2175 lines
86 KiB
Python
2175 lines
86 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch PatchTSMixer model."""
|
||
|
|
||
|
import math
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from transformers.modeling_utils import PreTrainedModel
|
||
|
from transformers.utils import ModelOutput
|
||
|
|
||
|
from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
|
||
|
from ...utils import (
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_patchtsmixer import PatchTSMixerConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CONFIG_FOR_DOC = "PatchTSMixerConfig"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
PATCHTSMIXER_START_DOCSTRING = r"""
|
||
|
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`PatchTSMixerConfig`]):
|
||
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||
|
load the weights associated with the model, only the configuration. Check out the
|
||
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
mask_input (`bool`, *optional*, defaults to `False`):
|
||
|
If True, Masking will be enabled. False otherwise.
|
||
|
"""
|
||
|
|
||
|
PATCHTSMIXER_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`):
|
||
|
Context values of the time series. For a pretraining task, this denotes the input time series to predict
|
||
|
the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly,
|
||
|
for classification or regression tasks, it denotes the appropriate context values of the time series.
|
||
|
|
||
|
For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series, it is
|
||
|
greater than 1.
|
||
|
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers.
|
||
|
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
class PatchTSMixerGatedAttention(nn.Module):
|
||
|
"""
|
||
|
Module that applies gated attention to input data.
|
||
|
|
||
|
Args:
|
||
|
in_size (`int`): The input size.
|
||
|
out_size (`int`): The output size.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, in_size: int, out_size: int):
|
||
|
super().__init__()
|
||
|
self.attn_layer = nn.Linear(in_size, out_size)
|
||
|
self.attn_softmax = nn.Softmax(dim=-1)
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
attn_weight = self.attn_softmax(self.attn_layer(inputs))
|
||
|
inputs = inputs * attn_weight
|
||
|
return inputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTBatchNorm with PatchTST->PatchTSMixer
|
||
|
class PatchTSMixerBatchNorm(nn.Module):
|
||
|
"""
|
||
|
Compute batch normalization over the sequence length (time) dimension.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
self.batchnorm = nn.BatchNorm1d(config.d_model, eps=config.norm_eps)
|
||
|
|
||
|
def forward(self, inputs: torch.Tensor):
|
||
|
"""
|
||
|
Parameters:
|
||
|
inputs (`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`):
|
||
|
input for Batch norm calculation
|
||
|
Returns:
|
||
|
`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`
|
||
|
"""
|
||
|
output = inputs.transpose(1, 2) # output: (batch_size, d_model, sequence_length)
|
||
|
output = self.batchnorm(output)
|
||
|
return output.transpose(1, 2)
|
||
|
|
||
|
|
||
|
class PatchTSMixerPositionalEncoding(nn.Module):
|
||
|
"""
|
||
|
Class for positional encoding
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
# positional encoding: [num_patches x d_model]
|
||
|
if config.use_positional_encoding:
|
||
|
self.position_enc = self._init_pe(config)
|
||
|
else:
|
||
|
self.position_enc = nn.Parameter(torch.zeros(config.num_patches, config.d_model))
|
||
|
|
||
|
@staticmethod
|
||
|
def _init_pe(config: PatchTSMixerConfig) -> nn.Parameter:
|
||
|
# Positional encoding
|
||
|
if config.positional_encoding_type == "random":
|
||
|
position_enc = nn.Parameter(torch.randn(config.num_patches, config.d_model), requires_grad=True)
|
||
|
elif config.positional_encoding_type == "sincos":
|
||
|
position_enc = torch.zeros(config.num_patches, config.d_model)
|
||
|
position = torch.arange(0, config.num_patches).unsqueeze(1)
|
||
|
div_term = torch.exp(torch.arange(0, config.d_model, 2) * -(math.log(10000.0) / config.d_model))
|
||
|
position_enc[:, 0::2] = torch.sin(position * div_term)
|
||
|
position_enc[:, 1::2] = torch.cos(position * div_term)
|
||
|
position_enc = position_enc - position_enc.mean()
|
||
|
position_enc = position_enc / (position_enc.std() * 10)
|
||
|
position_enc = nn.Parameter(position_enc, requires_grad=False)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"{config.positional_encoding_type} is not a valid positional encoder. Available types are 'random' and 'sincos'."
|
||
|
)
|
||
|
return position_enc
|
||
|
|
||
|
def forward(self, patch_input: torch.Tensor):
|
||
|
# hidden_state: [bs x num_channels x num_patches x d_model]
|
||
|
hidden_state = patch_input + self.position_enc
|
||
|
return hidden_state
|
||
|
|
||
|
|
||
|
class PatchTSMixerNormLayer(nn.Module):
|
||
|
"""Normalization block
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.norm_mlp = config.norm_mlp
|
||
|
|
||
|
if "batch" in config.norm_mlp.lower():
|
||
|
self.norm = PatchTSMixerBatchNorm(config)
|
||
|
else:
|
||
|
self.norm = nn.LayerNorm(config.d_model, eps=config.norm_eps)
|
||
|
|
||
|
def forward(self, inputs: torch.Tensor):
|
||
|
"""
|
||
|
Args:
|
||
|
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
|
||
|
Input to the normalization layer.
|
||
|
Returns:
|
||
|
`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`
|
||
|
"""
|
||
|
if "batch" in self.norm_mlp.lower():
|
||
|
# reshape the data
|
||
|
inputs_reshaped = torch.reshape(
|
||
|
inputs,
|
||
|
(
|
||
|
inputs.shape[0] * inputs.shape[1],
|
||
|
inputs.shape[2],
|
||
|
inputs.shape[3],
|
||
|
),
|
||
|
) # inputs_reshaped: [batch_size*num_channels, num_patches, d_model]
|
||
|
|
||
|
# inputs_reshaped: [batch_size*num_channels, num_patches, d_model]
|
||
|
inputs_reshaped = self.norm(inputs_reshaped)
|
||
|
|
||
|
# put back data to the original shape
|
||
|
inputs = torch.reshape(inputs_reshaped, inputs.shape)
|
||
|
|
||
|
else:
|
||
|
inputs = self.norm(inputs)
|
||
|
|
||
|
return inputs
|
||
|
|
||
|
|
||
|
class PatchTSMixerMLP(nn.Module):
|
||
|
def __init__(self, in_features, out_features, config):
|
||
|
super().__init__()
|
||
|
num_hidden = in_features * config.expansion_factor
|
||
|
self.fc1 = nn.Linear(in_features, num_hidden)
|
||
|
self.dropout1 = nn.Dropout(config.dropout)
|
||
|
self.fc2 = nn.Linear(num_hidden, out_features)
|
||
|
self.dropout2 = nn.Dropout(config.dropout)
|
||
|
|
||
|
def forward(self, inputs: torch.Tensor):
|
||
|
"""
|
||
|
Args:
|
||
|
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
|
||
|
Input to the MLP layer.
|
||
|
Returns:
|
||
|
`torch.Tensor` of the same shape as `inputs`
|
||
|
"""
|
||
|
inputs = self.dropout1(nn.functional.gelu(self.fc1(inputs)))
|
||
|
inputs = self.fc2(inputs)
|
||
|
inputs = self.dropout2(inputs)
|
||
|
return inputs
|
||
|
|
||
|
|
||
|
class PatchTSMixerChannelFeatureMixerBlock(nn.Module):
|
||
|
"""This module mixes the features in the channel dimension.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.norm = PatchTSMixerNormLayer(config)
|
||
|
self.gated_attn = config.gated_attn
|
||
|
self.mlp = PatchTSMixerMLP(
|
||
|
in_features=config.num_input_channels,
|
||
|
out_features=config.num_input_channels,
|
||
|
config=config,
|
||
|
)
|
||
|
|
||
|
if config.gated_attn:
|
||
|
self.gating_block = PatchTSMixerGatedAttention(
|
||
|
in_size=config.num_input_channels, out_size=config.num_input_channels
|
||
|
)
|
||
|
|
||
|
def forward(self, inputs: torch.Tensor):
|
||
|
"""
|
||
|
Args:
|
||
|
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
|
||
|
input to the MLP layer
|
||
|
Returns:
|
||
|
`torch.Tensor` of the same shape as `inputs`
|
||
|
"""
|
||
|
residual = inputs
|
||
|
inputs = self.norm(inputs)
|
||
|
|
||
|
inputs = inputs.permute(0, 3, 2, 1)
|
||
|
|
||
|
if self.gated_attn:
|
||
|
inputs = self.gating_block(inputs)
|
||
|
|
||
|
inputs = self.mlp(inputs)
|
||
|
|
||
|
inputs = inputs.permute(0, 3, 2, 1)
|
||
|
|
||
|
out = inputs + residual
|
||
|
return out
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PatchTSMixer
|
||
|
class PatchTSMixerAttention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embed_dim: int,
|
||
|
num_heads: int,
|
||
|
dropout: float = 0.0,
|
||
|
is_decoder: bool = False,
|
||
|
bias: bool = True,
|
||
|
is_causal: bool = False,
|
||
|
config: Optional[PatchTSMixerConfig] = None,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.embed_dim = embed_dim
|
||
|
self.num_heads = num_heads
|
||
|
self.dropout = dropout
|
||
|
self.head_dim = embed_dim // num_heads
|
||
|
self.config = config
|
||
|
|
||
|
if (self.head_dim * num_heads) != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
||
|
f" and `num_heads`: {num_heads})."
