2341 lines
113 KiB
Python
2341 lines
113 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch ProphetNet model, ported from ProphetNet repo(fairsequery_states version)."""
|
||
|
|
||
|
import copy
|
||
|
import math
|
||
|
import warnings
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import Tensor, nn
|
||
|
from torch.nn import LayerNorm
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_outputs import BaseModelOutput
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_prophetnet import ProphetNetConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CONFIG_FOR_DOC = "ProphenetConfig"
|
||
|
_CHECKPOINT_FOR_DOC = "microsoft/prophetnet-large-uncased"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
PROPHETNET_START_DOCSTRING = r"""
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted
|
||
|
from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the
|
||
|
file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`.
|
||
|
|
||
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
||
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and
|
||
|
behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`ProphetNetConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
PROPHETNET_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||
|
it.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
||
|
Indices of decoder input sequence tokens in the vocabulary.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
||
|
|
||
|
ProphetNet uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
|
||
|
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
||
|
`past_key_values`).
|
||
|
|
||
|
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
||
|
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
||
|
be used by default.
|
||
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
||
|
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
||
|
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
||
|
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
||
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||
|
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
|
||
|
|
||
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||
|
`past_key_values`).
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
PROPHETNET_STANDALONE_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||
|
it.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
def softmax(hidden_state, dim, onnx_trace=False):
|
||
|
if onnx_trace:
|
||
|
return nn.functional.softmax(hidden_state.float(), dim=dim)
|
||
|
else:
|
||
|
return nn.functional.softmax(hidden_state, dim=dim, dtype=torch.float32)
|
||
|
|
||
|
|
||
|
def ngram_attention_bias(sequence_length, ngram, device, dtype):
|
||
|
"""
|
||
|
This function computes the bias for the predict stream
|
||
|
"""
|
||
|
left_block = (
|
||
|
torch.ones((ngram, sequence_length, sequence_length), device=device, dtype=dtype) * torch.finfo(dtype).min
|
||
|
)
|
||
|
right_block = left_block.detach().clone()
|
||
|
# create bias
|
||
|
for stream_idx in range(ngram):
|
||
|
right_block[stream_idx].fill_diagonal_(0, wrap=False)
|
||
|
left_block[stream_idx].triu_(-stream_idx + 1)
|
||
|
|
||
|
left_block[:, :, 0] = 0
|
||
|
return torch.cat([left_block, right_block], dim=2)
|
||
|
|
||
|
|
||
|
def compute_relative_buckets(num_buckets, max_distance, relative_positions, is_bidirectional=False):
|
||
|
"""
|
||
|
This function computes individual parts of the relative position buckets. For more detail, see paper.
|
||
|
"""
|
||
|
inv_relative_positions = -relative_positions
|
||
|
rel_positions_bucket = 0
|
||
|
|
||
|
if is_bidirectional:
|
||
|
num_buckets = num_buckets // 2
|
||
|
rel_positions_bucket = (
|
||
|
rel_positions_bucket
|
||
|
+ torch.lt(inv_relative_positions, torch.zeros_like(inv_relative_positions)).int() * num_buckets
|
||
|
)
|
||
|
inv_relative_positions = torch.abs(inv_relative_positions)
|
||
|
else:
|
||
|
inv_relative_positions = torch.max(inv_relative_positions, torch.zeros_like(inv_relative_positions))
|
||
|
|
||
|
max_exact = num_buckets // 2
|
||
|
is_small = torch.lt(inv_relative_positions, max_exact)
|
||
|
val_if_large = max_exact + torch.log(inv_relative_positions.float() / max_exact) / math.log(
|
||
|
max_distance / max_exact
|
||
|
) * (num_buckets - max_exact)
|
||
|
val_if_large = torch.min(val_if_large, torch.ones_like(val_if_large) * (num_buckets - 1)).int()
|
||
|
rel_positions_bucket = rel_positions_bucket + torch.where(is_small, inv_relative_positions.int(), val_if_large)
|
||
|
return rel_positions_bucket
|
||
|
|
||
|
|
||
|
def compute_all_stream_relative_buckets(num_buckets, max_distance, position_ids):
|
||
|
"""
|
||
|
This function computes both main and predict relative position buckets. For more detail, see paper.
|
||
|
"""
|
||
|
# main stream
|
||
|
main_stream_relative_positions = position_ids.unsqueeze(1).repeat(1, position_ids.size(-1), 1)
|
||
|
main_stream_relative_positions = main_stream_relative_positions - position_ids.unsqueeze(-1)
|
||
|
|
||
|
# predicting stream
|
||
|
predicting_stream_relative_positions = torch.cat((position_ids - 1, position_ids), dim=-1).unsqueeze(1)
|
||
|
predicting_stream_relative_positions = predicting_stream_relative_positions.repeat(1, position_ids.size(-1), 1)
|
||
|
predicting_stream_relative_positions = predicting_stream_relative_positions - position_ids.unsqueeze(-1)
|
||
|
|
||
|
# get both position buckets
|
||
|
main_relative_position_buckets = compute_relative_buckets(
|
||
|
num_buckets, max_distance, main_stream_relative_positions, is_bidirectional=False
|
||
|
)
|
||
|
predict_relative_position_buckets = compute_relative_buckets(
|
||
|
num_buckets, max_distance, predicting_stream_relative_positions, is_bidirectional=False
|
||
|
)
|
||
|
return main_relative_position_buckets, predict_relative_position_buckets
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ProphetNetSeq2SeqLMOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for sequence-to-sequence language models outputs.
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||
|
Language modeling loss.
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`):
|
||
|
Prediction scores of the main stream language modeling head (scores for each vocabulary token before
|
||
|
SoftMax).
|
||
|
logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`):
|
||
|
Prediction scores of the predict stream language modeling head (scores for each vocabulary token before
|
||
|
SoftMax).
|
||
|
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||
|
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
|
||
|
num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
|
||
|
|
||
|
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
|
||
|
used (see `past_key_values` input) to speed up sequential decoding.
|
||
|
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, decoder_sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
|
||
|
decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
|
||
|
outputs.
|
||
|
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
decoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
|
||
|
self-attention heads.
|
||
|
decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
decoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
|
||
|
weighted average in the self-attention heads.
|
||
|
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
encoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
|
||
|
compute the weighted average in the
|
||
|
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the encoder of the model.
|
||
|
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, encoder_sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
|
||
|
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention
|
||
|
softmax, used to compute the weighted average in the self-attention heads.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits: torch.FloatTensor = None
|
||
|
logits_ngram: Optional[torch.FloatTensor] = None
|
||
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
|
||
|
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
@property
|
||
|
def decoder_cross_attentions(self):
|
||
|
warnings.warn(
|
||
|
"`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`"
|
||
|
" instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
return self.cross_attentions
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ProphetNetSeq2SeqModelOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
|
||
|
decoding.
|
||
|
|
||
|
Args:
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`):
|
||
|
Sequence of main stream hidden-states at the output of the last layer of the decoder of the model.
|
||
|
|
||
|
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
||
|
hidden_size)` is output.
|
||
|
last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size,ngram * decoder_sequence_length, config.vocab_size)`, *optional*):
|
||
|
Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model.
|
||
|
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||
|
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
|
||
|
num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
|
||
|
|
||
|
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
|
||
|
used (see `past_key_values` input) to speed up sequential decoding.
|
||
|
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, decoder_sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
|
||
|
decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
|
||
|
outputs.
|
||
|
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
decoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
|
||
|
self-attention heads.
|
||
|
decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
decoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
|
||
|
weighted average in the
|
||
|
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
encoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
|
||
|
compute the weighted average in the
|
||
|
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the encoder of the model.
|
||
|
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, encoder_sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
|
||
|
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
encoder_sequence_length, encoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
|
||
|
self-attention heads.
|
||
|
"""
|
||
|
|
||
|
last_hidden_state: torch.FloatTensor
|
||
|
last_hidden_state_ngram: Optional[torch.FloatTensor] = None
|
||
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
|
||
|
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
@property
|
||
|
def decoder_cross_attentions(self):
|
||
|
warnings.warn(
|
||
|
"`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`"
|
||
|
" instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
return self.cross_attentions
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ProphetNetDecoderModelOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
||
|
|
||
|
Args:
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`):
|
||
|
Sequence of main stream hidden-states at the output of the last layer of the decoder of the model.
|
||
|
|
||
|
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
||
|
hidden_size)` is output.
|
||
|
last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`):
|
||
|
Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model.
|
||
|
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||
|
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
|
||
|
num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
|
||
|
|
||
|
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
|
||
|
used (see `past_key_values` input) to speed up sequential decoding.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, decoder_sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
|
||
|
ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
|
||
|
outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
decoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
|
||
|
self-attention heads.
|
||
|
ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
decoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
|
||
|
weighted average in the
|
||
|
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
encoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
|
||
|
compute the weighted average in the
|
||
|
"""
|
||
|
|
||
|
last_hidden_state: torch.FloatTensor
|
||
|
last_hidden_state_ngram: Optional[torch.FloatTensor] = None
|
||
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ProphetNetDecoderLMOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||
|
Language modeling loss.
