|
|
||
|
batch_size, seq_length = input_dict["input_ids"].shape
|
||
|
input_dict["bbox"] = torch.tensor([*[box] * seq_length]).tile(batch_size, 1, 1)
|
||
|
return input_dict
|