|
||
|
)
|
||
|
self.scaling = self.head_dim**-0.5
|
||
|
self.is_decoder = is_decoder
|
||
|
self.is_causal = is_causal
|
||
|
|
||
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
|
||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
key_value_states: Optional[torch.Tensor] = None,
|
||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
layer_head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
# if key_value_states are provided this layer is used as a cross-attention layer
|
||
|
# for the decoder
|
||
|
is_cross_attention = key_value_states is not None
|
||
|
|
||
|
bsz, tgt_len, _ = hidden_states.size()
|
||
|
|
||
|
# get query proj
|
||
|
query_states = self.q_proj(hidden_states) * self.scaling
|
||
|
# get key, value proj
|
||
|
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
||
|
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
||
|
# the provided `key_value_states` to support prefix tuning
|
||
|
if (
|
||
|
is_cross_attention
|
||
|
and past_key_value is not None
|
||
|
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
||
|
):
|
||
|
# reuse k,v, cross_attentions
|
||
|
key_states = past_key_value[0]
|
||
|
value_states = past_key_value[1]
|
||
|
elif is_cross_attention:
|
||
|
# cross_attentions
|
||
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
||
|
elif past_key_value is not None:
|
||
|
# reuse k, v, self_attention
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||
|
else:
|
||
|
# self_attention
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
|
||
|
if self.is_decoder:
|
||
|
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
||
|
# Further calls to cross_attention layer can then reuse all cross-attention
|
||
|
# key/value_states (first "if" case)
|
||
|
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
||
|
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
||
|
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
||
|
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
||
|
past_key_value = (key_states, value_states)
|
||
|
|
||
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||
|
key_states = key_states.reshape(*proj_shape)
|
||
|
value_states = value_states.reshape(*proj_shape)
|
||
|
|
||
|
src_len = key_states.size(1)
|
||
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||
|
|
||
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
||
|
f" {attn_weights.size()}"
|
||
|
)
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||
|
)
|
||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||
|
|
||
|
if layer_head_mask is not None:
|
||
|
if layer_head_mask.size() != (self.num_heads,):
|
||
|
raise ValueError(
|
||
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
||
|
f" {layer_head_mask.size()}"
|
||
|
)
|
||
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
if output_attentions:
|
||
|
# this operation is a bit awkward, but it's required to
|
||
|
# make sure that attn_weights keeps its gradient.
|
||
|
# In order to do so, attn_weights have to be reshaped
|
||
|
# twice and have to be reused in the following
|
||
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
else:
|
||
|
attn_weights_reshaped = None
|
||
|
|
||
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||
|
|
||
|
attn_output = torch.bmm(attn_probs, value_states)
|
||
|
|
||
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||
|
raise ValueError(
|
||
|
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
||
|
f" {attn_output.size()}"
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||
|
attn_output = attn_output.transpose(1, 2)
|
||
|
|
||
|
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
||
|
# partitioned across GPUs when using tensor-parallelism.
|
||
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
||
|
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
return attn_output, attn_weights_reshaped, past_key_value
|
||
|
|
||
|
|
||
|
class PatchMixerBlock(nn.Module):
|
||
|
"""This module mixes the patch dimension.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.norm = PatchTSMixerNormLayer(config)
|
||
|
|
||
|
self.self_attn = config.self_attn
|
||
|
self.gated_attn = config.gated_attn
|
||
|
|
||
|
self.mlp = PatchTSMixerMLP(
|
||
|
in_features=config.num_patches,
|
||
|
out_features=config.num_patches,
|
||
|
config=config,
|
||
|
)
|
||
|
|
||
|
if config.gated_attn:
|
||
|
self.gating_block = PatchTSMixerGatedAttention(in_size=config.num_patches, out_size=config.num_patches)
|
||
|
|
||
|
if config.self_attn:
|
||
|
self.self_attn_layer = PatchTSMixerAttention(
|
||
|
embed_dim=config.d_model,
|
||
|
num_heads=config.self_attn_heads,
|
||
|
dropout=config.dropout,
|
||
|
)
|
||
|
self.norm_attn = PatchTSMixerNormLayer(config)
|
||
|
|
||
|
def forward(self, hidden_state):
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_state (`torch.Tensor`): Input tensor.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`: Transformed tensor.
|
||
|
"""
|
||
|
residual = hidden_state
|
||
|
|
||
|
hidden_state = self.norm(hidden_state)
|
||
|
|
||
|
if self.self_attn:
|
||
|
batch_size, n_vars, num_patches, d_model = hidden_state.shape
|
||
|
hidden_state_reshaped = hidden_state.reshape(batch_size * n_vars, num_patches, d_model)
|
||
|
|
||
|
x_attn, _, _ = self.self_attn_layer(hidden_state_reshaped, output_attentions=False)
|
||
|
x_attn = x_attn.reshape(batch_size, n_vars, num_patches, d_model)
|
||
|
|
||
|
# Transpose so that num_patches is the last dimension
|
||
|
hidden_state = hidden_state.transpose(2, 3)
|
||
|
hidden_state = self.mlp(hidden_state)
|
||
|
|
||
|
if self.gated_attn:
|
||
|
hidden_state = self.gating_block(hidden_state)
|
||
|
|
||
|
# Transpose back
|
||
|
hidden_state = hidden_state.transpose(2, 3)
|
||
|
|
||
|
if self.self_attn:
|
||
|
hidden_state = self.norm_attn(hidden_state + x_attn)
|
||
|
|
||
|
out = hidden_state + residual
|
||
|
return out
|
||
|
|
||
|
|
||
|
class FeatureMixerBlock(nn.Module):
|
||
|
"""This module mixes the hidden feature dimension.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.norm = PatchTSMixerNormLayer(config)
|
||
|
|
||
|
self.gated_attn = config.gated_attn
|
||
|
|
||
|
self.mlp = PatchTSMixerMLP(
|
||
|
in_features=config.d_model,
|
||
|
out_features=config.d_model,
|
||
|
config=config,
|
||
|
)
|
||
|
|
||
|
if config.gated_attn:
|
||
|
self.gating_block = PatchTSMixerGatedAttention(in_size=config.d_model, out_size=config.d_model)
|
||
|
|
||
|
def forward(self, hidden: torch.Tensor):
|
||
|
"""
|
||
|
Args:
|
||
|
hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`):
|
||
|
Input tensor to the layer.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`: Transformed tensor.
|
||
|
"""
|
||
|
residual = hidden
|
||
|
hidden = self.norm(hidden)
|
||
|
hidden = self.mlp(hidden)
|
||
|
|
||
|
if self.gated_attn:
|
||
|
hidden = self.gating_block(hidden)
|
||
|
|
||
|
out = hidden + residual
|
||
|
return out
|
||
|
|
||
|
|
||
|
class PatchTSMixerLayer(nn.Module):
|
||
|
"""
|
||
|
The `PatchTSMixer` layer that does all three kinds of mixing.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.patch_mixer = PatchMixerBlock(config=config)
|
||
|
self.feature_mixer = FeatureMixerBlock(config=config)
|
||
|
|
||
|
self.mode = config.mode
|
||
|
|
||
|
if config.mode == "mix_channel":
|
||
|
self.channel_feature_mixer = PatchTSMixerChannelFeatureMixerBlock(config=config)
|
||
|
|
||
|
def forward(self, hidden: torch.Tensor):
|
||
|
"""
|
||
|
Args:
|
||
|
hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`):
|
||
|
Input tensor to the layer.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`: Transformed tensor.
|
||
|
"""
|
||
|
if self.mode == "mix_channel":
|
||
|
hidden = self.channel_feature_mixer(hidden)
|
||
|
|
||
|
hidden = self.patch_mixer(hidden)
|
||
|
hidden = self.feature_mixer(hidden) # hidden: (batch_size x num_patches x d_model)
|
||
|
return hidden
|
||
|
|
||
|
|
||
|
class PatchTSMixerBlock(nn.Module):
|
||
|
"""The main computing framework of the `PatchTSMixer` model.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
num_layers = config.num_layers
|
||
|
|
||
|
self.mixers = nn.ModuleList([PatchTSMixerLayer(config=config) for _ in range(num_layers)])
|
||
|
|
||
|
def forward(self, hidden_state, output_hidden_states: bool = False):
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_state (`torch.Tensor`): The input tensor.
|
||
|
output_hidden_states (`bool`, *optional*, defaults to False.):
|
||
|
Whether to output the hidden states as well.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`: The embedding. `list`: List of all hidden states if `output_hidden_states` is set to
|
||
|
`True`.
