ai-content-maker/.venv/Lib/site-packages/transformers/models/mra/modeling_mra.py

1481 lines
60 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2023 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch MRA model."""
import math
from pathlib import Path
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.utils.cpp_extension import load
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_ninja_available,
is_torch_cuda_available,
logging,
)
from .configuration_mra import MraConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "uw-madison/mra-base-512-4"
_CONFIG_FOR_DOC = "MraConfig"
_TOKENIZER_FOR_DOC = "AutoTokenizer"
from ..deprecated._archive_maps import MRA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
mra_cuda_kernel = None
def load_cuda_kernels():
global mra_cuda_kernel
src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "mra"
def append_root(files):
return [src_folder / file for file in files]
src_files = append_root(["cuda_kernel.cu", "cuda_launch.cu", "torch_extension.cpp"])
mra_cuda_kernel = load("cuda_kernel", src_files, verbose=True)
def sparse_max(sparse_qk_prod, indices, query_num_block, key_num_block):
"""
Computes maximum values for softmax stability.
"""
if len(sparse_qk_prod.size()) != 4:
raise ValueError("sparse_qk_prod must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if sparse_qk_prod.size(2) != 32:
raise ValueError("The size of the second dimension of sparse_qk_prod must be 32.")
if sparse_qk_prod.size(3) != 32:
raise ValueError("The size of the third dimension of sparse_qk_prod must be 32.")
index_vals = sparse_qk_prod.max(dim=-2).values.transpose(-1, -2)
index_vals = index_vals.contiguous()
indices = indices.int()
indices = indices.contiguous()
max_vals, max_vals_scatter = mra_cuda_kernel.index_max(index_vals, indices, query_num_block, key_num_block)
max_vals_scatter = max_vals_scatter.transpose(-1, -2)[:, :, None, :]
return max_vals, max_vals_scatter
def sparse_mask(mask, indices, block_size=32):
"""
Converts attention mask to a sparse mask for high resolution logits.
"""
if len(mask.size()) != 2:
raise ValueError("mask must be a 2-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if mask.shape[0] != indices.shape[0]:
raise ValueError("mask and indices must have the same size in the zero-th dimension.")
batch_size, seq_len = mask.shape
num_block = seq_len // block_size
batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device)
mask = mask.reshape(batch_size, num_block, block_size)
mask = mask[batch_idx[:, None], (indices % num_block).long(), :]
return mask
def mm_to_sparse(dense_query, dense_key, indices, block_size=32):
"""
Performs Sampled Dense Matrix Multiplication.
"""
batch_size, query_size, dim = dense_query.size()
_, key_size, dim = dense_key.size()
if query_size % block_size != 0:
raise ValueError("query_size (size of first dimension of dense_query) must be divisible by block_size.")
if key_size % block_size != 0:
raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.")
dense_query = dense_query.reshape(batch_size, query_size // block_size, block_size, dim).transpose(-1, -2)
dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2)
if len(dense_query.size()) != 4:
raise ValueError("dense_query must be a 4-dimensional tensor.")
if len(dense_key.size()) != 4:
raise ValueError("dense_key must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if dense_query.size(3) != 32:
raise ValueError("The third dimension of dense_query must be 32.")
if dense_key.size(3) != 32:
raise ValueError("The third dimension of dense_key must be 32.")
dense_query = dense_query.contiguous()
dense_key = dense_key.contiguous()
indices = indices.int()
indices = indices.contiguous()
return mra_cuda_kernel.mm_to_sparse(dense_query, dense_key, indices.int())
def sparse_dense_mm(sparse_query, indices, dense_key, query_num_block, block_size=32):
"""
Performs matrix multiplication of a sparse matrix with a dense matrix.
"""
batch_size, key_size, dim = dense_key.size()
if key_size % block_size != 0:
raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.")
if sparse_query.size(2) != block_size:
raise ValueError("The size of the second dimension of sparse_query must be equal to the block_size.")
if sparse_query.size(3) != block_size:
raise ValueError("The size of the third dimension of sparse_query must be equal to the block_size.")
dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2)
if len(sparse_query.size()) != 4:
raise ValueError("sparse_query must be a 4-dimensional tensor.")
if len(dense_key.size()) != 4:
raise ValueError("dense_key must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
if dense_key.size(3) != 32:
raise ValueError("The size of the third dimension of dense_key must be 32.")
