157 lines
6.9 KiB
Python
157 lines
6.9 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2024 The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""MAMBA configuration"""
|
||
|
|
||
|
import math
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import MAMBA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class MambaConfig(PretrainedConfig):
|
||
|
"""
|
||
|
This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
|
||
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||
|
defaults will yield a similar configuration to that of the MAMBA
|
||
|
[state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 50280):
|
||
|
Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed when calling [`MambaModel`].
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the embeddings and hidden states.
|
||
|
state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||
|
Number of hidden layers in the model.
|
||
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
||
|
The epsilon to use in the layer normalization layers.
|
||
|
pad_token_id (`int`, *optional*, defaults to 0):
|
||
|
Padding token id.
|
||
|
bos_token_id (`int`, *optional*, defaults to 0):
|
||
|
The id of the beginning of sentence token in the vocabulary.
|
||
|
eos_token_id (`int`, *optional*, defaults to 0):
|
||
|
The id of the end of sentence token in the vocabulary.
|
||
|
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
|
||
|
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
|
||
|
use_bias (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
|
||
|
use_conv_bias (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to use bias in the convolution layer of the mixer block.
|
||
|
hidden_act (`str`, *optional*, defaults to `"silu"`):
|
||
|
The non-linear activation function (function or string) in the decoder.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.1):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
|
||
|
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
|
||
|
Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
|
||
|
time_step_scale (`float`, *optional*, defaults to 1.0):
|
||
|
Scale used used to scale `dt_proj.bias`.
|
||
|
time_step_min (`float`, *optional*, defaults to 0.001):
|
||
|
Minimum `time_step` used to bound `dt_proj.bias`.
|
||
|
time_step_max (`float`, *optional*, defaults to 0.1):
|
||
|
Maximum `time_step` used to bound `dt_proj.bias`.
|
||
|
time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
|
||
|
Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
|
||
|
time_step_floor (`float`, *optional*, defaults to 0.0001):
|
||
|
Minimum clamping value of the `dt_proj.bias` layer initialization.
|
||
|
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to rescale `out_proj` weights when initializing.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the cache should be used.
|
||
|
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import MambaConfig, MambaModel
|
||
|
|
||
|
>>> # Initializing a Mamba configuration
|
||
|
>>> configuration = MambaConfig()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the configuration
|
||
|
>>> model = MambaModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "mamba"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=50280,
|
||
|
hidden_size=768,
|
||
|
state_size=16,
|
||
|
num_hidden_layers=32,
|
||
|
layer_norm_epsilon=1e-5,
|
||
|
pad_token_id=0,
|
||
|
bos_token_id=0,
|
||
|
eos_token_id=0,
|
||
|
expand=2,
|
||
|
conv_kernel=4,
|
||
|
use_bias=False,
|
||
|
use_conv_bias=True,
|
||
|
hidden_act="silu",
|
||
|
initializer_range=0.1,
|
||
|
residual_in_fp32=True,
|
||
|
time_step_rank="auto",
|
||
|
time_step_scale=1.0,
|
||
|
time_step_min=0.001,
|
||
|
time_step_max=0.1,
|
||
|
time_step_init_scheme="random",
|
||
|
time_step_floor=1e-4,
|
||
|
rescale_prenorm_residual=False,
|
||
|
use_cache=True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.state_size = state_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.layer_norm_epsilon = layer_norm_epsilon
|
||
|
self.conv_kernel = conv_kernel
|
||
|
self.expand = expand
|
||
|
self.intermediate_size = int(expand * self.hidden_size)
|
||
|
self.bos_token_id = bos_token_id
|
||
|
self.eos_token_id = eos_token_id
|
||
|
self.pad_token_id = pad_token_id
|
||
|
self.use_bias = use_bias
|
||
|
self.use_conv_bias = use_conv_bias
|
||
|
self.hidden_act = hidden_act
|
||
|
self.initializer_range = initializer_range
|
||
|
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
|
||
|
self.time_step_scale = time_step_scale
|
||
|
self.time_step_min = time_step_min
|
||
|
self.time_step_max = time_step_max
|
||
|
self.time_step_init_scheme = time_step_init_scheme
|
||
|
self.time_step_floor = time_step_floor
|
||
|
self.rescale_prenorm_residual = rescale_prenorm_residual
|
||
|
self.residual_in_fp32 = residual_in_fp32
|
||
|
self.use_cache = use_cache
|
||
|
|
||
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
|