|
||
|
"""
|
||
|
all_hidden_states = []
|
||
|
|
||
|
embedding = hidden_state
|
||
|
|
||
|
for mod in self.mixers:
|
||
|
embedding = mod(embedding)
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states.append(embedding)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
return embedding, all_hidden_states
|
||
|
else:
|
||
|
return embedding, None
|
||
|
|
||
|
|
||
|
class PatchTSMixerForPredictionHead(nn.Module):
|
||
|
"""Prediction Head for Forecasting
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*): Configuration.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig, distribution_output=None):
|
||
|
super().__init__()
|
||
|
|
||
|
self.prediction_channel_indices = config.prediction_channel_indices
|
||
|
|
||
|
if self.prediction_channel_indices is not None:
|
||
|
self.prediction_channel_indices.sort()
|
||
|
|
||
|
self.dropout_layer = nn.Dropout(config.head_dropout)
|
||
|
if distribution_output is None:
|
||
|
self.base_forecast_block = nn.Linear((config.num_patches * config.d_model), config.prediction_length)
|
||
|
else:
|
||
|
self.base_forecast_block = distribution_output.get_parameter_projection(
|
||
|
config.num_patches * config.d_model
|
||
|
)
|
||
|
|
||
|
self.flatten = nn.Flatten(start_dim=-2)
|
||
|
|
||
|
def forward(self, hidden_features):
|
||
|
"""
|
||
|
|
||
|
Args:
|
||
|
hidden_features (`torch.Tensor` of shape `(batch_size, num_patch, d_model)` in `flatten` mode
|
||
|
or `(batch_size, n_vars, num_patch, d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
|
||
|
features.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor` of shape `(batch_size, prediction_length, nvars)`.
|
||
|
|
||
|
"""
|
||
|
|
||
|
hidden_features = self.flatten(hidden_features) # [batch_size x n_vars x num_patch * d_model]
|
||
|
hidden_features = self.dropout_layer(hidden_features) # [batch_size x n_vars x num_patch * d_model]
|
||
|
forecast = self.base_forecast_block(hidden_features) # [batch_size x n_vars x prediction_length]
|
||
|
if isinstance(forecast, tuple):
|
||
|
forecast = tuple(z.transpose(-1, -2) for z in forecast)
|
||
|
else:
|
||
|
forecast = forecast.transpose(-1, -2) # [batch_size x prediction_length x n_vars]
|
||
|
|
||
|
if self.prediction_channel_indices is not None:
|
||
|
if isinstance(forecast, tuple):
|
||
|
forecast = tuple(z[..., self.prediction_channel_indices] for z in forecast)
|
||
|
else:
|
||
|
forecast = forecast[..., self.prediction_channel_indices] # [batch_size x prediction_length x n_vars]
|
||
|
|
||
|
return forecast
|
||
|
|
||
|
|
||
|
class PatchTSMixerLinearHead(nn.Module):
|
||
|
"""Linear head for Classification and Regression.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig, distribution_output=None):
|
||
|
super().__init__()
|
||
|
|
||
|
self.head_aggregation = config.head_aggregation
|
||
|
self.output_range = config.output_range
|
||
|
|
||
|
if config.head_aggregation is None:
|
||
|
mul_factor = config.num_patches
|
||
|
else:
|
||
|
mul_factor = 1
|
||
|
self.distribution_output = distribution_output
|
||
|
if distribution_output is None:
|
||
|
self.projection = nn.Linear(
|
||
|
config.d_model * config.num_input_channels * mul_factor,
|
||
|
config.num_targets,
|
||
|
)
|
||
|
else:
|
||
|
self.projection = distribution_output.get_parameter_projection(
|
||
|
config.d_model * config.num_input_channels * mul_factor
|
||
|
)
|
||
|
|
||
|
if config.head_aggregation is None:
|
||
|
self.flatten = nn.Flatten(start_dim=-3)
|
||
|
else:
|
||
|
self.flatten = nn.Flatten(start_dim=-2)
|
||
|
|
||
|
self.dropout = nn.Dropout(config.head_dropout)
|
||
|
|
||
|
def forward(self, hidden_features):
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode
|
||
|
or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
|
||
|
features.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor` of shape `(batch_size x num_targets)`.
|
||
|
"""
|
||
|
|
||
|
# batch_size x d_model x num_patch or batch_size x n_vars x d_model x num_patch
|
||
|
hidden_features = hidden_features.transpose(-1, -2)
|
||
|
if self.head_aggregation == "use_last":
|
||
|
# batch_size x d_model (flatten) or # batch_size x n_vars x d_model (common_channel)
|
||
|
hidden_features = hidden_features[..., -1]
|
||
|
elif self.head_aggregation == "max_pool":
|
||
|
# batch_size x n_vars x d_model or batch_size x d_model
|
||
|
hidden_features = hidden_features.max(dim=-1).values
|
||
|
elif self.head_aggregation == "avg_pool":
|
||
|
# batch_size x n_vars x d_model or batch_size x d_model
|
||
|
hidden_features = hidden_features.mean(dim=-1)
|
||
|
|
||
|
if self.flatten:
|
||
|
hidden_features = self.flatten(hidden_features)
|
||
|
hidden_features = self.dropout(hidden_features)
|
||
|
hidden_features = self.projection(hidden_features) # batch_size x num_targets
|
||
|
|
||
|
if (self.distribution_output is None) and (self.output_range is not None):
|
||
|
hidden_features = (
|
||
|
torch.sigmoid(hidden_features) * (self.output_range[1] - self.output_range[0]) + self.output_range[0]
|
||
|
)
|
||
|
return hidden_features
|
||
|
|
||
|
|
||
|
class PatchTSMixerPreTrainedModel(PreTrainedModel):
|
||
|
# Weight initialization
|
||
|
config_class = PatchTSMixerConfig
|
||
|
base_model_prefix = "model"
|
||
|
main_input_name = "past_values"
|
||
|
supports_gradient_checkpointing = False
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize weights"""
|
||
|
if isinstance(module, PatchTSMixerPositionalEncoding):
|
||
|
# initialize positional encoding
|
||
|
if self.config.positional_encoding_type == "random":
|
||
|
nn.init.normal_(module.position_enc, mean=0.0, std=0.1)
|
||
|
elif isinstance(module, (nn.LayerNorm, nn.BatchNorm1d)):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
elif isinstance(module, PatchTSMixerBatchNorm):
|
||
|
module.batchnorm.bias.data.zero_()
|
||
|
module.batchnorm.weight.data.fill_(1.0)
|
||
|
elif isinstance(module, nn.Linear):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
|
||
|
|
||
|
class PatchTSMixerPretrainHead(nn.Module):
|
||
|
"""Pretraining head.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.dropout_layer = nn.Dropout(config.head_dropout)
|
||
|
self.base_pt_block = nn.Linear(config.d_model, config.patch_length)
|
||
|
|
||
|
def forward(self, hidden_features):
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode
|
||
|
or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
|
||
|
features.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor` of shape `(batch_size x n_vars x num_patch x patch_length)`.
|
||
|
"""
|
||
|
|
||
|
hidden_features = self.dropout_layer(hidden_features)
|
||
|
forecast = self.base_pt_block(hidden_features) # [batch_size x n_vars x num_patch x patch_length]
|
||
|
return forecast
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.patchtst.modeling_patchtst.random_masking
|
||
|
def random_masking(
|
||
|
inputs: torch.Tensor,
|
||
|
mask_ratio: float,
|
||
|
unmasked_channel_indices: list = None,
|
||
|
channel_consistent_masking: bool = False,
|
||
|
mask_value: int = 0,
|
||
|
):
|
||
|
"""random_masking: Mask the input considering the control variables.
|
||
|
|
||
|
Args:
|
||
|
inputs (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, num_features)`):
|
||
|
The input tensor to mask.
|
||
|
mask_ratio (`float`):
|
||
|
Masking ratio applied to mask the input data during random pretraining. It is the number between 0 and 1.
|
||
|
unmasked_channel_indices (list, *optional*):
|
||
|
Indices of channels that will not be masked.
|
||
|
channel_consistent_masking (bool, *optional*, defaults to `False`):
|
||
|
When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary
|
||
|
across channels.
|
||
|
mask_value (int, *optional*, defaults to 0):
|
||
|
Define the value of masked patches for pretraining.
|
||
|
|
||
|
Returns:
|
||
|
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as input Tensor and mask tensor of shape [bs x c x
|
||
|
n]
|
||
|
"""
|
||
|
if mask_ratio < 0 or mask_ratio >= 1:
|
||
|
raise ValueError(f"Mask ratio {mask_ratio} has to be between 0 and 1.")