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`):
|
||
|
Prediction scores of the main stream language modeling head (scores for each vocabulary token before
|
||
|
SoftMax).
|
||
|
logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`):
|
||
|
Prediction scores of the predict stream language modeling head (scores for each vocabulary token before
|
||
|
SoftMax).
|
||
|
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||
|
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
|
||
|
num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
|
||
|
|
||
|
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
|
||
|
used (see `past_key_values` input) to speed up sequential decoding.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, decoder_sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
|
||
|
ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
|
||
|
outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
decoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
|
||
|
self-attention heads.
|
||
|
ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
decoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
|
||
|
weighted average in the
|
||
|
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
|
||
|
encoder_sequence_length, decoder_sequence_length)`.
|
||
|
|
||
|
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
|
||
|
compute the weighted average in the
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits: torch.FloatTensor = None
|
||
|
logits_ngram: Optional[torch.FloatTensor] = None
|
||
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
class ProphetNetPreTrainedModel(PreTrainedModel):
|
||
|
config_class = ProphetNetConfig
|
||
|
base_model_prefix = "prophetnet"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
if isinstance(module, nn.Linear):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
|
||
|
def _shift_right(self, input_ids):
|
||
|
decoder_start_token_id = self.config.decoder_start_token_id
|
||
|
pad_token_id = self.config.pad_token_id
|
||
|
|
||
|
assert decoder_start_token_id is not None, (
|
||
|
"self.model.config.decoder_start_token_id has to be defined. In ProphetNet it is usually set to the"
|
||
|
" pad_token_id. See ProphetNet docs for more information"
|
||
|
)
|
||
|
|
||
|
# shift inputs to the right
|
||
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
||
|
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
||
|
shifted_input_ids[..., 0] = decoder_start_token_id
|
||
|
|
||
|
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
|
||
|
# replace possible -100 values in labels by `pad_token_id`
|
||
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
||
|
|
||
|
assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values"
|
||
|
|
||
|
return shifted_input_ids
|
||
|
|
||
|
|
||
|
class ProphetNetPositionalEmbeddings(nn.Embedding):
|
||
|
"""
|
||
|
This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting
|
||
|
based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to
|
||
|
the forward function.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: ProphetNetConfig) -> None:
|
||
|
self.max_length = config.max_position_embeddings
|
||
|
super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id)
|
||
|
|
||
|
def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None):
|
||
|
assert (position_ids is None) or (
|
||
|
self.padding_idx is None
|
||
|
), "If position_ids is pre-computed then padding_idx should not be set."
|
||
|
|
||
|
if position_ids is None:
|
||
|
if past_key_values is not None:
|
||
|
# position_ids is the same for every token when decoding a single step
|
||
|
# Without the int() cast, it doesn't work in some cases when exporting to ONNX
|
||
|
prev_num_input_ids = past_key_values[0][0].shape[2]
|
||
|
num_input_ids = inputs_shape[1] + prev_num_input_ids
|
||
|
position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * (
|
||
|
int(self.padding_idx + num_input_ids)
|
||
|
)
|
||
|
else:
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device)
|
||
|
|
||
|
# retrieve position_ids from input_ids / attention_mask
|
||
|
position_ids = (
|
||
|
torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask
|
||
|
).long() + self.padding_idx
|
||
|
|
||
|
# make sure position_ids are not bigger then max_length
|
||
|
position_ids = position_ids.clamp(0, self.max_length - 1)
|
||
|
|
||
|
return super().forward(position_ids), position_ids
|
||
|
|
||
|
def _forward(self, position_ids):
|
||
|
return super().forward(position_ids)
|
||
|
|
||
|
|
||
|
class ProphetNetAttention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: ProphetNetConfig,
|
||
|
num_attn_heads: int,
|
||
|
):
|
||
|
super().__init__()
|
||
|
hidden_size = config.hidden_size
|
||
|
|
||
|
self.attention_dropout = config.attention_dropout
|
||
|
self.dropout = config.dropout
|
||
|
self.num_attn_heads = num_attn_heads
|
||
|
self.head_dim = hidden_size // num_attn_heads
|
||
|
|
||
|
assert self.head_dim * num_attn_heads == hidden_size, (
|
||
|
"`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and"
|
||
|
" `config.num_decoder_attention_heads`"
|
||
|
)
|
||
|
|
||
|
self.key_proj = nn.Linear(hidden_size, hidden_size)
|
||
|
self.value_proj = nn.Linear(hidden_size, hidden_size)
|
||
|
self.query_proj = nn.Linear(hidden_size, hidden_size)
|
||
|
|
||
|
self.out_proj = nn.Linear(hidden_size, hidden_size)
|
||
|
|
||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||
|
return tensor.view(bsz, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
key_value_states: Optional[Tensor] = None,
|
||
|
attention_mask: Optional[Tensor] = None,
|
||
|
layer_head_mask: Optional[Tensor] = None,
|
||
|
past_key_value: Optional[Tuple[Tensor]] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||
|
batch_size, tgt_len, hidden_size = hidden_states.size()
|
||
|
|
||
|
# if key_value_states are provided this layer is used as a cross-attention layer
|
||
|
# for the decoder
|
||
|
is_cross_attention = key_value_states is not None
|
||
|
assert list(hidden_states.size()) == [
|
||
|
batch_size,
|
||
|
tgt_len,
|
||
|
hidden_size,
|
||
|
], f"Size of hidden states should be {batch_size, tgt_len, hidden_size}, but is {hidden_states.size()}"
|
||
|
|
||
|
# previous time steps are cached - no need to recompute key and value if they are static
|
||
|
query_states = self.query_proj(hidden_states) / (self.head_dim**0.5)
|
||
|
|
||
|
if is_cross_attention and past_key_value is not None:
|
||
|
# reuse k,v, cross_attentions
|
||
|
key_states = past_key_value[0]
|
||
|
value_states = past_key_value[1]
|
||
|
elif is_cross_attention:
|
||
|
# cross_attentions
|
||
|
key_states = self._shape(self.key_proj(key_value_states), -1, batch_size)
|
||
|
value_states = self._shape(self.value_proj(key_value_states), -1, batch_size)
|
||
|
else:
|
||
|
# self_attention
|
||
|
key_states = self._shape(self.key_proj(hidden_states), -1, batch_size)
|
||
|
value_states = self._shape(self.value_proj(hidden_states), -1, batch_size)
|
||
|
|
||
|
if is_cross_attention:
|
||
|
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
||
|
# Further calls to cross_attention layer can then reuse all cross-attention
|
||
|
# key/value_states (first "if" case)
|
||
|
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
||
|
past_key_value = (key_states, value_states)
|
||
|
|
||
|
# project states into the correct shape
|
||
|
proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim)
|
||
|
query_states = self._shape(query_states, tgt_len, batch_size).view(*proj_shape)
|
||
|
key_states = key_states.view(*proj_shape)
|
||
|
value_states = value_states.view(*proj_shape)
|
||
|
src_len = key_states.size(2)
|
||
|
attn_weights = torch.einsum("bsij,bsjk->bsik", query_states, key_states.transpose(2, 3))
|
||
|
expected_shape = (batch_size, self.num_attn_heads, tgt_len, src_len)
|
||
|
if attn_weights.size() != expected_shape:
|
||
|
raise ValueError(f"Attention weights should have size {expected_shape}, but is {attn_weights.size()}")