sparse_query = sparse_query.contiguous()
indices = indices.int()
indices = indices.contiguous()
dense_key = dense_key.contiguous()
dense_qk_prod = mra_cuda_kernel.sparse_dense_mm(sparse_query, indices, dense_key, query_num_block)
dense_qk_prod = dense_qk_prod.transpose(-1, -2).reshape(batch_size, query_num_block * block_size, dim)
return dense_qk_prod
def transpose_indices(indices, dim_1_block, dim_2_block):
return ((indices % dim_2_block) * dim_1_block + torch.div(indices, dim_2_block, rounding_mode="floor")).long()
class MraSampledDenseMatMul(torch.autograd.Function):
@staticmethod
def forward(ctx, dense_query, dense_key, indices, block_size):
sparse_qk_prod = mm_to_sparse(dense_query, dense_key, indices, block_size)
ctx.save_for_backward(dense_query, dense_key, indices)
ctx.block_size = block_size
return sparse_qk_prod
@staticmethod
def backward(ctx, grad):
dense_query, dense_key, indices = ctx.saved_tensors
block_size = ctx.block_size
query_num_block = dense_query.size(1) // block_size
key_num_block = dense_key.size(1) // block_size
indices_T = transpose_indices(indices, query_num_block, key_num_block)
grad_key = sparse_dense_mm(grad.transpose(-1, -2), indices_T, dense_query, key_num_block)
grad_query = sparse_dense_mm(grad, indices, dense_key, query_num_block)
return grad_query, grad_key, None, None
@staticmethod
def operator_call(dense_query, dense_key, indices, block_size=32):
return MraSampledDenseMatMul.apply(dense_query, dense_key, indices, block_size)
class MraSparseDenseMatMul(torch.autograd.Function):
@staticmethod
def forward(ctx, sparse_query, indices, dense_key, query_num_block):
sparse_qk_prod = sparse_dense_mm(sparse_query, indices, dense_key, query_num_block)
ctx.save_for_backward(sparse_query, indices, dense_key)
ctx.query_num_block = query_num_block
return sparse_qk_prod
@staticmethod
def backward(ctx, grad):
sparse_query, indices, dense_key = ctx.saved_tensors
query_num_block = ctx.query_num_block
key_num_block = dense_key.size(1) // sparse_query.size(-1)
indices_T = transpose_indices(indices, query_num_block, key_num_block)
grad_key = sparse_dense_mm(sparse_query.transpose(-1, -2), indices_T, grad, key_num_block)
grad_query = mm_to_sparse(grad, dense_key, indices)
return grad_query, None, grad_key, None
@staticmethod
def operator_call(sparse_query, indices, dense_key, query_num_block):
return MraSparseDenseMatMul.apply(sparse_query, indices, dense_key, query_num_block)
class MraReduceSum:
@staticmethod
def operator_call(sparse_query, indices, query_num_block, key_num_block):
batch_size, num_block, block_size, _ = sparse_query.size()
if len(sparse_query.size()) != 4:
raise ValueError("sparse_query must be a 4-dimensional tensor.")
if len(indices.size()) != 2:
raise ValueError("indices must be a 2-dimensional tensor.")
_, _, block_size, _ = sparse_query.size()
batch_size, num_block = indices.size()
sparse_query = sparse_query.sum(dim=2).reshape(batch_size * num_block, block_size)
batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device)
global_idxes = (
torch.div(indices, key_num_block, rounding_mode="floor").long() + batch_idx[:, None] * query_num_block
).reshape(batch_size * num_block)
temp = torch.zeros(
(batch_size * query_num_block, block_size), dtype=sparse_query.dtype, device=sparse_query.device
)
output = temp.index_add(0, global_idxes, sparse_query).reshape(batch_size, query_num_block, block_size)
output = output.reshape(batch_size, query_num_block * block_size)
return output
def get_low_resolution_logit(query, key, block_size, mask=None, value=None):
"""
Compute low resolution approximation.
"""
batch_size, seq_len, head_dim = query.size()
num_block_per_row = seq_len // block_size
value_hat = None
if mask is not None:
token_count = mask.reshape(batch_size, num_block_per_row, block_size).sum(dim=-1)
query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / (
token_count[:, :, None] + 1e-6
)
key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / (
token_count[:, :, None] + 1e-6
)
if value is not None:
value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / (
token_count[:, :, None] + 1e-6
)
else:
token_count = block_size * torch.ones(batch_size, num_block_per_row, dtype=torch.float, device=query.device)
query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2)
key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2)
if value is not None:
value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2)
low_resolution_logit = torch.matmul(query_hat, key_hat.transpose(-1, -2)) / math.sqrt(head_dim)
low_resolution_logit_row_max = low_resolution_logit.max(dim=-1, keepdims=True).values
if mask is not None:
low_resolution_logit = (
low_resolution_logit - 1e4 * ((token_count[:, None, :] * token_count[:, :, None]) < 0.5).float()
)
return low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat
def get_block_idxes(
low_resolution_logit, num_blocks, approx_mode, initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks
):
"""
Compute the indices of the subset of components to be used in the approximation.