|
||
|
|
||
|
batch_size, num_channels, sequence_length, num_features = inputs.shape
|
||
|
device = inputs.device
|
||
|
|
||
|
len_keep = int(sequence_length * (1 - mask_ratio))
|
||
|
|
||
|
if channel_consistent_masking:
|
||
|
noise = torch.rand(batch_size, 1, sequence_length, device=device) # noise in [0, 1], bs x 1 x L
|
||
|
noise = noise.repeat(1, num_channels, 1) # bs x num_channels x time
|
||
|
else:
|
||
|
# noise in [0, 1], bs x num_channels x L
|
||
|
noise = torch.rand(batch_size, num_channels, sequence_length, device=device)
|
||
|
|
||
|
# mask: [bs x num_channels x num_patch]
|
||
|
mask = torch.ones(batch_size, num_channels, sequence_length, device=device)
|
||
|
mask[:, :, :len_keep] = 0
|
||
|
|
||
|
# sort noise for each sample
|
||
|
ids_shuffle = torch.argsort(noise, dim=-1) # ascend: small is keep, large is remove
|
||
|
ids_restore = torch.argsort(ids_shuffle, dim=-1) # ids_restore: [bs x num_channels x L]
|
||
|
|
||
|
mask = torch.gather(mask, dim=-1, index=ids_restore)
|
||
|
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patches x patch_length]
|
||
|
if unmasked_channel_indices is not None:
|
||
|
mask[:, unmasked_channel_indices, :, :] = 0
|
||
|
|
||
|
inputs_mask = inputs.masked_fill(mask.bool(), mask_value)
|
||
|
return inputs_mask, mask[..., 0]
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.patchtst.modeling_patchtst.forecast_masking
|
||
|
def forecast_masking(
|
||
|
inputs: torch.Tensor,
|
||
|
num_forecast_mask_patches: Union[list, int],
|
||
|
unmasked_channel_indices: list = None,
|
||
|
mask_value: int = 0,
|
||
|
):
|
||
|
"""Forecast masking that masks the last K patches where K is from the num_forecast_mask_patches.
|
||
|
If num_forecast_mask_patches is a list, samples in the batch will be randomly masked by numbers defined in the list.
|
||
|
|
||
|
Parameters:
|
||
|
inputs (`torch.Tensor`):
|
||
|
Input of shape `(bs, num_channels, num_patch, patch_length)`
|
||
|
num_forecast_mask_patches (`list`):
|
||
|
Number of patches to be masked at the end of each batch sample. e.g. 4 or [3, 5].
|
||
|
unmasked_channel_indices (`list`, *optional*):
|
||
|
Indices of channels that are not masked.
|
||
|
mask_value (`int`, *optional*, defaults to 0):
|
||
|
Values in the masked patches will be filled by `mask_value`.
|
||
|
|
||
|
Returns:
|
||
|
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as inputs Tensor and Mask tensor of shape `(bs,
|
||
|
num_channels , num_patch)` or `(bs, tsg1, tsg2, num_channels, num_patch)`
|
||
|
"""
|
||
|
|
||
|
if isinstance(num_forecast_mask_patches, int):
|
||
|
num_forecast_mask_patches = [num_forecast_mask_patches]
|
||
|
forecast_mask_ratios = [1 for _ in num_forecast_mask_patches]
|
||
|
|
||
|
batch_size, num_channels, sequence_length, num_features = inputs.shape
|
||
|
mask = torch.zeros(batch_size, num_channels, sequence_length, device=inputs.device)
|
||
|
|
||
|
t_list = []
|
||
|
total_length = 0
|
||
|
total_ratio = sum(forecast_mask_ratios)
|
||
|
|
||
|
for patch_length, ratio in zip(num_forecast_mask_patches, forecast_mask_ratios):
|
||
|
if patch_length <= 0 or patch_length >= sequence_length:
|
||
|
raise ValueError(
|
||
|
f"num_forecast_mask_patches {patch_length} should be greater than 0 and less than total patches."
|
||
|
)
|
||
|
temp_len = int(batch_size * ratio / total_ratio)
|
||
|
t_list.append([patch_length, ratio, temp_len])
|
||
|
total_length += temp_len
|
||
|
|
||
|
t_list = sorted(t_list, key=lambda x: x[2])
|
||
|
|
||
|
if total_length < batch_size:
|
||
|
t_list[0][2] = t_list[0][2] + (batch_size - total_length)
|
||
|
elif total_length > batch_size:
|
||
|
t_list[-1][2] = t_list[-1][2] + (total_length - batch_size)
|
||
|
|
||
|
batch1 = 0
|
||
|
for patch_len, _, temp_len in t_list:
|
||
|
batch2 = batch1 + temp_len
|
||
|
mask[batch1:batch2, :, -patch_len:] = 1
|
||
|
batch1 = batch2
|
||
|
|
||
|
perm = torch.randperm(mask.shape[0])
|
||
|
mask = mask[perm]
|
||
|
|
||
|
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patch x patch_len]
|
||
|
if unmasked_channel_indices is not None:
|
||
|
mask[:, unmasked_channel_indices, :, :] = 0
|
||
|
|
||
|
inputs_mask = inputs.masked_fill(mask.bool(), mask_value)
|
||
|
return inputs_mask, mask[..., 0]
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTPatchify with PatchTST->PatchTSMixer
|
||
|
class PatchTSMixerPatchify(nn.Module):
|
||
|
"""
|
||
|
A class to patchify the time series sequence into different patches
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.sequence_length = config.context_length
|
||
|
self.patch_length = config.patch_length
|
||
|
self.patch_stride = config.patch_stride
|
||
|
|
||
|
if self.sequence_length <= self.patch_length:
|
||
|
raise ValueError(
|
||
|
f"Sequence length ({self.sequence_length}) has to be greater than the patch length ({self.patch_length})"
|
||
|
)
|
||
|
|
||
|
# get the number of patches
|
||
|
self.num_patches = (max(self.sequence_length, self.patch_length) - self.patch_length) // self.patch_stride + 1
|
||
|
new_sequence_length = self.patch_length + self.patch_stride * (self.num_patches - 1)
|
||
|
self.sequence_start = self.sequence_length - new_sequence_length
|
||
|
|
||
|
def forward(self, past_values: torch.Tensor):
|
||
|
"""
|
||
|
Parameters:
|
||
|
past_values (`torch.Tensor` of shape `(batch_size, sequence_length, num_channels)`, *required*):
|
||
|
Input for patchification
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`
|
||
|
"""
|
||
|
sequence_length = past_values.shape[-2]
|
||
|
if sequence_length != self.sequence_length:
|
||
|
raise ValueError(
|
||
|
f"Input sequence length ({sequence_length}) doesn't match model configuration ({self.sequence_length})."
|
||
|
)
|
||
|
# output: [bs x new_sequence_length x num_channels]
|
||
|
output = past_values[:, self.sequence_start :, :]
|
||
|
# output: [bs x num_patches x num_input_channels x patch_length]
|
||
|
output = output.unfold(dimension=-2, size=self.patch_length, step=self.patch_stride)
|
||
|
# output: [bs x num_input_channels x num_patches x patch_length]
|
||
|
output = output.transpose(-2, -3).contiguous()
|
||
|
return output
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMasking with PatchTST->PatchTSMixer
|
||
|
class PatchTSMixerMasking(nn.Module):
|
||
|
"""
|
||
|
Class to perform random or forecast masking.
|
||
|
|
||
|
Parameters:
|
||
|
config (`PatchTSMixerConfig`): model config
|
||
|
Returns:
|
||
|
x_mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`)
|
||
|
Masked patched input
|
||
|
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`)
|
||
|
Bool tensor indicating True on masked points
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
self.random_mask_ratio = config.random_mask_ratio
|
||
|
self.channel_consistent_masking = config.channel_consistent_masking
|
||
|
self.mask_type = config.mask_type
|
||
|
self.num_forecast_mask_patches = config.num_forecast_mask_patches
|
||
|
self.unmasked_channel_indices = config.unmasked_channel_indices
|
||
|
self.mask_value = config.mask_value
|
||
|
if self.unmasked_channel_indices is not None:
|
||
|
self.unmasked_channel_indices = sorted(self.unmasked_channel_indices)
|
||
|
|
||
|
def forward(self, patch_input: torch.Tensor):
|
||
|
"""
|
||
|
Parameters:
|
||
|
patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*):
|
||
|
Patch input
|
||
|
|
||
|
Return:
|
||
|
masked_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`)
|
||
|
Masked patched input
|
||
|
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`)
|
||
|
Bool tensor indicating True on masked points
|
||
|
|
||
|
"""
|
||
|
if self.mask_type == "random":
|
||
|
masked_input, mask = random_masking(
|
||
|
inputs=patch_input,
|
||
|
mask_ratio=self.random_mask_ratio,
|
||
|
unmasked_channel_indices=self.unmasked_channel_indices,
|
||
|
channel_consistent_masking=self.channel_consistent_masking,
|
||
|
mask_value=self.mask_value,
|
||
|
)
|
||
|
elif self.mask_type == "forecast":
|
||
|
masked_input, mask = forecast_masking(
|
||
|
inputs=patch_input,
|
||
|
num_forecast_mask_patches=self.num_forecast_mask_patches,
|
||
|
unmasked_channel_indices=self.unmasked_channel_indices,
|
||
|
mask_value=self.mask_value,
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError(f"Invalid mask type {self.mask_type}.")