|
||
|
|
||
|
# This is part of a workaround to get around fork/join parallelism not supporting Optional types.
|
||
|
if attention_mask is not None and attention_mask.dim() == 0:
|
||
|
attention_mask = None
|
||
|
|
||
|
expected_shape = (batch_size, self.num_attn_heads, 1, src_len)
|
||
|
if attention_mask is not None and attention_mask.size() != expected_shape:
|
||
|
raise ValueError(f"Attention mask should have size {expected_shape}, but is {attention_mask.size()}")
|
||
|
if attention_mask is not None: # don't attend to padding symbols
|
||
|
attn_weights = attn_weights + attention_mask
|
||
|
if output_attentions:
|
||
|
attn_weights_reshaped = attn_weights
|
||
|
else:
|
||
|
attn_weights_reshaped = None
|
||
|
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||
|
|
||
|
if layer_head_mask is not None:
|
||
|
assert layer_head_mask.size() == (self.num_attn_heads,), (
|
||
|
f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is"
|
||
|
f" {layer_head_mask.size()}"
|
||
|
)
|
||
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
|
||
|
batch_size, self.num_attn_heads, tgt_len, src_len
|
||
|
)
|
||
|
|
||
|
# apply head_mask also on attn_weights_reshaped which is used for n-gram attention inside the model
|
||
|
attn_weights_reshaped = layer_head_mask.view(1, -1, 1, 1) * attn_weights_reshaped
|
||
|
|
||
|
attn_probs = nn.functional.dropout(
|
||
|
attn_weights,
|
||
|
p=self.attention_dropout,
|
||
|
training=self.training,
|
||
|
)
|
||
|
attn_output = torch.einsum("bsij,bsjk->bsik", attn_probs, value_states)
|
||
|
expected_shape = (batch_size, self.num_attn_heads, tgt_len, self.head_dim)
|
||
|
if attn_output.size() != expected_shape:
|
||
|
raise ValueError(f"`attn_output` should have shape {expected_shape}, but is of shape {attn_output.size()}")
|
||
|
|
||
|
attn_output = attn_output.transpose(1, 2).reshape(batch_size, tgt_len, hidden_size)
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
|
||
|
return attn_output, attn_weights_reshaped, past_key_value
|
||
|
|
||
|
|
||
|
class ProphetNetFeedForward(nn.Module):
|
||
|
"""
|
||
|
This is the residual two feed-forward layer block based on the original Transformer implementation.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: ProphetNetConfig, ffn_dim: int):
|
||
|
super().__init__()
|
||
|
self.activation_fn = ACT2FN[config.activation_function]
|
||
|
self.intermediate = nn.Linear(config.hidden_size, ffn_dim)
|
||
|
self.output = nn.Linear(ffn_dim, config.hidden_size)
|
||
|
self.activation_dropout = config.activation_dropout
|
||
|
self.dropout = config.dropout
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.intermediate(hidden_states)
|
||
|
hidden_states = self.activation_fn(hidden_states)
|
||
|
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
||
|
hidden_states = self.output(hidden_states)
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class ProphetNetNgramSelfAttention(nn.Module):
|
||
|
def __init__(self, config: ProphetNetConfig):
|
||
|
super().__init__()
|
||
|
self.hidden_size = config.hidden_size
|
||
|
|
||
|
self.num_buckets = config.num_buckets
|
||
|
self.relative_max_distance = config.relative_max_distance
|
||
|
self.num_attn_heads = config.num_decoder_attention_heads
|
||
|
self.dropout = config.dropout
|
||
|
self.attention_dropout = config.attention_dropout
|
||
|
self.head_dim = config.hidden_size // self.num_attn_heads
|
||
|
self.ngram = config.ngram
|
||
|
|
||
|
assert (
|
||
|
self.head_dim * self.num_attn_heads == config.hidden_size
|
||
|
), "config.hidden_size must be divisible by num_attn_heads"
|
||
|
# key, value, query projection
|
||
|
self.key_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.value_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.query_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
|
||
|
# out projection
|
||
|
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
|
||
|
# rel position embeddings
|
||
|
self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads)
|
||
|
|
||
|
# for onnx runtime
|
||
|
self.onnx_trace = False
|
||
|
|
||
|
def _shape(self, tensor, seq_len, batch_size):
|
||
|
return tensor.view(batch_size, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def prepare_for_onnx_export_(self):
|
||
|
self.onnx_trace = True
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
past_key_value: Optional[Tuple[Tensor]] = None,
|
||
|
attention_mask=None,
|
||
|
layer_head_mask=None,
|
||
|
extended_predict_attention_mask=None,
|
||
|
main_relative_position_buckets=None,
|
||
|
predict_relative_position_buckets=None,
|
||
|
position_ids=None,
|
||
|
):
|
||
|
batch_size, ngram_sequence_length, hidden_size = hidden_states.size()
|
||
|
assert list(hidden_states.size()) == [batch_size, ngram_sequence_length, hidden_size], (
|
||
|
f"`hidden_states` should be of shape {batch_size, ngram_sequence_length, hidden_size}, but is of shape"
|
||
|
f" {hidden_states.shape}"
|
||
|
)
|
||
|
|
||
|
# project
|
||
|
query_states = self.query_proj(hidden_states)
|
||
|
key_states = self.key_proj(hidden_states)
|
||
|
value_states = self.value_proj(hidden_states)
|
||
|
|
||
|
# normalize
|
||
|
query_states = query_states / (self.head_dim**0.5)
|
||
|
|
||
|
# reshape
|
||
|
query_states = self._shape(query_states, ngram_sequence_length, batch_size)
|
||
|
key_states = self._shape(key_states, -1, batch_size)
|
||
|
value_states = self._shape(value_states, -1, batch_size)
|
||
|
proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim)
|
||
|
|
||
|
query_states = query_states.view(*proj_shape)
|
||
|
key_states = key_states.view(*proj_shape)
|
||
|
value_states = value_states.view(*proj_shape)
|
||
|
|
||
|
# chunk into main stream and predict stream
|
||
|
hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=1)
|
||
|
query_states_list = query_states.chunk(1 + self.ngram, dim=2)
|
||
|
key_states_list = key_states.chunk(1 + self.ngram, dim=2)
|
||
|
value_states_list = value_states.chunk(1 + self.ngram, dim=2)
|
||
|
|
||
|
main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:]
|
||
|
main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:]
|
||
|
main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:]
|
||
|
main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:]
|
||
|
|
||
|
# saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim)
|
||
|
if past_key_value is not None:
|
||
|
prev_main_key_states = past_key_value[0]
|
||
|
main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=2)
|
||
|
prev_main_value_states = past_key_value[1]
|
||
|
main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=2)
|
||
|
|
||
|
# Update cache
|
||
|
past_key_value = (main_key_states, main_value_states)
|
||
|
|
||
|
# get seq_length of main stream only
|
||
|
sequence_length = ngram_sequence_length // (1 + self.ngram)
|
||
|
|
||
|
# MAIN-STREAM
|
||
|
# main attn weights
|
||
|
# [batch_size, number_heads, sequence_length, head_dimesion]
|
||
|
# x [batch_size, number_heads, head_dimesion, sequence_length]
|
||
|
# -> [batch_size, number_heads, sequence_length, sequence_length]
|
||
|
main_attn_weights = torch.einsum("bntc,bncs->bnts", main_query_states, main_key_states.transpose(2, 3))
|
||
|
|
||
|
# retrieve relative position embeddings for each layer -> see paper for more details
|
||
|
main_relative_pos_embeddings = self.get_main_relative_pos_embeddings(
|
||
|
main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets
|
||
|
)
|
||
|
|
||
|
main_attn_weights = main_attn_weights + main_relative_pos_embeddings
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
main_attn_weights = main_attn_weights + attention_mask
|
||
|
|
||
|
main_attn_probs = softmax(
|
||
|
main_attn_weights,
|
||
|
dim=-1,
|
||
|
onnx_trace=self.onnx_trace,
|
||
|
).type_as(main_attn_weights)
|
||
|
|
||
|
if layer_head_mask is not None:
|
||
|
assert layer_head_mask.size() == (self.num_attn_heads,), (
|
||
|
f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is"
|
||
|
f" {layer_head_mask.size()}"
|
||
|
)
|
||
|
main_attn_probs = layer_head_mask.view(1, -1, 1, 1) * main_attn_probs.view(
|
||
|
batch_size, self.num_attn_heads, -1, sequence_length
|
||
|
)
|
||
|
|
||
|
main_attn_probs = nn.functional.dropout(main_attn_probs, p=self.attention_dropout, training=self.training)
|
||
|
# project to attn_output
|
||
|
# [batch_size, number_heads, sequence_length, sequence_length]
|
||
|
# x [batch_size, number_heads, sequence_length, head_dimesion]
|
||
|
# -> [batch_size, number_heads, sequence_length, head_dimesion]
|
||
|
main_attn_output = torch.einsum("bntc,bncs->bnts", main_attn_probs, main_value_states)
|
||
|
# reshape so that num_heads dim is merged into last `head_dim` axis
|
||
|
main_attn_output = main_attn_output.transpose(1, 2).reshape(batch_size, 1, sequence_length, hidden_size)
|
||
|
main_attn_output = self.out_proj(main_attn_output)
|
||
|
|
||
|
# PREDICT-STREAM
|
||
|
# [batch_size, ngram, number_heads, sequence_length, head_dimesion]
|
||
|
predict_query_states = torch.stack(predict_query_states_list, 1).view(
|
||
|
batch_size, self.ngram, self.num_attn_heads, sequence_length, self.head_dim
|
||
|
)
|
||
|
|
||
|
# [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion]
|
||
|
