286 lines
13 KiB
Python
286 lines
13 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2020 Google and The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import os
|
||
|
from shutil import copyfile
|
||
|
from typing import Any, Dict, List, Optional, Tuple
|
||
|
|
||
|
import sentencepiece as spm
|
||
|
|
||
|
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
SPIECE_UNDERLINE = "▁"
|
||
|
|
||
|
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
# TODO ArthurZ refactor this to only use the added_tokens_encoder
|
||
|
class PegasusTokenizer(PreTrainedTokenizer):
|
||
|
r"""
|
||
|
Construct a PEGASUS tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
||
|
|
||
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
||
|
this superclass for more information regarding those methods.
|
||
|
|
||
|
Args:
|
||
|
vocab_file (`str`):
|
||
|
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
||
|
contains the vocabulary necessary to instantiate a tokenizer.
|
||
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
||
|
The token used for padding, for example when batching sequences of different lengths.
|
||
|
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
||
|
The end of sequence token.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
||
|
The token used is the `sep_token`.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
||
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||
|
token instead.
|
||
|
mask_token (`str`, *optional*, defaults to `"<mask_2>"`):
|
||
|
The token used for masking single token values. This is the token used when training this model with masked
|
||
|
language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining.
|
||
|
It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
|
||
|
Summarization](https://arxiv.org/pdf/1912.08777.pdf).
|
||
|
mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`):
|
||
|
The token used for masking whole target sentences. This is the token used when training this model with gap
|
||
|
sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during
|
||
|
pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for
|
||
|
Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf).
|
||
|
additional_special_tokens (`List[str]`, *optional*):
|
||
|
Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and
|
||
|
<unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS
|
||
|
tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66)
|
||
|
that uses the tokens 2 - 104 only for pretraining
|
||
|
sp_model_kwargs (`dict`, *optional*):
|
||
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
||
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
||
|
to set:
|
||
|
|
||
|
- `enable_sampling`: Enable subword regularization.
|
||
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
||
|
|
||
|
- `nbest_size = {0,1}`: No sampling is performed.
|
||
|
- `nbest_size > 1`: samples from the nbest_size results.
|
||
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
||
|
using forward-filtering-and-backward-sampling algorithm.
|
||
|
|
||
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
||
|
BPE-dropout.
|
||
|
"""
|
||
|
|
||
|
vocab_files_names = VOCAB_FILES_NAMES
|
||
|
model_input_names = ["input_ids", "attention_mask"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_file,
|
||
|
pad_token="<pad>",
|
||
|
eos_token="</s>",
|
||
|
unk_token="<unk>",
|
||
|
mask_token="<mask_2>",
|
||
|
mask_token_sent="<mask_1>",
|
||
|
additional_special_tokens=None,
|
||
|
offset=103, # entries 2 - 104 are only used for pretraining
|
||
|
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
**kwargs,
|
||
|
) -> None:
|
||
|
self.offset = offset
|
||
|
if additional_special_tokens is not None:
|
||
|
if not isinstance(additional_special_tokens, list):
|
||
|
raise TypeError(
|
||
|
f"additional_special_tokens should be of type {type(list)}, but is"
|
||
|
f" {type(additional_special_tokens)}"
|
||
|
)
|
||
|
additional_special_tokens_extended = (
|
||
|
([mask_token_sent] + additional_special_tokens)
|
||
|
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
|
||
|
else additional_special_tokens
|
||
|
)
|
||
|
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
|
||
|
additional_special_tokens_extended += [
|
||
|
f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1)
|
||
|
]
|
||
|
|
||
|
if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended):
|
||
|
raise ValueError(
|
||
|
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
|
||
|
f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}."