|
||
|
|
||
|
# mask: [bs x num_input_channels x num_patch]
|
||
|
mask = mask.bool()
|
||
|
return masked_input, mask
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTStdScaler with PatchTST->PatchTSMixer
|
||
|
class PatchTSMixerStdScaler(nn.Module):
|
||
|
"""
|
||
|
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
|
||
|
subtracting from the mean and dividing by the standard deviation.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
|
||
|
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
|
||
|
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5
|
||
|
|
||
|
def forward(
|
||
|
self, data: torch.Tensor, observed_indicator: torch.Tensor
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
|
"""
|
||
|
Parameters:
|
||
|
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
|
||
|
input for Batch norm calculation
|
||
|
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
|
||
|
Calculating the scale on the observed indicator.
|
||
|
Returns:
|
||
|
tuple of `torch.Tensor` of shapes
|
||
|
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
|
||
|
`(batch_size, 1, num_input_channels)`)
|
||
|
"""
|
||
|
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
|
||
|
denominator = denominator.clamp_min(1.0)
|
||
|
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
|
||
|
|
||
|
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
|
||
|
scale = torch.sqrt(variance + self.minimum_scale)
|
||
|
return (data - loc) / scale, loc, scale
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMeanScaler with PatchTST->PatchTSMixer
|
||
|
class PatchTSMixerMeanScaler(nn.Module):
|
||
|
"""
|
||
|
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
|
||
|
accordingly.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
|
||
|
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
|
||
|
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
|
||
|
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
|
||
|
|
||
|
def forward(
|
||
|
self, data: torch.Tensor, observed_indicator: torch.Tensor
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
|
"""
|
||
|
Parameters:
|
||
|
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
|
||
|
input for Batch norm calculation
|
||
|
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
|
||
|
Calculating the scale on the observed indicator.
|
||
|
Returns:
|
||
|
tuple of `torch.Tensor` of shapes
|
||
|
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
|
||
|
`(batch_size, 1, num_input_channels)`)
|
||
|
"""
|
||
|
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
|
||
|
num_observed = observed_indicator.sum(self.dim, keepdim=True)
|
||
|
|
||
|
scale = ts_sum / torch.clamp(num_observed, min=1)
|
||
|
|
||
|
# If `default_scale` is provided, we use it, otherwise we use the scale
|
||
|
# of the batch.
|
||
|
if self.default_scale is None:
|
||
|
batch_sum = ts_sum.sum(dim=0)
|
||
|
batch_observations = torch.clamp(num_observed.sum(0), min=1)
|
||
|
default_scale = torch.squeeze(batch_sum / batch_observations)
|
||
|
else:
|
||
|
default_scale = self.default_scale * torch.ones_like(scale)
|
||
|
|
||
|
# apply default scale where there are no observations
|
||
|
scale = torch.where(num_observed > 0, scale, default_scale)
|
||
|
|
||
|
# ensure the scale is at least `self.minimum_scale`
|
||
|
scale = torch.clamp(scale, min=self.minimum_scale)
|
||
|
scaled_data = data / scale
|
||
|
|
||
|
if not self.keepdim:
|
||
|
scale = scale.squeeze(dim=self.dim)
|
||
|
|
||
|
return scaled_data, torch.zeros_like(scale), scale
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTNOPScaler with PatchTST->PatchTSMixer
|
||
|
class PatchTSMixerNOPScaler(nn.Module):
|
||
|
"""
|
||
|
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__()
|
||
|
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
|
||
|
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
|
||
|
|
||
|
def forward(
|
||
|
self, data: torch.Tensor, observed_indicator: torch.Tensor = None
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
|
"""
|
||
|
Parameters:
|
||
|
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
|
||
|
input for Batch norm calculation
|
||
|
Returns:
|
||
|
tuple of `torch.Tensor` of shapes
|
||
|
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
|
||
|
`(batch_size, 1, num_input_channels)`)
|
||
|
"""
|
||
|
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
|
||
|
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
|
||
|
return data, loc, scale
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class PatchTSMixerEncoderOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for `PatchTSMixerEncoderOutput`, with potential hidden states.
|
||
|
|
||
|
Args:
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`):
|
||
|
Hidden-state at the output of the last layer of the model.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
||
|
Hidden-states of the model at the output of each layer.
|
||
|
"""
|
||
|
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
class PatchTSMixerEncoder(PatchTSMixerPreTrainedModel):
|
||
|
"""
|
||
|
Encoder for PatchTSMixer which inputs patched time-series and outputs patched embeddings.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.use_return_dict = config.use_return_dict
|
||
|
|
||
|
self.patcher = nn.Linear(config.patch_length, config.d_model)
|
||
|
if config.use_positional_encoding:
|
||
|
self.positional_encoder = PatchTSMixerPositionalEncoding(config=config)
|
||
|
else:
|
||
|
self.positional_encoder = None
|
||
|
self.mlp_mixer_encoder = PatchTSMixerBlock(config=config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
if config.post_init:
|
||
|
self.post_init()
|
||
|
|
||
|
@replace_return_docstrings(output_type=PatchTSMixerEncoderOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
past_values: torch.Tensor,
|
||
|
output_hidden_states: Optional[bool] = False,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, PatchTSMixerEncoderOutput]:
|
||
|
r"""
|
||
|
Args:
|
||
|
past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`):
|
||
|
Context values of the time series. For a pretraining task, this denotes the input time series to
|
||
|
predict the masked portion. For a forecasting task, this denotes the history/past time series values.
|
||
|
Similarly, for classification or regression tasks, it denotes the appropriate context values of the
|
||
|
time series.
|
||
|
|
||
|
For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series,
|
||
|
it is greater than 1.
|
||
|
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers.
|
||
|
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
|
||
|
Returns:
|
||
|
`torch.FloatTensor` of shape `(batch_size, n_vars, num_patches, d_model)`
|
||
|
"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.use_return_dict
|
||
|
|
||
|
# flatten [bs x num_patch x d_model]. common_channel/mix_channel: [bs x n_vars x num_patch x d_model]
|
||
|
patches = self.patcher(past_values)
|
||
|
|
||
|
# add positional encoder
|
||
|
if self.positional_encoder is not None:
|
||
|
patches = self.positional_encoder(patches)
|
||
|
|
||
|
last_hidden_state, hidden_states = self.mlp_mixer_encoder(patches, output_hidden_states=output_hidden_states)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [
|
||
|
last_hidden_state,
|
||
|
hidden_states,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
return PatchTSMixerEncoderOutput(last_hidden_state=last_hidden_state, hidden_states=hidden_states)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class PatchTSMixerModelOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for model's outputs, with potential hidden states.
|
||
|
|
||
|
Args:
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`):
|
||
|
Hidden-state at the output of the last layer of the model.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
||
|
Hidden-states of the model at the output of each layer.
|
||
|
patch_input (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`):
|
||
|
Patched input data to the model.
|
||
|
mask: (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches)`,*optional*):
|
||
|
Bool Tensor indicating True in masked patches and False otherwise.
|
||
|
loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*):
|
||
|
Gives the mean of the context window per channel. Used for revin denorm outside the model, if revin
|
||
|
enabled.
|
||
|
scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*):
|
||
|
Gives the std dev of the context window per channel. Used for revin denorm outside the model, if revin
|
||
|
enabled.
|
||
|
"""
|
||
|
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
patch_input: torch.FloatTensor = None
|
||
|
mask: Optional[torch.FloatTensor] = None
|
||
|
loc: Optional[torch.FloatTensor] = None
|
||
|
scale: Optional[torch.FloatTensor] = None
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The PatchTSMixer Model for time-series forecasting.",
|
||
|
PATCHTSMIXER_START_DOCSTRING,
|
||
|
)
|
||
|
class PatchTSMixerModel(PatchTSMixerPreTrainedModel):
|
||
|
def __init__(self, config: PatchTSMixerConfig, mask_input: bool = False):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.use_return_dict = config.use_return_dict
|
||
|
self.encoder = PatchTSMixerEncoder(config)
|
||
|
self.patching = PatchTSMixerPatchify(config)
|
||
|
|
||
|
if mask_input is True:
|
||
|
self.masking = PatchTSMixerMasking(config)
|
||
|
else:
|
||
|
self.masking = None
|
||
|
|
||
|
if config.scaling == "mean":
|
||
|
self.scaler = PatchTSMixerMeanScaler(config)
|
||
|
elif config.scaling == "std" or config.scaling is True:
|
||
|
self.scaler = PatchTSMixerStdScaler(config)
|
||
|
else:
|
||
|
self.scaler = PatchTSMixerNOPScaler(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
if config.post_init:
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=PatchTSMixerModelOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
past_values: torch.Tensor,
|
||
|
observed_mask: Optional[torch.Tensor] = None,
|
||
|
output_hidden_states: Optional[bool] = False,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> PatchTSMixerModelOutput:
|
||
|
r"""
|
||
|
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
|
||
|
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
|
||
|
in `[0, 1]`:
|
||
|
- 1 for values that are **observed**,
|
||
|
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.use_return_dict
|
||
|
|
||
|
mask = None
|
||
|
if observed_mask is None:
|
||
|
observed_mask = torch.ones_like(past_values)
|
||
|
scaled_past_values, loc, scale = self.scaler(past_values, observed_mask)
|
||
|
|
||
|
patched_x = self.patching(scaled_past_values) # [batch_size x num_input_channels x num_patch x patch_length
|
||
|
|
||
|
enc_input = patched_x
|
||
|
if self.masking is not None:
|
||
|
enc_input, mask = self.masking(patched_x)
|
||
|
# enc_input: [batch_size x num_input_channels x num_patch x patch_length]
|
||
|
# mask: [batch_size x num_input_channels x num_patch]
|
||
|
|
||
|
encoder_output = self.encoder(
|
||
|
enc_input,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
if isinstance(encoder_output, tuple):
|
||
|
encoder_output = PatchTSMixerEncoderOutput(*encoder_output)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [
|
||
|
encoder_output.last_hidden_state,
|
||
|
encoder_output.hidden_states,
|
||
|
patched_x,
|
||
|
mask,
|
||
|
loc,
|
||
|
scale,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
return PatchTSMixerModelOutput(
|
||
|
last_hidden_state=encoder_output.last_hidden_state,
|
||
|
hidden_states=encoder_output.hidden_states,
|
||
|
patch_input=patched_x,
|
||
|
mask=mask,
|
||
|
loc=loc,
|
||
|
scale=scale,
|
||
|
)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class PatchTSMixerForPreTrainingOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of [`PatchTSMixerForPreTrainingOutput`].