predict_key_states = torch.stack([torch.cat([main_key_states, key], 2) for key in predict_key_states_list], 1)
|
||
|
|
||
|
# [batch_size, sequence_length, ngram, hidden_size]
|
||
|
predict_hidden_states = torch.stack(hidden_states_predict_list, dim=2)
|
||
|
|
||
|
# [batch_size, number_heads, ngram, 2*sequence_length, head_dimesion]
|
||
|
predict_value_states = torch.cat(
|
||
|
[torch.cat([main_value_states, v_p], 2).unsqueeze(2) for v_p in predict_value_states_list], 2
|
||
|
)
|
||
|
|
||
|
# [batch_size, ngram, number_heads, sequence_length, head_dimesion]
|
||
|
# x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion]
|
||
|
# -> [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
|
||
|
predict_attn_weights = torch.einsum("bnhtc,bnhsc->bnhts", (predict_query_states, predict_key_states))
|
||
|
|
||
|
# retrieve relative position embeddings for each layer -> see paper for more details
|
||
|
# [batch_size, ngram, number_heads, sequence_length, predict_relative_pos_embeddings]
|
||
|
predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings(
|
||
|
predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets
|
||
|
)
|
||
|
|
||
|
# [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
|
||
|
predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings
|
||
|
|
||
|
if extended_predict_attention_mask is not None:
|
||
|
# Permuting Predict attention mask to [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
|
||
|
extended_predict_attention_mask = extended_predict_attention_mask.permute(0, 2, 1, 3, 4)
|
||
|
extended_predict_attention_mask = extended_predict_attention_mask.to(predict_attn_weights.dtype)
|
||
|
predict_attn_weights = predict_attn_weights + extended_predict_attention_mask
|
||
|
|
||
|
predict_attn_probs = softmax(
|
||
|
predict_attn_weights,
|
||
|
dim=-1,
|
||
|
onnx_trace=self.onnx_trace,
|
||
|
).type_as(predict_attn_weights)
|
||
|
|
||
|
if layer_head_mask is not None:
|
||
|
assert layer_head_mask.size() == (self.num_attn_heads,), (
|
||
|
f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is"
|
||
|
f" {layer_head_mask.size()}"
|
||
|
)
|
||
|
predict_attn_probs = layer_head_mask.view(1, 1, -1, 1, 1) * predict_attn_probs
|
||
|
|
||
|
predict_attn_probs = nn.functional.dropout(
|
||
|
predict_attn_probs, p=self.attention_dropout, training=self.training
|
||
|
)
|
||
|
# project to attention output
|
||
|
# [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
|
||
|
# x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion]
|
||
|
# -> [batch_size, ngram, number_heads, sequence_length, head_dimesion]
|
||
|
predict_attn_output = torch.einsum(
|
||
|
"bnhts,bnhsc->bnhtc", (predict_attn_probs, predict_value_states.transpose(1, 2))
|
||
|
)
|
||
|
|
||
|
# reshape so that num_heads dim is merged into last `head_dim` axis
|
||
|
# [batch_size, ngram, number_heads, sequence_length, head_dimesion] -> [batch_size, ngram, sequence_length, hidden_size]
|
||
|
predict_attn_output = predict_attn_output.transpose(2, 3)
|
||
|
predict_attn_output = predict_attn_output.reshape(batch_size, self.ngram, sequence_length, hidden_size)
|
||
|
predict_attn_output = self.out_proj(predict_attn_output)
|
||
|
|
||
|
# concat to single attn output
|
||
|
# [batch_size, (1+ngram)*sequence_length, hidden_size]
|
||
|
attn_output = torch.cat([main_attn_output, predict_attn_output], 1).view(batch_size, -1, hidden_size)
|
||
|
# reshape into better form for `config.output_attentions`
|
||
|
main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, sequence_length, -1)
|
||
|
|
||
|
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
|
||
|
|
||
|
return attn_output, main_attn_probs, predict_attn_probs, past_key_value
|
||
|
|
||
|
def get_main_relative_pos_embeddings(
|
||
|
self, hidden_states, attn_weights, position_ids, main_relative_position_buckets
|
||
|
):
|
||
|
# input hidden_states [batch_size, sequence_length, hidden_size]
|
||
|
# input attn_weights [batch_size, num_heads, sequence_length, sequence_length]
|
||
|
# input position_ids [batch_size, sequence_length] or [1,1]
|
||
|
batch_size, num_attn_heads, tgt_len, src_len = attn_weights.shape
|
||
|
attn_weights = attn_weights.view(batch_size, num_attn_heads, tgt_len, src_len)
|
||
|
if main_relative_position_buckets is None:
|
||
|
batch_size, sequence_length = hidden_states.shape[:2]
|
||
|
relative_positions = (
|
||
|
torch.arange(1, attn_weights.shape[-1] + 1)
|
||
|
.unsqueeze(0)
|
||
|
.unsqueeze(0)
|
||
|
.repeat(batch_size, sequence_length, 1)
|
||
|
.to(position_ids.device)
|
||
|
)
|
||
|
# [batch_size, sequence_length, sequence_length+1]
|
||
|
relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1)
|
||
|
main_relative_position_buckets = compute_relative_buckets(
|
||
|
self.num_buckets, self.relative_max_distance, relative_positions, False
|
||
|
)
|
||
|
|
||
|
# [batch_size, sequence_length, num_buckets * num_heads]
|
||
|
rel_pos_embeddings = self.relative_pos_embeddings(hidden_states)
|
||
|
rel_pos_embeddings = rel_pos_embeddings.view(
|
||
|
rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads)
|
||
|
)
|
||
|
rel_pos_embeddings = rel_pos_embeddings.permute(0, 3, 1, 2)
|
||
|
# [batch_size, num_heads, sequence_length, num_buckets]
|
||
|
rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:3] + (-1,))
|
||
|
|
||
|
main_relative_position_buckets = main_relative_position_buckets.repeat(1, self.num_attn_heads, 1)
|
||
|
# [batch_size * num_heads * sequence_length, sequence_length]
|
||
|
main_relative_position_buckets = main_relative_position_buckets.view(
|
||
|
-1, main_relative_position_buckets.shape[-1]
|
||
|
)
|
||
|
main_relative_position_buckets = main_relative_position_buckets.long()
|
||
|
# [batch_size * num_heads * sequence_length, sequence_length]
|
||
|
rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1))
|
||
|
|
||
|
main_relative_pos_embeddings = torch.gather(rel_pos_embeddings, dim=1, index=main_relative_position_buckets)
|
||
|
main_relative_pos_embeddings = main_relative_pos_embeddings.view(batch_size, num_attn_heads, tgt_len, -1)
|
||
|
return main_relative_pos_embeddings
|
||
|
|
||
|
def get_predict_relative_pos_embeddings(
|
||
|
self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets
|
||
|
):
|
||
|
# input hidden_states [batch_size, sequence_length, ngram, hidden_size]
|
||
|
# input attn_weights [batch_size, ngram, num_heads, sequence_length, 2*sequence_length]
|
||
|
# input position_ids [batch_size, sequence_length] or [1,1]
|
||
|
# input predict_relative_position_buckets [batch_size, sequence_length, 2*sequence_length] or None
|
||
|
batch_size, sequence_length = hidden_states.shape[0:2]
|
||
|
|
||
|
if predict_relative_position_buckets is None:
|
||
|
key_sequence_length = attn_weights.shape[-1]
|
||
|
assert (
|
||
|
position_ids[0][0] == key_sequence_length - 1
|
||
|
), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)"
|
||
|
relative_positions = (
|
||
|
torch.arange(0, key_sequence_length)
|
||
|
.unsqueeze(0)
|
||
|
.unsqueeze(0)
|
||
|
.repeat(batch_size, sequence_length, 1)
|
||
|
.to(position_ids.device)
|
||
|
)
|
||
|
|
||
|
relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1)
|
||
|
predict_relative_position_buckets = compute_relative_buckets(
|
||
|
self.num_buckets, self.relative_max_distance, relative_positions, False
|
||
|
)
|
||
|
|
||
|
# [batch_size, ngram, sequence_length, hidden_size]
|
||
|
hidden_states = hidden_states.transpose(1, 2)
|
||
|
rel_pos_embeddings = self.relative_pos_embeddings(hidden_states)
|
||
|
|
||
|
# [batch_size, ngram, sequence_length, num_buckets, num_heads]
|
||
|
rel_pos_embeddings = rel_pos_embeddings.view(
|
||
|
hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads)
|
||
|
)
|
||
|
rel_pos_embeddings = rel_pos_embeddings.permute(0, 2, 1, 4, 3)
|
||
|
# [batch_size * ngram * sequence_length * num_heads, num_buckets]
|
||
|
rel_pos_embeddings = rel_pos_embeddings.reshape(-1, self.num_buckets)
|
||
|
# [ngram, batch_size, num_heads * sequence_length, -1]
|
||
|
predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0)
|
||
|
predict_relative_position_buckets = predict_relative_position_buckets.repeat(
|
||
|
self.ngram, 1, self.num_attn_heads, 1
|
||
|
)
|
||
|
# [ngram * batch_size * num_heads * sequence_length, -1]
|
||
|
predict_relative_position_buckets = predict_relative_position_buckets.view(
|
||
|
-1, predict_relative_position_buckets.size(-1)
|
||
|
).long()
|
||
|
|
||
|
predict_relative_pos_embeddings = torch.gather(
|
||
|
rel_pos_embeddings, dim=1, index=predict_relative_position_buckets
|
||
|
)
|
||
|
|
||
|
# [batch_size, gram, num_heads, sequence_length, -1]
|
||
|
predict_relative_pos_embeddings = predict_relative_pos_embeddings.view(
|
||
|
batch_size, self.ngram, self.num_attn_heads, sequence_length, -1
|
||
|
)
|
||
|
|
||
|
return predict_relative_pos_embeddings
|
||
|
|
||
|
|
||
|
class ProphetNetEncoderLayer(nn.Module):
|
||
|
"""
|
||
|
Encoder block for Prophetnet
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: ProphetNetConfig):
|
||
|
super().__init__()
|
||
|
# 1st residual block
|
||
|
self.self_attn = ProphetNetAttention(config, config.num_encoder_attention_heads)
|
||
|
self.self_attn_layer_norm = LayerNorm(config.hidden_size)
|
||
|
|
||
|
# 2nd residual block
|
||
|