"""
batch_size, total_blocks_per_row, _ = low_resolution_logit.shape
if initial_prior_diagonal_n_blocks > 0:
offset = initial_prior_diagonal_n_blocks // 2
temp_mask = torch.ones(total_blocks_per_row, total_blocks_per_row, device=low_resolution_logit.device)
diagonal_mask = torch.tril(torch.triu(temp_mask, diagonal=-offset), diagonal=offset)
low_resolution_logit = low_resolution_logit + diagonal_mask[None, :, :] * 5e3
if initial_prior_first_n_blocks > 0:
low_resolution_logit[:, :initial_prior_first_n_blocks, :] = (
low_resolution_logit[:, :initial_prior_first_n_blocks, :] + 5e3
)
low_resolution_logit[:, :, :initial_prior_first_n_blocks] = (
low_resolution_logit[:, :, :initial_prior_first_n_blocks] + 5e3
)
top_k_vals = torch.topk(
low_resolution_logit.reshape(batch_size, -1), num_blocks, dim=-1, largest=True, sorted=False
)
indices = top_k_vals.indices
if approx_mode == "full":
threshold = top_k_vals.values.min(dim=-1).values
high_resolution_mask = (low_resolution_logit >= threshold[:, None, None]).float()
elif approx_mode == "sparse":
high_resolution_mask = None
else:
raise ValueError(f"{approx_mode} is not a valid approx_model value.")
return indices, high_resolution_mask
def mra2_attention(
query,
key,
value,
mask,
num_blocks,
approx_mode,
block_size=32,
initial_prior_first_n_blocks=0,
initial_prior_diagonal_n_blocks=0,
):
"""
Use Mra to approximate self-attention.
"""
if mra_cuda_kernel is None:
return torch.zeros_like(query).requires_grad_()
batch_size, num_head, seq_len, head_dim = query.size()
meta_batch = batch_size * num_head
if seq_len % block_size != 0:
raise ValueError("sequence length must be divisible by the block_size.")
num_block_per_row = seq_len // block_size
query = query.reshape(meta_batch, seq_len, head_dim)
key = key.reshape(meta_batch, seq_len, head_dim)
value = value.reshape(meta_batch, seq_len, head_dim)
if mask is not None:
query = query * mask[:, :, None]
key = key * mask[:, :, None]
value = value * mask[:, :, None]
if approx_mode == "full":
low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat = get_low_resolution_logit(
query, key, block_size, mask, value
)
elif approx_mode == "sparse":
with torch.no_grad():
low_resolution_logit, token_count, low_resolution_logit_row_max, _ = get_low_resolution_logit(
query, key, block_size, mask
)
else:
raise Exception('approx_mode must be "full" or "sparse"')
with torch.no_grad():
low_resolution_logit_normalized = low_resolution_logit - low_resolution_logit_row_max
indices, high_resolution_mask = get_block_idxes(
low_resolution_logit_normalized,
num_blocks,
approx_mode,
initial_prior_first_n_blocks,
initial_prior_diagonal_n_blocks,
)
high_resolution_logit = MraSampledDenseMatMul.operator_call(
query, key, indices, block_size=block_size
) / math.sqrt(head_dim)
max_vals, max_vals_scatter = sparse_max(high_resolution_logit, indices, num_block_per_row, num_block_per_row)
high_resolution_logit = high_resolution_logit - max_vals_scatter
if mask is not None:
high_resolution_logit = high_resolution_logit - 1e4 * (1 - sparse_mask(mask, indices)[:, :, :, None])
high_resolution_attn = torch.exp(high_resolution_logit)
high_resolution_attn_out = MraSparseDenseMatMul.operator_call(
high_resolution_attn, indices, value, num_block_per_row
)
high_resolution_normalizer = MraReduceSum.operator_call(
high_resolution_attn, indices, num_block_per_row, num_block_per_row
)
if approx_mode == "full":
low_resolution_attn = (
torch.exp(low_resolution_logit - low_resolution_logit_row_max - 1e4 * high_resolution_mask)
* token_count[:, None, :]
)
low_resolution_attn_out = (
torch.matmul(low_resolution_attn, value_hat)[:, :, None, :]
.repeat(1, 1, block_size, 1)
.reshape(meta_batch, seq_len, head_dim)
)
low_resolution_normalizer = (
low_resolution_attn.sum(dim=-1)[:, :, None].repeat(1, 1, block_size).reshape(meta_batch, seq_len)
)
log_correction = low_resolution_logit_row_max.repeat(1, 1, block_size).reshape(meta_batch, seq_len) - max_vals
if mask is not None:
log_correction = log_correction * mask
low_resolution_corr = torch.exp(log_correction * (log_correction <= 0).float())
low_resolution_attn_out = low_resolution_attn_out * low_resolution_corr[:, :, None]
low_resolution_normalizer = low_resolution_normalizer * low_resolution_corr
high_resolution_corr = torch.exp(-log_correction * (log_correction > 0).float())
high_resolution_attn_out = high_resolution_attn_out * high_resolution_corr[:, :, None]
high_resolution_normalizer = high_resolution_normalizer * high_resolution_corr
context_layer = (high_resolution_attn_out + low_resolution_attn_out) / (
high_resolution_normalizer[:, :, None] + low_resolution_normalizer[:, :, None] + 1e-6
)
elif approx_mode == "sparse":
context_layer = high_resolution_attn_out / (high_resolution_normalizer[:, :, None] + 1e-6)
else:
raise Exception('config.approx_mode must be "full" or "sparse"')
if mask is not None:
context_layer = context_layer * mask[:, :, None]
context_layer = context_layer.reshape(batch_size, num_head, seq_len, head_dim)
return context_layer
class MraEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class MraSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
kernel_loaded = mra_cuda_kernel is not None
if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded:
try:
load_cuda_kernels()
except Exception as e:
logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}")
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = (
position_embedding_type if position_embedding_type is not None else config.position_embedding_type
)