|
||
|
|
||
|
Args:
|
||
|
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, patch_length)`):
|
||
|
Prediction output from the pretrain head.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
||
|
Hidden-states of the model at the output of each layer.
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
|
||
|
Backbone embeddings before passing through the head.
|
||
|
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
|
||
|
Total loss
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
prediction_outputs: torch.FloatTensor = None
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
class PatchTSMixerForPretraining(PatchTSMixerPreTrainedModel):
|
||
|
r"""
|
||
|
`PatchTSMixer` for mask pretraining.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
|
||
|
Returns:
|
||
|
`None`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__(config)
|
||
|
self.model = PatchTSMixerModel(config, mask_input=True)
|
||
|
self.head = PatchTSMixerPretrainHead(config=config)
|
||
|
self.masked_loss = config.masked_loss
|
||
|
self.use_return_dict = config.use_return_dict
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
if config.post_init:
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=PatchTSMixerForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
past_values: torch.Tensor,
|
||
|
observed_mask: Optional[torch.Tensor] = None,
|
||
|
output_hidden_states: Optional[bool] = False,
|
||
|
return_loss: bool = True,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> PatchTSMixerForPreTrainingOutput:
|
||
|
r"""
|
||
|
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
|
||
|
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
|
||
|
in `[0, 1]`:
|
||
|
- 1 for values that are **observed**,
|
||
|
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
|
||
|
return_loss (`bool`, *optional*):
|
||
|
Whether to return the loss in the `forward` call.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.use_return_dict
|
||
|
|
||
|
if self.masked_loss is True:
|
||
|
loss = torch.nn.MSELoss(reduction="none")
|
||
|
else:
|
||
|
loss = torch.nn.MSELoss(reduction="mean")
|
||
|
|
||
|
# past_values: tensor [batch_size x context_length x num_input_channels]
|
||
|
model_output = self.model(
|
||
|
past_values,
|
||
|
observed_mask=observed_mask,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
) # x.last_hidden_state: [batch_size x nvars x num_patch x d_model]
|
||
|
if isinstance(model_output, tuple):
|
||
|
model_output = PatchTSMixerModelOutput(*model_output)
|
||
|
|
||
|
x_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x nvars x num_patch x patch_length]
|
||
|
|
||
|
if return_loss is True:
|
||
|
loss_val = loss(x_hat, model_output.patch_input)
|
||
|
else:
|
||
|
loss_val = None
|
||
|
|
||
|
# calculate masked_loss
|
||
|
if self.masked_loss is True and loss_val is not None:
|
||
|
loss_val = (loss_val.mean(dim=-1) * model_output.mask).sum() / (model_output.mask.sum() + 1e-10)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [
|
||
|
loss_val,
|
||
|
x_hat,
|
||
|
model_output.last_hidden_state,
|
||
|
model_output.hidden_states,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
return PatchTSMixerForPreTrainingOutput(
|
||
|
loss=loss_val,
|
||
|
prediction_outputs=x_hat, # tensor [batch_size x nvars x num_patch x patch_length]
|
||
|
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
|
||
|
hidden_states=model_output.hidden_states,
|
||
|
)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class PatchTSMixerForPredictionOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of [`PatchTSMixerForPredictionOutput`].
|
||
|
|
||
|
Args:
|
||
|
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_input_channels)`):
|
||
|
Prediction output from the forecast head.
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
|
||
|
Backbone embeddings before passing through the head.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
|
||
|
Total loss.
|
||
|
loc (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`):
|
||
|
Input mean
|
||
|
scale (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`):
|
||
|
Input std dev
|
||
|
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
prediction_outputs: torch.FloatTensor = None
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
loc: torch.FloatTensor = None
|
||
|
scale: torch.FloatTensor = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SamplePatchTSMixerPredictionOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for time series model's predictions outputs that contains the sampled values from the chosen
|
||
|
distribution.
|
||
|
|
||
|
Args:
|
||
|
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, prediction_length, number_channels)`):
|
||
|
Sampled values from the chosen distribution.
|
||
|
"""
|
||
|
|
||
|
sequences: torch.FloatTensor = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SamplePatchTSMixerRegressionOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for time series model's predictions outputs that contains the sampled values from the chosen
|
||
|
distribution.
|
||
|
|
||
|
Args:
|
||
|
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, num_targets)`
|
||
|
Sampled values from the chosen distribution.
|
||
|
"""
|
||
|
|
||
|
sequences: torch.FloatTensor = None
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll
|
||
|
def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Computes the negative log likelihood loss from input distribution with respect to target.
|
||
|
"""
|
||
|
return -input.log_prob(target)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average
|
||
|
def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor:
|
||
|
"""
|
||
|
Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero,
|
||
|
meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`.
|
||
|
|
||
|
Args:
|
||
|
input_tensor (`torch.FloatTensor`):
|
||
|
Input tensor, of which the average must be computed.
|
||
|
weights (`torch.FloatTensor`, *optional*):
|
||
|
Weights tensor, of the same shape as `input_tensor`.
|
||
|
dim (`int`, *optional*):
|
||
|
The dim along which to average `input_tensor`.
|
||
|
|
||
|
Returns:
|
||
|
`torch.FloatTensor`: The tensor with values averaged along the specified `dim`.
|
||
|
"""
|
||
|
if weights is not None:
|
||
|
weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor))
|
||
|
sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0)
|
||
|
return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights
|
||
|
else:
|
||
|
return input_tensor.mean(dim=dim)
|
||
|
|
||
|
|
||
|
class PatchTSMixerForPrediction(PatchTSMixerPreTrainedModel):
|
||
|
r"""
|
||
|
`PatchTSMixer` for forecasting application.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
|
||
|
Returns:
|
||
|
`None`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__(config)
|
||
|
self.loss = config.loss
|
||
|
self.use_return_dict = config.use_return_dict
|
||
|
self.prediction_channel_indices = config.prediction_channel_indices
|
||
|
self.num_parallel_samples = config.num_parallel_samples
|
||
|
|
||
|
if config.loss == "mse":
|
||
|
self.distribution_output = None
|
||
|
else:
|
||
|
dim = config.prediction_length
|
||
|
distribution_output_map = {
|
||
|
"student_t": StudentTOutput,
|
||
|
"normal": NormalOutput,
|
||
|
"negative_binomial": NegativeBinomialOutput,
|
||
|
}
|
||
|
output_class = distribution_output_map.get(config.distribution_output, None)
|
||
|
if output_class is not None:
|
||
|
self.distribution_output = output_class(dim=dim)
|
||
|
else:
|
||
|
raise ValueError(f"Unknown distribution output {config.distribution_output}")
|
||
|
|
||
|
self.model = PatchTSMixerModel(config)
|
||
|
self.head = PatchTSMixerForPredictionHead(
|
||
|
config=config,
|
||
|
distribution_output=self.distribution_output,
|
||
|
)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
if config.post_init:
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=PatchTSMixerForPredictionOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
past_values: torch.Tensor,
|
||
|
observed_mask: Optional[torch.Tensor] = None,
|
||
|
future_values: Optional[torch.Tensor] = None,
|
||
|
output_hidden_states: Optional[bool] = False,
|
||
|
return_loss: bool = True,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> PatchTSMixerForPredictionOutput:
|
||
|
r"""
|
||
|
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
|
||
|
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
|
||
|
in `[0, 1]`:
|
||
|
- 1 for values that are **observed**,
|
||
|
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
|
||
|
future_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,:
|
||
|
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
|
||
|
values of the time series, that serve as labels for the model. The `future_values` is what the
|
||
|
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
|
||
|
required for a pretraining task.
|
||
|
|
||
|
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
|
||
|
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
|
||
|
pass the target data with all channels, as channel Filtering for both prediction and target will be
|
||
|
manually applied before the loss computation.