self.feed_forward = ProphetNetFeedForward(config, config.encoder_ffn_dim)
|
||
|
self.feed_forward_layer_norm = LayerNorm(config.hidden_size)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
layer_head_mask,
|
||
|
output_attentions: bool = False,
|
||
|
):
|
||
|
# 1st residual block
|
||
|
attention_output, attn_weights, _ = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
layer_head_mask=layer_head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = self.self_attn_layer_norm(attention_output + hidden_states)
|
||
|
|
||
|
# 2nd residual block
|
||
|
feed_forward_output = self.feed_forward(hidden_states)
|
||
|
hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states)
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class ProphetNetDecoderLayer(nn.Module):
|
||
|
"""
|
||
|
Decoder block for Prophetnet
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: ProphetNetConfig):
|
||
|
super().__init__()
|
||
|
# 1st residual block
|
||
|
self.self_attn = ProphetNetNgramSelfAttention(config)
|
||
|
self.self_attn_layer_norm = LayerNorm(config.hidden_size)
|
||
|
|
||
|
# 2nd residual block
|
||
|
if config.add_cross_attention:
|
||
|
self.cross_attn = ProphetNetAttention(config, config.num_decoder_attention_heads)
|
||
|
self.cross_attn_layer_norm = LayerNorm(config.hidden_size)
|
||
|
|
||
|
# 3rd residual block
|
||
|
self.feed_forward = ProphetNetFeedForward(config, config.decoder_ffn_dim)
|
||
|
self.feed_forward_layer_norm = LayerNorm(config.hidden_size)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
attention_mask=None,
|
||
|
encoder_hidden_states=None,
|
||
|
encoder_attn_mask=None,
|
||
|
layer_head_mask=None,
|
||
|
cross_attn_layer_head_mask=None,
|
||
|
extended_predict_attention_mask=None,
|
||
|
main_relative_position_buckets=None,
|
||
|
predict_relative_position_buckets=None,
|
||
|
position_ids=None,
|
||
|
past_key_value=None,
|
||
|
use_cache: bool = True,
|
||
|
output_attentions: bool = False,
|
||
|
):
|
||
|
# 1st residual block
|
||
|
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||
|
ngram_attention_output, self_attn_weights, self_attn_weights_ngram, present_key_value = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
past_key_value=self_attn_past_key_value,
|
||
|
attention_mask=attention_mask,
|
||
|
layer_head_mask=layer_head_mask,
|
||
|
extended_predict_attention_mask=extended_predict_attention_mask,
|
||
|
main_relative_position_buckets=main_relative_position_buckets,
|
||
|
predict_relative_position_buckets=predict_relative_position_buckets,
|
||
|
position_ids=position_ids,
|
||
|
)
|
||
|
hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output)
|
||
|
|
||
|
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
||
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
||
|
cross_attn_weights = None
|
||
|
if encoder_hidden_states is not None:
|
||
|
# 2nd residual block
|
||
|
attention_output, cross_attn_weights, cross_attn_present_key_value = self.cross_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
key_value_states=encoder_hidden_states,
|
||
|
attention_mask=encoder_attn_mask,
|
||
|
layer_head_mask=cross_attn_layer_head_mask,
|
||
|
past_key_value=cross_attn_past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states)
|
||
|
|
||
|
# add cross-attn to positions 3,4 of present_key_value tuple
|
||
|
present_key_value = present_key_value + cross_attn_present_key_value
|
||
|
|
||
|
# 3rd residual block
|
||
|
feed_forward_output = self.feed_forward(hidden_states)
|
||
|
hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states)
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (self_attn_weights, self_attn_weights_ngram, cross_attn_weights)
|
||
|
|
||
|
if use_cache:
|
||
|
outputs += (present_key_value,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The standalone encoder part of the ProphetNetModel.",
|
||
|
PROPHETNET_START_DOCSTRING,
|
||
|
)
|
||
|
class ProphetNetEncoder(ProphetNetPreTrainedModel):
|
||
|
r"""
|
||
|
word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*):
|
||
|
The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word
|
||
|
embeddings instead of randomly initialized word embeddings.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: ProphetNetConfig, word_embeddings: nn.Embedding = None):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.word_embeddings = (
|
||
|
word_embeddings
|
||
|
if word_embeddings is not None
|
||
|
else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||
|
)
|
||
|
self.position_embeddings = ProphetNetPositionalEmbeddings(config)
|
||
|
self.embeddings_layer_norm = LayerNorm(config.hidden_size)
|
||
|
|
||
|
self.layers = nn.ModuleList([ProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)])
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.word_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.word_embeddings = value
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, ProphetNetEncoder
|
||
|
>>> import torch
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
|
||
|
>>> model = ProphetNetEncoder.from_pretrained("patrickvonplaten/prophetnet-large-uncased-standalone")
|
||
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
||
|
>>> outputs = model(**inputs)
|
||
|
|
||
|
>>> last_hidden_states = outputs.last_hidden_state
|
||
|
```"""
|
||
|
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is None and inputs_embeds is None:
|
||
|
raise ValueError("Either input_ids or inputs_embeds has to be passed.")
|
||
|
elif input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("Make sure to only pass input_ids or inputs_embeds.")
|
||
|
elif input_ids is not None and inputs_embeds is None:
|
||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
|
||
|
# prepare attention mask
|
||
|
if attention_mask is not None:
|
||
|
extended_attention_mask = (
|
||
|
1.0 - attention_mask[:, None, None, :].repeat(1, self.config.num_encoder_attention_heads, 1, 1)
|
||
|
) * torch.finfo(self.dtype).min
|
||
|
extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype)
|
||
|
else:
|
||
|
extended_attention_mask = None
|
||
|
|
||
|
position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device)
|
||
|
|
||
|
hidden_states = inputs_embeds + position_embeddings
|
||
|
hidden_states = self.embeddings_layer_norm(hidden_states)
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.config.dropout, training=self.training)
|
||
|
|
||
|
encoder_hidden_states = () if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
|
||
|
# check if head_mask has a correct number of layers specified if desired
|
||
|
if head_mask is not None:
|
||
|
assert head_mask.size()[0] == (
|
||
|
len(self.layers)
|
||
|
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
||
|
for idx, encoder_layer in enumerate(self.layers):
|
||
|
if output_hidden_states:
|
||
|
encoder_hidden_states = encoder_hidden_states + (hidden_states,)
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
encoder_layer.__call__,
|
||
|
hidden_states,
|
||
|
extended_attention_mask,
|
||
|
(head_mask[idx] if head_mask is not None else None),
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = encoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask=extended_attention_mask,
|
||
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
encoder_hidden_states = encoder_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The standalone decoder part of the ProphetNetModel.",
|
||
|
PROPHETNET_START_DOCSTRING,
|
||
|
)
|
||
|
class ProphetNetDecoder(ProphetNetPreTrainedModel):
|
||
|
r"""
|
||
|
word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*):
|
||
|
The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word
|
||
|
embeddings instead of randomly initialized word embeddings.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: ProphetNetConfig, word_embeddings: Optional[nn.Embedding] = None):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.ngram = config.ngram
|
||
|
self.num_buckets = config.num_buckets
|
||
|
self.relative_max_distance = config.relative_max_distance
|
||
|
self.dropout = config.dropout
|
||
|
self.max_target_positions = config.max_position_embeddings
|
||
|
|
||
|
self.word_embeddings = (
|
||
|
word_embeddings
|
||
|
if word_embeddings is not None
|
||
|
else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||
|
)
|
||
|
self.position_embeddings = ProphetNetPositionalEmbeddings(config)
|
||
|
|
||
|
self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None)
|
||
|
self.layers = nn.ModuleList([ProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)])
|
||
|
self.embeddings_layer_norm = LayerNorm(config.hidden_size)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.word_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.word_embeddings = value
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=ProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, ProphetNetDecoderModelOutput]:
|
||
|
r"""
|
||
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||
|
the model is configured as a decoder.
|
||
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
||
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||
|
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
|
||
|
|
||
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||
|
`past_key_values`).