|
||
|
)
|
||
|
additional_special_tokens = additional_special_tokens_extended
|
||
|
else:
|
||
|
additional_special_tokens_extended = []
|
||
|
additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else []
|
||
|
additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)]
|
||
|
|
||
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
||
|
self.mask_token_sent = mask_token_sent
|
||
|
self.vocab_file = vocab_file
|
||
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||
|
self.sp_model.Load(vocab_file)
|
||
|
|
||
|
_added_tokens_decoder = {
|
||
|
0: AddedToken(str(pad_token), special=True),
|
||
|
1: AddedToken(str(eos_token), special=True),
|
||
|
}
|
||
|
|
||
|
if self.mask_token_sent is not None:
|
||
|
_added_tokens_decoder[2] = AddedToken(mask_token_sent, special=True)
|
||
|
_added_tokens_decoder[3] = AddedToken(str(mask_token), special=True)
|
||
|
|
||
|
for i in range(2, self.offset):
|
||
|
_added_tokens_decoder[len(_added_tokens_decoder)] = AddedToken(f"<unk_{i}>", special=True)
|
||
|
|
||
|
# Force update as we want to make sure vocab is enforced (same as fast)
|
||
|
self._added_tokens_decoder = kwargs.pop("added_tokens_decoder", {})
|
||
|
self._added_tokens_decoder.update(_added_tokens_decoder)
|
||
|
|
||
|
super().__init__(
|
||
|
eos_token=eos_token,
|
||
|
unk_token=unk_token,
|
||
|
mask_token=mask_token,
|
||
|
pad_token=pad_token,
|
||
|
mask_token_sent=mask_token_sent,
|
||
|
offset=offset,
|
||
|
additional_special_tokens=additional_special_tokens,
|
||
|
sp_model_kwargs=self.sp_model_kwargs,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def vocab_size(self) -> int:
|
||
|
return len(self.sp_model) + self.offset
|
||
|
|
||
|
def get_vocab(self) -> Dict[str, int]:
|
||
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
||
|
vocab.update(self.added_tokens_encoder)
|
||
|
return vocab
|
||
|
|
||
|
def __getstate__(self):
|
||
|
state = self.__dict__.copy()
|
||
|
state["sp_model"] = None
|
||
|
return state
|
||
|
|
||
|
def __setstate__(self, d):
|
||
|
self.__dict__ = d
|
||
|
|
||
|
# for backward compatibility
|
||
|
if not hasattr(self, "sp_model_kwargs"):
|
||
|
self.sp_model_kwargs = {}
|
||
|
|
||
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||
|
self.sp_model.Load(self.vocab_file)
|
||
|
|
||
|
def _tokenize(self, text: str) -> List[str]:
|
||
|
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
||
|
return self.sp_model.encode(text, out_type=str)
|
||
|
|
||
|
def _convert_token_to_id(self, token: str) -> int:
|
||
|
"""Converts a token (str) to an id using the vocab."""
|
||
|
sp_id = self.sp_model.piece_to_id(token)
|
||
|
return sp_id + self.offset
|
||
|
|
||
|
def _convert_id_to_token(self, index: int) -> str:
|
||
|
"""Converts an index (integer) to a token (str) using the vocab."""
|
||
|
if index < self.offset:
|
||
|
return self.sp_model.IdToPiece(index)
|
||
|
token = self.sp_model.IdToPiece(index - self.offset)
|
||
|
return token
|
||
|
|
||
|
def convert_tokens_to_string(self, tokens):
|
||
|
"""Converts a sequence of tokens (string) in a single string."""
|
||
|
current_sub_tokens = []
|
||
|
out_string = ""
|
||
|
for token in tokens:
|
||
|
# make sure that special tokens are not decoded using sentencepiece model
|
||
|
if token in self.all_special_tokens:
|
||
|
out_string += self.sp_model.decode(current_sub_tokens) + token
|
||
|
current_sub_tokens = []
|
||
|
else:
|
||
|
current_sub_tokens.append(token)
|
||
|
out_string += self.sp_model.decode(current_sub_tokens)
|
||
|
return out_string.strip()
|
||
|
|
||
|
def num_special_tokens_to_add(self, pair=False):
|
||
|
"""Just EOS"""
|
||
|
return 1
|
||
|
|
||
|
def _special_token_mask(self, seq):
|
||
|
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
|
||
|
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
|
||
|
|
||
|
return [1 if x in all_special_ids else 0 for x in seq]
|
||
|
|
||
|
def get_special_tokens_mask(
|
||
|
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
|
||
|
) -> List[int]:
|
||
|
"""Get list where entries are [1] if a token is [eos] or [pad] else 0."""
|
||
|
if already_has_special_tokens:
|
||
|
return self._special_token_mask(token_ids_0)
|
||
|
elif token_ids_1 is None:
|
||
|
return self._special_token_mask(token_ids_0) + [1]
|
||
|
else:
|
||
|
return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
|
||
|
|
||
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
|
||
|
"""
|
||
|
Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating
|
||
|
and adding special tokens. A PEGASUS sequence has the following format, where `X` represents the sequence:
|
||
|
|
||
|
- single sequence: `X </s>`
|
||
|
- pair of sequences: `A B </s>` (not intended use)
|
||
|
|
||
|
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
||
|
separator.
|
||
|
|
||
|
Args:
|
||
|
token_ids_0 (`List[int]`):
|
||
|
List of IDs to which the special tokens will be added.
|
||
|
token_ids_1 (`List[int]`, *optional*):
|
||
|
Optional second list of IDs for sequence pairs.
|
||
|
|
||
|
Returns:
|
||
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
||
|
"""
|
||
|
if token_ids_1 is None:
|
||
|
return token_ids_0 + [self.eos_token_id]
|
||
|
# We don't expect to process pairs, but leave the pair logic for API consistency
|
||
|
return token_ids_0 + token_ids_1 + [self.eos_token_id]
|
||
|
|
||
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||
|
if not os.path.isdir(save_directory):
|
||
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||
|
return
|
||
|
out_vocab_file = os.path.join(
|
||
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||
|
)
|
||
|
|
||
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
||
|
copyfile(self.vocab_file, out_vocab_file)
|
||
|
elif not os.path.isfile(self.vocab_file):
|
||
|
with open(out_vocab_file, "wb") as fi:
|
||
|
content_spiece_model = self.sp_model.serialized_model_proto()
|
||
|
fi.write(content_spiece_model)
|
||
|
|
||
|
return (out_vocab_file,)
|