|
||
|
return_loss (`bool`, *optional*):
|
||
|
Whether to return the loss in the `forward` call.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
if self.loss == "mse":
|
||
|
loss = nn.MSELoss(reduction="mean")
|
||
|
elif self.loss == "nll":
|
||
|
loss = nll
|
||
|
else:
|
||
|
raise ValueError("Invalid loss function: Allowed values: mse and nll")
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.use_return_dict
|
||
|
|
||
|
# past_values: tensor [batch_size x context_length x num_input_channels]
|
||
|
model_output = self.model(
|
||
|
past_values,
|
||
|
observed_mask=observed_mask,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
) # model_output: [batch_size x nvars x num_patch x d_model]
|
||
|
if isinstance(model_output, tuple):
|
||
|
model_output = PatchTSMixerModelOutput(*model_output)
|
||
|
|
||
|
# tensor [batch_size x prediction_length x num_input_channels]
|
||
|
y_hat = self.head(model_output.last_hidden_state)
|
||
|
|
||
|
loss_val = None
|
||
|
if self.prediction_channel_indices is not None:
|
||
|
if self.distribution_output:
|
||
|
distribution = self.distribution_output.distribution(
|
||
|
y_hat,
|
||
|
loc=model_output.loc[..., self.prediction_channel_indices],
|
||
|
scale=model_output.scale[..., self.prediction_channel_indices],
|
||
|
)
|
||
|
if future_values is not None and return_loss is True:
|
||
|
loss_val = loss(
|
||
|
distribution,
|
||
|
future_values[..., self.prediction_channel_indices],
|
||
|
)
|
||
|
# take average of the loss
|
||
|
loss_val = weighted_average(loss_val)
|
||
|
else:
|
||
|
y_hat = (
|
||
|
y_hat * model_output.scale[..., self.prediction_channel_indices]
|
||
|
+ model_output.loc[..., self.prediction_channel_indices]
|
||
|
)
|
||
|
if future_values is not None and return_loss is True:
|
||
|
loss_val = loss(y_hat, future_values[..., self.prediction_channel_indices])
|
||
|
else:
|
||
|
if self.distribution_output:
|
||
|
distribution = self.distribution_output.distribution(
|
||
|
y_hat, loc=model_output.loc, scale=model_output.scale
|
||
|
)
|
||
|
if future_values is not None and return_loss is True:
|
||
|
loss_val = loss(distribution, future_values)
|
||
|
loss_val = weighted_average(loss_val)
|
||
|
else:
|
||
|
y_hat = y_hat * model_output.scale + model_output.loc
|
||
|
if future_values is not None and return_loss is True:
|
||
|
loss_val = loss(y_hat, future_values)
|
||
|
|
||
|
if self.prediction_channel_indices is not None:
|
||
|
loc = model_output.loc[..., self.prediction_channel_indices]
|
||
|
scale = model_output.scale[..., self.prediction_channel_indices]
|
||
|
else:
|
||
|
loc = model_output.loc
|
||
|
scale = model_output.scale
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [
|
||
|
loss_val,
|
||
|
y_hat,
|
||
|
model_output.last_hidden_state,
|
||
|
model_output.hidden_states,
|
||
|
loc,
|
||
|
scale,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
return PatchTSMixerForPredictionOutput(
|
||
|
loss=loss_val,
|
||
|
prediction_outputs=y_hat, # tensor [batch_size x prediction_length x num_input_channels]
|
||
|
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
|
||
|
hidden_states=model_output.hidden_states,
|
||
|
loc=loc,
|
||
|
scale=scale,
|
||
|
)
|
||
|
|
||
|
def generate(
|
||
|
self,
|
||
|
past_values: torch.Tensor,
|
||
|
observed_mask: Optional[torch.Tensor] = None,
|
||
|
) -> SamplePatchTSMixerPredictionOutput:
|
||
|
"""
|
||
|
Generate sequences of sample predictions from a model with a probability distribution head.
|
||
|
|
||
|
Args:
|
||
|
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
|
||
|
Past values of the time series that serves as context in order to predict the future.
|
||
|
|
||
|
observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
|
||
|
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
|
||
|
in `[0, 1]`:
|
||
|
|
||
|
- 1 for values that are **observed**,
|
||
|
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
|
||
|
|
||
|
Return:
|
||
|
[`SamplePatchTSMixerPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size,
|
||
|
number of samples, prediction_length, num_input_channels)`.
|
||
|
"""
|
||
|
# get number of samples
|
||
|
num_parallel_samples = self.num_parallel_samples
|
||
|
|
||
|
# get model output
|
||
|
outputs = self(
|
||
|
past_values=past_values,
|
||
|
future_values=None,
|
||
|
observed_mask=observed_mask,
|
||
|
output_hidden_states=False,
|
||
|
)
|
||
|
|
||
|
# get distribution
|
||
|
|
||
|
distribution = self.distribution_output.distribution(
|
||
|
outputs.prediction_outputs, loc=outputs.loc, scale=outputs.scale
|
||
|
)
|
||
|
|
||
|
# get samples: list of [batch_size x prediction_length x num_channels]
|
||
|
samples = [distribution.sample() for _ in range(num_parallel_samples)]
|
||
|
|
||
|
# stack tensors
|
||
|
samples = torch.stack(samples, dim=1) # [batch_size x num_samples x prediction_length x num_channels]
|
||
|
return SamplePatchTSMixerPredictionOutput(sequences=samples)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class PatchTSMixerForTimeSeriesClassificationOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of [`PatchTSMixerForTimeSeriesClassificationOutput`].
|
||
|
|
||
|
Args:
|
||
|
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
|
||
|
Prediction output from the classfication head.
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
|
||
|
Backbone embeddings before passing through the head.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
|
||
|
Total loss.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
prediction_outputs: torch.FloatTensor = None
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
class PatchTSMixerForTimeSeriesClassification(PatchTSMixerPreTrainedModel):
|
||
|
r"""
|
||
|
`PatchTSMixer` for classification application.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
|
||
|
Returns:
|
||
|
`None`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.model = PatchTSMixerModel(config)
|
||
|
self.head = PatchTSMixerLinearHead(
|
||
|
config=config,
|
||
|
)
|
||
|
self.use_return_dict = config.use_return_dict
|
||
|
if config.scaling in ["std", "mean", True]:
|
||
|
self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches)
|
||
|
else:
|
||
|
self.inject_scale = None
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
if config.post_init:
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(
|
||
|
output_type=PatchTSMixerForTimeSeriesClassificationOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
past_values: torch.Tensor,
|
||
|
target_values: torch.Tensor = None,
|
||
|
output_hidden_states: Optional[bool] = False,
|
||
|
return_loss: bool = True,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> PatchTSMixerForTimeSeriesClassificationOutput:
|
||
|
r"""
|
||
|
target_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,
|
||
|
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
|
||
|
values of the time series, that serve as labels for the model. The `target_values` is what the
|
||
|
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
|
||
|
required for a pretraining task.
|
||
|
|
||
|
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
|
||
|
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
|
||
|
pass the target data with all channels, as channel Filtering for both prediction and target will be
|
||
|
manually applied before the loss computation.
|
||
|
|
||
|
For a classification task, it has a shape of `(batch_size,)`.
|
||
|
|
||
|
For a regression task, it has a shape of `(batch_size, num_targets)`.
|
||
|
return_loss (`bool`, *optional*):
|
||
|
Whether to return the loss in the `forward` call.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
|
||
|
loss = torch.nn.CrossEntropyLoss()
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.use_return_dict
|
||
|
|
||
|
model_output = self.model(
|
||
|
past_values,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
) # x: [batch_size x nvars x num_patch x d_model]
|
||
|
if isinstance(model_output, tuple):
|
||
|
model_output = PatchTSMixerModelOutput(*model_output)
|
||
|
|
||
|
if self.inject_scale is not None:
|
||
|
model_output.last_hidden_state = self.inject_scale(
|
||
|
model_output.last_hidden_state,
|
||
|
loc=model_output.loc,
|
||
|
scale=model_output.scale,
|
||
|
) # x: [batch_size x nvars x num_patch x d_model]
|
||
|
|
||
|
y_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x n_labels]
|
||
|
|
||
|
if target_values is not None and return_loss is True:
|
||
|
loss_val = loss(y_hat, target_values)
|
||
|
else:
|
||
|
loss_val = None
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [
|
||
|
loss_val,
|
||
|
y_hat,
|
||
|
model_output.last_hidden_state,
|
||
|
model_output.hidden_states,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
return PatchTSMixerForTimeSeriesClassificationOutput(
|
||
|
loss=loss_val,
|
||
|
prediction_outputs=y_hat, # tensor [batch_size x n_labels]
|
||
|
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
|
||
|
hidden_states=model_output.hidden_states,
|
||
|
)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class PatchTSMixerForRegressionOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of [`PatchTSMixerForRegressionOutput`].
|
||
|
|
||
|
Args:
|
||
|
regression_outputs (`torch.FloatTensor` of shape `(batch_size, num_targets)`):
|
||
|
Prediction output from the regression head.