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, ProphetNetDecoder
|
||
|
>>> import torch
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
|
||
|
>>> model = ProphetNetDecoder.from_pretrained("microsoft/prophetnet-large-uncased", add_cross_attention=False)
|
||
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
||
|
>>> outputs = model(**inputs)
|
||
|
|
||
|
>>> last_hidden_states = outputs.last_hidden_state
|
||
|
```"""
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is None and inputs_embeds is None:
|
||
|
raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.")
|
||
|
elif input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.")
|
||
|
elif input_ids is not None and inputs_embeds is None:
|
||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
|
||
|
batch_size, sequence_length = inputs_embeds.shape[:2]
|
||
|
|
||
|
main_stream_pos_embed, position_ids = self.position_embeddings(
|
||
|
(batch_size, sequence_length),
|
||
|
device=inputs_embeds.device,
|
||
|
past_key_values=past_key_values,
|
||
|
)
|
||
|
|
||
|
if past_key_values is not None:
|
||
|
main_relative_position_buckets, predict_relative_position_buckets = None, None
|
||
|
else:
|
||
|
(
|
||
|
main_relative_position_buckets,
|
||
|
predict_relative_position_buckets,
|
||
|
) = self.compute_buffered_relative_buckets(position_ids)
|
||
|
predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1)
|
||
|
|
||
|
# add position embeddings
|
||
|
hidden_states = inputs_embeds + main_stream_pos_embed
|
||
|
|
||
|
ngram_embeddings = self.ngram_embeddings.weight
|
||
|
|
||
|
# prepare attention mask
|
||
|
if past_key_values is not None:
|
||
|
assert (
|
||
|
hidden_states.size(1) == 1
|
||
|
), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1"
|
||
|
|
||
|
ngram_hidden_states = [
|
||
|
(ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1)
|
||
|
for ngram in range(self.ngram)
|
||
|
]
|
||
|
extended_attention_mask = None
|
||
|
extended_predict_attention_mask = None
|
||
|
else:
|
||
|
ngram_hidden_states = [
|
||
|
(ngram_embeddings[ngram - 1] + predicting_stream_pos_embed) for ngram in range(self.ngram)
|
||
|
]
|
||
|
extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask)
|
||
|
extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask)
|
||
|
|
||
|
# prepare encoder attention mask
|
||
|
if encoder_attention_mask is not None:
|
||
|
extended_encoder_attention_mask = (
|
||
|
1.0 - encoder_attention_mask[:, None, None, :].repeat(1, self.config.num_decoder_attention_heads, 1, 1)
|
||
|
) * torch.finfo(self.dtype).min
|
||
|
extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype)
|
||
|
else:
|
||
|
extended_encoder_attention_mask = None
|
||
|
|
||
|
hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 1)
|
||
|
|
||
|
if self.embeddings_layer_norm:
|
||
|
hidden_states = self.embeddings_layer_norm(hidden_states)
|
||
|
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||
|
|
||
|
# init attentions, hidden_states and cache with empty tuples
|
||
|
all_main_stream_hidden_states = () if output_hidden_states else None
|
||
|
all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None
|
||
|
|
||
|
all_main_stream_attns = () if output_attentions else None
|
||
|
all_ngram_stream_attns = () if output_attentions else None
|
||
|
all_cross_attns = () if output_attentions and self.config.add_cross_attention else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
if use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
present_key_values = () if use_cache else None
|
||
|
|
||
|
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
||
|
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
||
|
if attn_mask is not None:
|
||
|
assert attn_mask.size()[0] == (len(self.layers)), (
|
||
|
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
||
|
f" {head_mask.size()[0]}."
|
||
|
)
|
||
|
for idx, decoder_layer in enumerate(self.layers):
|
||
|
if output_hidden_states:
|
||
|
# grad cannot be kept because tensor is sliced
|
||
|
all_main_stream_hidden_states += (hidden_states[:, :sequence_length],)
|
||
|
if self.config.ngram > 0:
|
||
|
all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],)
|
||
|
|
||
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
decoder_layer.__call__,
|
||
|
hidden_states,
|
||
|
extended_attention_mask,
|
||
|
encoder_hidden_states,
|
||
|
extended_encoder_attention_mask,
|
||
|
(head_mask[idx] if head_mask is not None else None),
|
||
|
(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
|
||
|
extended_predict_attention_mask,
|
||
|
main_relative_position_buckets,
|
||
|
predict_relative_position_buckets,
|
||
|
position_ids,
|
||
|
None,
|
||
|
use_cache,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = decoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask=extended_attention_mask,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attn_mask=extended_encoder_attention_mask,
|
||
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
||
|
cross_attn_layer_head_mask=(
|
||
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
||
|
),
|
||
|
extended_predict_attention_mask=extended_predict_attention_mask,
|
||
|
main_relative_position_buckets=main_relative_position_buckets,
|
||
|
predict_relative_position_buckets=predict_relative_position_buckets,
|
||
|
position_ids=position_ids,
|
||
|
past_key_value=past_key_value,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if use_cache:
|
||
|
present_key_values += (layer_outputs[4 if output_attentions else 1],)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_main_stream_attns += (layer_outputs[1],)
|
||
|
all_ngram_stream_attns += (layer_outputs[2],)
|
||
|
|
||
|
if self.config.add_cross_attention:
|
||
|
all_cross_attns += (layer_outputs[3],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_main_stream_hidden_states += (hidden_states[:, :sequence_length],)
|
||
|
if self.config.ngram > 0:
|
||
|
all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],)
|
||
|
|
||
|
# split last_hidden_state for return
|
||
|
last_hidden_state = hidden_states[:, :sequence_length]
|
||
|
last_hidden_state_ngram = hidden_states[:, sequence_length:] if self.config.ngram > 0 else None
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [
|
||
|
last_hidden_state,
|
||
|
last_hidden_state_ngram,
|
||
|
present_key_values,
|
||
|
all_main_stream_hidden_states,
|
||
|
all_ngram_stream_hidden_states,
|
||
|
all_main_stream_attns,
|
||
|
all_ngram_stream_attns,
|
||
|
all_cross_attns,
|
||
|
]
|
||
|
if v is not None
|
||
|
)
|
||
|
return ProphetNetDecoderModelOutput(
|
||
|
last_hidden_state=last_hidden_state,
|
||
|
last_hidden_state_ngram=last_hidden_state_ngram,
|
||
|
past_key_values=present_key_values,
|
||
|
hidden_states=all_main_stream_hidden_states,
|
||
|
hidden_states_ngram=all_ngram_stream_hidden_states,
|
||
|
attentions=all_main_stream_attns,
|
||
|
ngram_attentions=all_ngram_stream_attns,
|
||
|
cross_attentions=all_cross_attns,
|
||
|
)
|
||
|
|
||
|
def compute_buffered_relative_buckets(self, position_ids):
|
||
|
batch_size, sequence_length = position_ids.shape
|
||
|
|
||
|
position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1)
|
||
|
main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets(
|
||
|
self.num_buckets, self.relative_max_distance, position_ids
|
||
|
)
|
||
|
|
||
|
# buffer relative buckets
|
||
|
main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1)
|
||
|
predict_relative_buckets = torch.cat(
|
||
|
[
|
||
|
predict_relative_buckets[:, :sequence_length, :sequence_length],
|
||
|
predict_relative_buckets[
|
||
|
:, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length
|
||
|
],
|
||
|
],
|
||
|
2,
|
||
|
).repeat(batch_size, 1, 1)
|
||
|
|
||
|
return main_relative_buckets, predict_relative_buckets
|
||
|
|
||
|
def prepare_attention_mask(self, hidden_states, attention_mask):
|
||
|
batch_size, seq_length = hidden_states.shape[:2]
|
||
|
|
||
|
# get causal mask
|
||
|
causal_mask = torch.full(
|
||
|
(seq_length, seq_length),
|
||
|
torch.finfo(hidden_states.dtype).min,
|
||
|
dtype=hidden_states.dtype,
|
||
|
device=hidden_states.device,
|
||
|
)
|
||
|
causal_mask = torch.triu(causal_mask, 1)
|
||
|
|
||
|
extended_causal_mask = causal_mask[:seq_length, :seq_length][None, None, :, :].expand(
|
||
|
(batch_size, self.config.num_decoder_attention_heads) + causal_mask.shape
|
||
|
)
|
||
|
|
||
|
# add usual attention mask
|
||
|
if attention_mask is not None:
|
||
|
extended_attention_mask = (1.0 - attention_mask[:, None, None, :]) * torch.finfo(self.dtype).min
|
||
|
extended_attention_mask = extended_causal_mask + extended_attention_mask
|
||
|
else:
|
||
|
extended_attention_mask = extended_causal_mask
|
||
|
return extended_attention_mask.to(hidden_states.dtype)
|
||
|
|
||
|
def prepare_predict_attention_mask(self, hidden_states, attention_mask):
|
||
|
batch_size, seq_length = hidden_states.shape[:2]
|
||
|
|
||
|
# get causal mask
|
||
|
predict_causal_mask = ngram_attention_bias(
|
||
|
self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype
|
||
|
)
|
||
|
predict_causal_mask = torch.cat(
|
||
|
[
|
||
|
predict_causal_mask[:, :seq_length, :seq_length],
|
||
|
predict_causal_mask[
|
||
|
:, :seq_length, self.max_target_positions : self.max_target_positions + seq_length
|
||
|
],
|
||
|
],
|
||
|
dim=-1,
|
||
|
)
|
||
|
extended_predict_causal_mask = predict_causal_mask[None, None, :, :, :].expand(
|
||
|
(batch_size, self.config.num_decoder_attention_heads) + predict_causal_mask.shape
|
||
|
)
|
||
|
|
||
|
# add usual attention mask
|
||
|
if attention_mask is not None:
|
||
|
extended_attention_mask = (1.0 - attention_mask[:, None, None, None, :]) * torch.finfo(self.dtype).min
|
||
|
extended_attention_mask = extended_attention_mask.expand(
|
||
|
(batch_size, self.config.num_decoder_attention_heads, self.ngram, seq_length, seq_length)
|
||
|
)
|
||
|
# predicted stream attention_mask should always be 0
|
||
|
extended_attention_mask = torch.cat(
|
||
|
[extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1
|
||
|
)
|
||
|
extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask
|
||
|
else:
|
||
|
extended_predict_attention_mask = extended_predict_causal_mask
|
||
|
return extended_predict_attention_mask.to(hidden_states.dtype)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare ProphetNet Model outputting raw hidden-states without any specific head on top.",
|
||
|
PROPHETNET_START_DOCSTRING,
|
||
|
)
|
||
|
class ProphetNetModel(ProphetNetPreTrainedModel):
|
||
|
_tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight"]
|
||
|
|
||
|
def __init__(self, config: ProphetNetConfig):
|
||
|
super().__init__(config)
|
||
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||
|
|
||
|
encoder_config = copy.deepcopy(config)
|
||
|
encoder_config.is_encoder_decoder = False
|
||
|
encoder_config.use_cache = False
|
||
|
self.encoder = ProphetNetEncoder(encoder_config, self.word_embeddings)
|
||
|
|
||
|
decoder_config = copy.deepcopy(config)
|
||
|
decoder_config.is_decoder = True
|
||
|
decoder_config.is_encoder_decoder = False
|
||
|
self.decoder = ProphetNetDecoder(decoder_config, self.word_embeddings)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.word_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.word_embeddings = value
|
||
|
self.encoder.word_embeddings = self.word_embeddings
|
||
|
self.decoder.word_embeddings = self.word_embeddings
|
||
|
|
||
|
def _tie_weights(self):
|
||
|
if self.config.tie_word_embeddings:
|
||
|
self._tie_or_clone_weights(self.encoder.word_embeddings, self.word_embeddings)
|
||
|
self._tie_or_clone_weights(self.decoder.word_embeddings, self.word_embeddings)
|
||
|
|
||
|
def get_encoder(self):
|
||
|
return self.encoder
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.decoder
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=ProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
decoder_input_ids: Optional[torch.Tensor] = None,
|
||
|
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
decoder_head_mask: Optional[torch.Tensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
encoder_outputs: Optional[Tuple] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, ProphetNetSeq2SeqModelOutput]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, ProphetNetModel
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
|
||
|
>>> model = ProphetNetModel.from_pretrained("microsoft/prophetnet-large-uncased")
|
||
|
|
||
|
>>> input_ids = tokenizer(
|
||
|
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
||
|
... ).input_ids # Batch size 1
|
||
|
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
||
|
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
||
|
|
||
|
>>> last_hidden_states = outputs.last_hidden_state # main stream hidden states
|
||
|
>>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states
|
||
|
```"""
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if encoder_outputs is None:
|
||
|
encoder_outputs = self.encoder(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
# decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn)
|
||
|
decoder_outputs = self.decoder(
|
||
|
input_ids=decoder_input_ids,
|
||
|
attention_mask=decoder_attention_mask,
|
||
|
encoder_hidden_states=encoder_outputs[0],
|
||
|
encoder_attention_mask=attention_mask,
|
||
|
head_mask=decoder_head_mask,
|
||
|
cross_attn_head_mask=cross_attn_head_mask,
|
||
|
past_key_values=past_key_values,
|
||
|
inputs_embeds=decoder_inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
use_cache=use_cache,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
return decoder_outputs + encoder_outputs
|
||
|
return ProphetNetSeq2SeqModelOutput(
|
||
|
last_hidden_state=decoder_outputs.last_hidden_state,
|
||
|
last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram,
|
||
|
past_key_values=decoder_outputs.past_key_values,
|
||
|
decoder_hidden_states=decoder_outputs.hidden_states,
|
||
|
decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram,
|
||
|
decoder_attentions=decoder_outputs.attentions,
|
||
|
decoder_ngram_attentions=decoder_outputs.ngram_attentions,
|
||
|
cross_attentions=decoder_outputs.cross_attentions,
|
||
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
||
|
encoder_hidden_states=encoder_outputs.hidden_states,
|
||
|
encoder_attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The ProphetNet Model with a language modeling head. Can be used for sequence generation tasks.",
|
||
|
PROPHETNET_START_DOCSTRING,
|
||
|
)
|
||
|
class ProphetNetForConditionalGeneration(ProphetNetPreTrainedModel):
|
||
|
_tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight", "lm_head.weight"]
|
||
|
|
||
|
def __init__(self, config: ProphetNetConfig):
|
||
|
super().__init__(config)
|
||
|
self.prophetnet = ProphetNetModel(config)
|
||
|
self.padding_idx = config.pad_token_id
|
||
|
self.disable_ngram_loss = config.disable_ngram_loss
|
||
|
|
||
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.lm_head
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.lm_head = new_embeddings
|
||
|
|
||
|
def _tie_weights(self):
|
||
|
if self.config.tie_word_embeddings:
|
||
|
self._tie_or_clone_weights(self.prophetnet.word_embeddings, self.lm_head)
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.prophetnet.word_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=ProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
decoder_input_ids: Optional[torch.Tensor] = None,
|
||
|
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
decoder_head_mask: Optional[torch.Tensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
encoder_outputs: Optional[torch.Tensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, ProphetNetSeq2SeqLMOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
||
|
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
||
|
labels in `[0, ..., config.vocab_size]`
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, ProphetNetForConditionalGeneration
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
|
||
|
>>> model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased")
|
||
|
|
||
|
>>> input_ids = tokenizer(
|
||
|
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
||
|
... ).input_ids # Batch size 1
|
||
|
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
||
|
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
||
|
|
||
|
>>> logits_next_token = outputs.logits # logits to predict next token as usual
|
||
|
>>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
||
|
# get decoder inputs from shifting lm labels to the right
|
||
|
decoder_input_ids = self._shift_right(labels)
|
||
|
|
||
|
outputs = self.prophetnet(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
decoder_input_ids=decoder_input_ids,
|
||
|
decoder_attention_mask=decoder_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
decoder_head_mask=decoder_head_mask,
|
||
|
cross_attn_head_mask=cross_attn_head_mask,
|
||
|
encoder_outputs=encoder_outputs,
|
||
|
past_key_values=past_key_values,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
decoder_inputs_embeds=decoder_inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
batch_size, sequence_length = (
|
||
|
decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2]
|
||
|
)
|
||
|
|
||
|
predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1)
|
||
|
predict_logits = self.lm_head(predicting_streams)
|
||
|
|
||
|
logits = predict_logits[:, 0]
|
||
|
logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None
|
||
|
|
||
|
# To use .view in loss computation, make sure that logits is contiguous.
|
||
|
if not logits.is_contiguous():
|
||
|
logits = logits.contiguous()
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss = self._compute_loss(predict_logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
all_logits = tuple(v for v in [logits, logits_ngram] if v is not None)
|
||
|
return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:]
|
||
|
else:
|
||
|
return ProphetNetSeq2SeqLMOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
logits_ngram=logits_ngram,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
decoder_hidden_states=outputs.decoder_hidden_states,
|
||
|
decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states,
|
||
|
decoder_attentions=outputs.decoder_attentions,
|
||
|
decoder_ngram_attentions=outputs.decoder_ngram_attentions,
|
||
|
cross_attentions=outputs.cross_attentions,
|
||
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
||
|
encoder_hidden_states=outputs.encoder_hidden_states,
|
||
|
encoder_attentions=outputs.encoder_attentions,
|
||
|
)
|
||
|
|
||
|
def _compute_loss(self, logits, labels, ignore_index=-100):
|
||
|
expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index)
|
||
|
|
||
|
for i in range(self.config.ngram):
|
||
|
if i > 0 and self.disable_ngram_loss:
|
||
|
break
|
||
|
expend_targets[i, :, :] = labels
|
||
|
|
||
|
logits = logits.transpose(0, 1).contiguous()
|
||
|
lprobs = nn.functional.log_softmax(
|
||
|
logits.view(-1, logits.size(-1)),
|
||
|
dim=-1,
|
||
|
dtype=torch.float32,
|
||
|
)
|
||
|
|
||
|
loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean")
|
||
|
|
||
|
if self.config.eps > 0.0:
|
||
|
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
|
||
|
non_masked_tokens = expend_targets.ne(ignore_index).view(-1)
|
||
|
smooth_loss = smooth_loss[non_masked_tokens]
|
||
|
smooth_loss = smooth_loss.mean()
|
||
|
|
||
|
eps_i = self.config.eps / lprobs.size(-1)
|
||
|
loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss
|
||
|
|
||
|
return loss
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self,
|
||
|
decoder_input_ids,
|
||
|
past_key_values=None,
|
||
|
attention_mask=None,
|
||
|
head_mask=None,
|
||
|
decoder_head_mask=None,
|
||
|
cross_attn_head_mask=None,
|
||
|
use_cache=None,
|
||
|
encoder_outputs=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
assert encoder_outputs is not None, "`encoder_outputs` have to be passed for generation."