self.num_block = (config.max_position_embeddings // 32) * config.block_per_row
self.num_block = min(self.num_block, int((config.max_position_embeddings // 32) ** 2))
self.approx_mode = config.approx_mode
self.initial_prior_first_n_blocks = config.initial_prior_first_n_blocks
self.initial_prior_diagonal_n_blocks = config.initial_prior_diagonal_n_blocks
def transpose_for_scores(self, layer):
new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
layer = layer.view(*new_layer_shape)
return layer.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask=None):
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
batch_size, num_heads, seq_len, head_dim = query_layer.size()
# revert changes made by get_extended_attention_mask
attention_mask = 1.0 + attention_mask / 10000.0
attention_mask = (
attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int()
)
# The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs
# smaller than this are padded with zeros.
gpu_warp_size = 32
if head_dim < gpu_warp_size:
pad_size = batch_size, num_heads, seq_len, gpu_warp_size - head_dim
query_layer = torch.cat([query_layer, torch.zeros(pad_size, device=query_layer.device)], dim=-1)
key_layer = torch.cat([key_layer, torch.zeros(pad_size, device=key_layer.device)], dim=-1)
value_layer = torch.cat([value_layer, torch.zeros(pad_size, device=value_layer.device)], dim=-1)
context_layer = mra2_attention(
query_layer.float(),
key_layer.float(),
value_layer.float(),
attention_mask.float(),
self.num_block,
approx_mode=self.approx_mode,
initial_prior_first_n_blocks=self.initial_prior_first_n_blocks,
initial_prior_diagonal_n_blocks=self.initial_prior_diagonal_n_blocks,
)
if head_dim < gpu_warp_size:
context_layer = context_layer[:, :, :, :head_dim]
context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class MraSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class MraAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = MraSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = MraSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, attention_mask=None):
self_outputs = self.self(hidden_states, attention_mask)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class MraIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class MraOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class MraLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = MraAttention(config)
self.add_cross_attention = config.add_cross_attention
self.intermediate = MraIntermediate(config)
self.output = MraOutput(config)
def forward(self, hidden_states, attention_mask=None):
self_attention_outputs = self.attention(hidden_states, attention_mask)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class MraEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([MraLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask)
hidden_states = layer_outputs[0]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform
class MraPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Mra
class MraLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = MraPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Mra
class MraOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = MraLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
# Copied from transformers.models.yoso.modeling_yoso.YosoPreTrainedModel with Yoso->Mra,yoso->mra
class MraPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MraConfig
base_model_prefix = "mra"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
MRA_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MraConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MRA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MRA Model transformer outputting raw hidden-states without any specific head on top.",
MRA_START_DOCSTRING,
)
class MraModel(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = MraEmbeddings(config)
self.encoder = MraEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithCrossAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""MRA Model with a `language modeling` head on top.""", MRA_START_DOCSTRING)
class MraForMaskedLM(MraPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.mra = MraModel(config)
self.cls = MraOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.yoso.modeling_yoso.YosoClassificationHead with Yoso->Mra
class MraClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.config = config
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = ACT2FN[self.config.hidden_act](x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""MRA Model transformer with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks.""",
MRA_START_DOCSTRING,
)
class MraForSequenceClassification(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mra = MraModel(config)
self.classifier = MraClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""MRA Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""",
MRA_START_DOCSTRING,
)
class MraForMultipleChoice(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.mra = MraModel(config)
self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""MRA Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""",
MRA_START_DOCSTRING,
)
class MraForTokenClassification(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mra = MraModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""MRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""",
MRA_START_DOCSTRING,
)
class MraForQuestionAnswering(MraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.mra = MraModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)