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
|
||
|
Backbone embeddings before passing through the head.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
|
||
|
Total loss.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
regression_outputs: torch.FloatTensor = None
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
class InjectScalerStatistics4D(nn.Module):
|
||
|
def __init__(self, d_model: int, num_patches: int, expansion: int = 2):
|
||
|
super().__init__()
|
||
|
|
||
|
self.inverse_trans_expansion = nn.Linear(d_model + 2, expansion * d_model)
|
||
|
self.inverse_trans_compression = nn.Linear(expansion * d_model, d_model)
|
||
|
self.map_scale_expansion = nn.Linear(2, 2 * expansion)
|
||
|
self.map_scale_compression = nn.Linear(2 * expansion, 2)
|
||
|
self.num_patches = num_patches
|
||
|
|
||
|
def forward(self, inputs: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor):
|
||
|
"""
|
||
|
Args:
|
||
|
inputs (`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)`)
|
||
|
loc (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`)
|
||
|
scale (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`)
|
||
|
Returns:
|
||
|
`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)`
|
||
|
"""
|
||
|
|
||
|
mean = loc.transpose(-1, -2) # [batch_size x n_channels x 1 ]
|
||
|
mean = mean.unsqueeze(-2) # [batch_size x n_channels x 1 x 1]
|
||
|
mean = mean.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1]
|
||
|
|
||
|
stdev = scale.transpose(-1, -2) # [batch_size x n_channels x 1 ]
|
||
|
stdev = stdev.unsqueeze(-2) # [batch_size x n_channels x 1 x 1]
|
||
|
stdev = stdev.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1]
|
||
|
|
||
|
concat_stats = torch.cat([mean, stdev], dim=-1) # [batch_size x n_channels x num_patch x 2]
|
||
|
|
||
|
concat_stats = self.map_scale_expansion(concat_stats) # [batch_size x n_channels x num_patch x (2*expansion)]
|
||
|
concat_stats = self.map_scale_compression(concat_stats) # [batch_size x n_channels x num_patch x 2]
|
||
|
|
||
|
inputs = torch.cat([inputs, concat_stats], dim=-1) # [batch_size x channels x num_patch x d_model+2]
|
||
|
inputs = self.inverse_trans_expansion(inputs) # [batch_size x channels x num_patch x (expansion*d_model)]
|
||
|
inputs = self.inverse_trans_compression(inputs) # [batch_size x channels x num_patch x d_model]
|
||
|
|
||
|
return inputs
|
||
|
|
||
|
|
||
|
class PatchTSMixerForRegression(PatchTSMixerPreTrainedModel):
|
||
|
r"""
|
||
|
`PatchTSMixer` for regression application.
|
||
|
|
||
|
Args:
|
||
|
config (`PatchTSMixerConfig`, *required*):
|
||
|
Configuration.
|
||
|
|
||
|
Returns:
|
||
|
`None`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PatchTSMixerConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.model = PatchTSMixerModel(config)
|
||
|
|
||
|
self.loss = config.loss
|
||
|
self.distribution_output = config.distribution_output
|
||
|
|
||
|
self.use_return_dict = config.use_return_dict
|
||
|
self.num_parallel_samples = config.num_parallel_samples
|
||
|
|
||
|
if config.loss == "mse":
|
||
|
self.distribution_output = None
|
||
|
else:
|
||
|
distribution_output_map = {
|
||
|
"student_t": StudentTOutput,
|
||
|
"normal": NormalOutput,
|
||
|
"negative_binomial": NegativeBinomialOutput,
|
||
|
}
|
||
|
output_class = distribution_output_map.get(config.distribution_output)
|
||
|
if output_class is not None:
|
||
|
self.distribution_output = output_class(dim=config.num_targets)
|
||
|
else:
|
||
|
raise ValueError(f"Unknown distribution output {config.distribution_output}")
|
||
|
|
||
|
if config.scaling in ["std", "mean", True]:
|
||
|
self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches)
|
||
|
else:
|
||
|
self.inject_scale = None
|
||
|
|
||
|
self.head = PatchTSMixerLinearHead(
|
||
|
config=config,
|
||
|
distribution_output=self.distribution_output,
|
||
|
)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
if config.post_init:
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=PatchTSMixerForRegressionOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
past_values: torch.Tensor,
|
||
|
target_values: torch.Tensor = None,
|
||
|
output_hidden_states: Optional[bool] = False,
|
||
|
return_loss: bool = True,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> PatchTSMixerForRegressionOutput:
|
||
|
r"""
|
||
|
target_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,
|
||
|
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
|
||
|
values of the time series, that serve as labels for the model. The `target_values` is what the
|
||
|
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
|
||
|
required for a pretraining task.
|
||
|
|
||
|
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
|
||
|
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
|
||
|
pass the target data with all channels, as channel Filtering for both prediction and target will be
|
||
|
manually applied before the loss computation.
|
||
|
|
||
|
For a classification task, it has a shape of `(batch_size,)`.
|
||
|
|
||
|
For a regression task, it has a shape of `(batch_size, num_targets)`.
|
||
|
return_loss (`bool`, *optional*):
|
||
|
Whether to return the loss in the `forward` call.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
|
||
|
if self.loss == "mse":
|
||
|
loss = nn.MSELoss(reduction="mean")
|
||
|
elif self.loss == "nll":
|
||
|
loss = nll
|
||
|
else:
|
||
|
raise ValueError("Invalid loss function: Allowed values: mse and nll")
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.use_return_dict
|
||
|
model_output = self.model(
|
||
|
past_values,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
) # model_output: [batch_size x nvars x num_patch x d_model]
|
||
|
if isinstance(model_output, tuple):
|
||
|
model_output = PatchTSMixerModelOutput(*model_output)
|
||
|
|
||
|
if self.inject_scale is not None:
|
||
|
model_output.last_hidden_state = self.inject_scale(
|
||
|
model_output.last_hidden_state,
|
||
|
loc=model_output.loc,
|
||
|
scale=model_output.scale,
|
||
|
) # x: [batch_size x nvars x num_patch x d_model]
|
||
|
|
||
|
y_hat = self.head(model_output.last_hidden_state) # [batch_size x num_targets]
|
||
|
|
||
|
if target_values is not None and return_loss is True:
|
||
|
if self.distribution_output:
|
||
|
if self.distribution_output == "negative_binomial" and torch.any(target_values < 0):
|
||
|
raise Exception("target_values cannot be negative for negative_binomial distribution.")
|
||
|
distribution = self.distribution_output.distribution(y_hat)
|
||
|
# y_hat should be a 2-tuple, each with dimension [bs, num_targets]
|
||
|
y_hat = tuple([item.view(-1, self.config.num_targets) for item in y_hat])
|
||
|
loss_val = loss(distribution, target_values)
|
||
|
# take average of the loss
|
||
|
loss_val = weighted_average(loss_val)
|
||
|
else:
|
||
|
loss_val = loss(y_hat, target_values)
|
||
|
else:
|
||
|
loss_val = None
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [
|
||
|
loss_val,
|
||
|
y_hat,
|
||
|
model_output.last_hidden_state,
|
||
|
model_output.hidden_states,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
return PatchTSMixerForRegressionOutput(
|
||
|
loss=loss_val,
|
||
|
regression_outputs=y_hat, # tensor [batch_size x num_targets]
|
||
|
last_hidden_state=model_output.last_hidden_state, # [batch_size x nvars x num_patch x d_model]
|
||
|
hidden_states=model_output.hidden_states,
|
||
|
)
|
||
|
|
||
|
def generate(
|
||
|
self,
|
||
|
past_values: torch.Tensor,
|
||
|
) -> SamplePatchTSMixerRegressionOutput:
|
||
|
"""
|
||
|
Generate sequences of sample predictions from a model with a probability distribution head.
|
||
|
|
||
|
Args:
|
||
|
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
|
||
|
Past values of the time series that serves as context in order to predict the target values.
|
||
|
|
||
|
Return:
|
||
|
[`SamplePatchTSMixerRegressionOutput`] where the outputs `sequences` tensor will have shape `(batch_size,
|
||
|
number of samples, num_targets)`.
|
||
|
"""
|
||
|
# get number of samples
|
||
|
num_parallel_samples = self.num_parallel_samples
|
||
|
|
||
|
# get model output
|
||
|
outputs = self(
|
||
|
past_values=past_values,
|
||
|
target_values=None,
|
||
|
output_hidden_states=False,
|
||
|
)
|
||
|
|
||
|
# get distribution
|
||
|
distribution = self.distribution_output.distribution(outputs.regression_outputs)
|
||
|
|
||
|
# get samples
|
||
|
samples = [
|
||
|
distribution.sample() for _ in range(num_parallel_samples)
|
||
|
] # samples: list of [batch_size x num_targets]
|
||
|
# stack tensors
|
||
|
# [batch_size x num_samples x num_targets]
|
||
|
samples = torch.stack(samples, dim=1).view(-1, num_parallel_samples, self.config.num_targets)
|
||
|
return SamplePatchTSMixerRegressionOutput(sequences=samples)
|