|
||
|
|
||
|
if past_key_values:
|
||
|
decoder_input_ids = decoder_input_ids[:, -1:]
|
||
|
# first step, decoder_cached_states are empty
|
||
|
return {
|
||
|
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
||
|
"encoder_outputs": encoder_outputs,
|
||
|
"past_key_values": past_key_values,
|
||
|
"decoder_input_ids": decoder_input_ids,
|
||
|
"attention_mask": attention_mask,
|
||
|
"head_mask": head_mask,
|
||
|
"decoder_head_mask": decoder_head_mask,
|
||
|
"cross_attn_head_mask": cross_attn_head_mask,
|
||
|
"use_cache": use_cache,
|
||
|
}
|
||
|
|
||
|
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
||
|
return self._shift_right(labels)
|
||
|
|
||
|
@staticmethod
|
||
|
# Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration._reorder_cache
|
||
|
def _reorder_cache(past_key_values, beam_idx):
|
||
|
reordered_past = ()
|
||
|
for layer_past in past_key_values:
|
||
|
# cached cross_attention states don't have to be reordered -> they are always the same
|
||
|
reordered_past += (
|
||
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
|
||
|
+ layer_past[2:],
|
||
|
)
|
||
|
return reordered_past
|
||
|
|
||
|
def get_encoder(self):
|
||
|
return self.prophetnet.encoder
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.prophetnet.decoder
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The standalone decoder part of the ProphetNetModel with a lm head on top. The model can be used for causal"
|
||
|
" language modeling.",
|
||
|
PROPHETNET_START_DOCSTRING,
|
||
|
)
|
||
|
class ProphetNetForCausalLM(ProphetNetPreTrainedModel):
|
||
|
_tied_weights_keys = [
|
||
|
"prophetnet.word_embeddings.weight",
|
||
|
"prophetnet.decoder.word_embeddings.weight",
|
||
|
"lm_head.weight",
|
||
|
]
|
||
|
|
||
|
def __init__(self, config: ProphetNetConfig):
|
||
|
# set config for CLM
|
||
|
config = copy.deepcopy(config)
|
||
|
config.is_decoder = True
|
||
|
config.is_encoder_decoder = False
|
||
|
super().__init__(config)
|
||
|
self.prophetnet = ProphetNetDecoderWrapper(config)
|
||
|
|
||
|
self.padding_idx = config.pad_token_id
|
||
|
self.disable_ngram_loss = config.disable_ngram_loss
|
||
|
|
||
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.prophetnet.decoder.word_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.prophetnet.decoder.word_embeddings = value
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.lm_head
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.lm_head = new_embeddings
|
||
|
|
||
|
def _tie_weights(self):
|
||
|
if self.config.tie_word_embeddings:
|
||
|
self._tie_or_clone_weights(self.prophetnet.decoder.word_embeddings, self.lm_head)
|
||
|
|
||
|
def set_decoder(self, decoder):
|
||
|
self.prophetnet.decoder = decoder
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.prophetnet.decoder
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=ProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, ProphetNetDecoderLMOutput]:
|
||
|
r"""
|
||
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||
|
the model is configured as a decoder.
|
||
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
||
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||
|
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
|
||
|
|
||
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||
|
`past_key_values`).
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
||
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
||
|
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, ProphetNetForCausalLM
|
||
|
>>> import torch
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
|
||
|
>>> model = ProphetNetForCausalLM.from_pretrained("microsoft/prophetnet-large-uncased")
|
||
|
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
|
||
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
||
|
>>> outputs = model(**inputs)
|
||
|
|
||
|
>>> logits = outputs.logits
|
||
|
|
||
|
>>> # Model can also be used with EncoderDecoder framework
|
||
|
>>> from transformers import BertTokenizer, EncoderDecoderModel, AutoTokenizer
|
||
|
>>> import torch
|
||
|
|
||
|
>>> tokenizer_enc = BertTokenizer.from_pretrained("google-bert/bert-large-uncased")
|
||
|
>>> tokenizer_dec = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
|
||
|
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained(
|
||
|
... "google-bert/bert-large-uncased", "microsoft/prophetnet-large-uncased"
|
||
|
... )
|
||
|
|
||
|
>>> ARTICLE = (
|
||
|
... "the us state department said wednesday it had received no "
|
||
|
... "formal word from bolivia that it was expelling the us ambassador there "
|
||
|
... "but said the charges made against him are `` baseless ."
|
||
|
... )
|
||
|
>>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids
|
||
|
>>> labels = tokenizer_dec(
|
||
|
... "us rejects charges against its ambassador in bolivia", return_tensors="pt"
|
||
|
... ).input_ids
|
||
|
>>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:])
|
||
|
|
||
|
>>> loss = outputs.loss
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn)
|
||
|
outputs = self.prophetnet.decoder(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
cross_attn_head_mask=cross_attn_head_mask,
|
||
|
past_key_values=past_key_values,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2]
|
||
|
|
||
|
predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1)
|
||
|
predict_logits = self.lm_head(predicting_streams)
|
||
|
|
||
|
logits = predict_logits[:, 0]
|
||
|
logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss = self._compute_loss(predict_logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
all_logits = tuple(v for v in [logits, logits_ngram] if v is not None)
|
||
|
return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:]
|
||
|
else:
|
||
|
return ProphetNetDecoderLMOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
logits_ngram=logits_ngram,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
hidden_states_ngram=outputs.hidden_states_ngram,
|
||
|
attentions=outputs.attentions,
|
||
|
ngram_attentions=outputs.ngram_attentions,
|
||
|
cross_attentions=outputs.cross_attentions,
|
||
|
)
|
||
|
|
||
|
def _compute_loss(self, logits, labels, ignore_index=-100):
|
||
|
expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index)
|
||
|
|
||
|
for i in range(self.config.ngram):
|
||
|
if i > 0 and self.disable_ngram_loss:
|
||
|
break
|
||
|
expend_targets[i, :, :] = labels
|
||
|
|
||
|
logits = logits.transpose(0, 1).contiguous()
|
||
|
lprobs = nn.functional.log_softmax(
|
||
|
logits.view(-1, logits.size(-1)),
|
||
|
dim=-1,
|
||
|
dtype=torch.float32,
|
||
|
)
|
||
|
|
||
|
loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean")
|
||
|
|
||
|
if self.config.eps > 0.0:
|
||
|
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
|
||
|
non_masked_tokens = expend_targets.ne(ignore_index).view(-1)
|
||
|
smooth_loss = smooth_loss[non_masked_tokens]
|
||
|
smooth_loss = smooth_loss.mean()
|
||
|
|
||
|
eps_i = self.config.eps / lprobs.size(-1)
|
||
|
loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss
|
||
|
|
||
|
return loss
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self,
|
||
|
input_ids,
|
||
|
past_key_values=None,
|
||
|
attention_mask=None,
|
||
|
head_mask=None,
|
||
|
use_cache=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
||
|
if attention_mask is None:
|
||
|
attention_mask = input_ids.new_ones(input_ids.shape)
|
||
|
|
||
|
if past_key_values:
|
||
|
input_ids = input_ids[:, -1:]
|
||
|
# first step, decoder_cached_states are empty
|
||
|
return {
|
||
|
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
|
||
|
"attention_mask": attention_mask,
|
||
|
"head_mask": head_mask,
|
||
|
"past_key_values": past_key_values,
|
||
|
"use_cache": use_cache,
|
||
|
}
|
||
|
|
||
|
@staticmethod
|
||
|
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM._reorder_cache
|
||
|
def _reorder_cache(past_key_values, beam_idx):
|
||
|
reordered_past = ()
|
||
|
for layer_past in past_key_values:
|
||
|
reordered_past += (
|
||
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
||
|
)
|
||
|
return reordered_past
|
||
|
|
||
|
|
||
|
class ProphetNetDecoderWrapper(ProphetNetPreTrainedModel):
|
||
|
"""
|
||
|
This is a wrapper class, so that [`ProphetNetForCausalLM`] can correctly be loaded from pretrained prophetnet
|
||
|
classes.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: ProphetNetConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||
|
self.decoder = ProphetNetDecoder(config, word_embeddings=self.word_embeddings)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def _tie_weights(self):
|
||
|
self._tie_or_clone_weights(self.word_embeddings, self.decoder.get_input_embeddings())
|
||
|
|
||
|
def forward(self, *args, **kwargs):
|
||
|
return self.decoder(*args, **kwargs)
|