669 lines
28 KiB
Python
669 lines
28 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
|
||
|
# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch PVT model."""
|
||
|
|
||
|
import collections
|
||
|
import math
|
||
|
from typing import Iterable, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
||
|
from ...utils import (
|
||
|
add_code_sample_docstrings,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
)
|
||
|
from .configuration_pvt import PvtConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CONFIG_FOR_DOC = "PvtConfig"
|
||
|
|
||
|
_CHECKPOINT_FOR_DOC = "Zetatech/pvt-tiny-224"
|
||
|
_EXPECTED_OUTPUT_SHAPE = [1, 50, 512]
|
||
|
|
||
|
_IMAGE_CLASS_CHECKPOINT = "Zetatech/pvt-tiny-224"
|
||
|
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import PVT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.beit.modeling_beit.drop_path
|
||
|
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
||
|
"""
|
||
|
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||
|
|
||
|
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
||
|
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
||
|
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
||
|
argument.
|
||
|
"""
|
||
|
if drop_prob == 0.0 or not training:
|
||
|
return input
|
||
|
keep_prob = 1 - drop_prob
|
||
|
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
||
|
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
||
|
random_tensor.floor_() # binarize
|
||
|
output = input.div(keep_prob) * random_tensor
|
||
|
return output
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Pvt
|
||
|
class PvtDropPath(nn.Module):
|
||
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
||
|
|
||
|
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
||
|
super().__init__()
|
||
|
self.drop_prob = drop_prob
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
return drop_path(hidden_states, self.drop_prob, self.training)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return "p={}".format(self.drop_prob)
|
||
|
|
||
|
|
||
|
class PvtPatchEmbeddings(nn.Module):
|
||
|
"""
|
||
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
||
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
||
|
Transformer.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: PvtConfig,
|
||
|
image_size: Union[int, Iterable[int]],
|
||
|
patch_size: Union[int, Iterable[int]],
|
||
|
stride: int,
|
||
|
num_channels: int,
|
||
|
hidden_size: int,
|
||
|
cls_token: bool = False,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
||
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
||
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||
|
self.image_size = image_size
|
||
|
self.patch_size = patch_size
|
||
|
self.num_channels = num_channels
|
||
|
self.num_patches = num_patches
|
||
|
|
||
|
self.position_embeddings = nn.Parameter(
|
||
|
torch.randn(1, num_patches + 1 if cls_token else num_patches, hidden_size)
|
||
|
)
|
||
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size)) if cls_token else None
|
||
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=stride, stride=patch_size)
|
||
|
self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
|
||
|
|
||
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
||
|
num_patches = height * width
|
||
|
if num_patches == self.config.image_size * self.config.image_size:
|
||
|
return self.position_embeddings
|
||
|
embeddings = embeddings.reshape(1, height, width, -1).permute(0, 3, 1, 2)
|
||
|
interpolated_embeddings = F.interpolate(embeddings, size=(height, width), mode="bilinear")
|
||
|
interpolated_embeddings = interpolated_embeddings.reshape(1, -1, height * width).permute(0, 2, 1)
|
||
|
return interpolated_embeddings
|
||
|
|
||
|
def forward(self, pixel_values: torch.Tensor) -> Tuple[torch.Tensor, int, int]:
|
||
|
batch_size, num_channels, height, width = pixel_values.shape
|
||
|
if num_channels != self.num_channels:
|
||
|
raise ValueError(
|
||
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
||
|
)
|
||
|
patch_embed = self.projection(pixel_values)
|
||
|
*_, height, width = patch_embed.shape
|
||
|
patch_embed = patch_embed.flatten(2).transpose(1, 2)
|
||
|
embeddings = self.layer_norm(patch_embed)
|
||
|
if self.cls_token is not None:
|
||
|
cls_token = self.cls_token.expand(batch_size, -1, -1)
|
||
|
embeddings = torch.cat((cls_token, embeddings), dim=1)
|
||
|
position_embeddings = self.interpolate_pos_encoding(self.position_embeddings[:, 1:], height, width)
|
||
|
position_embeddings = torch.cat((self.position_embeddings[:, :1], position_embeddings), dim=1)
|
||
|
else:
|
||
|
position_embeddings = self.interpolate_pos_encoding(self.position_embeddings, height, width)
|
||
|
embeddings = self.dropout(embeddings + position_embeddings)
|
||
|
|
||
|
return embeddings, height, width
|
||
|
|
||
|
|
||
|
class PvtSelfOutput(nn.Module):
|
||
|
def __init__(self, config: PvtConfig, hidden_size: int):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(hidden_size, hidden_size)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class PvtEfficientSelfAttention(nn.Module):
|
||
|
"""Efficient self-attention mechanism with reduction of the sequence [PvT paper](https://arxiv.org/abs/2102.12122)."""
|
||
|
|
||
|
def __init__(
|
||
|
self, config: PvtConfig, hidden_size: int, num_attention_heads: int, sequences_reduction_ratio: float
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
|
||
|
if self.hidden_size % self.num_attention_heads != 0:
|
||
|
raise ValueError(
|
||
|
f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
|
||
|
f"heads ({self.num_attention_heads})"
|
||
|
)
|
||
|
|
||
|
self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
|
||
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||
|
|
||
|
self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
|
||
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||
|
|
||
|
self.sequences_reduction_ratio = sequences_reduction_ratio
|
||
|
if sequences_reduction_ratio > 1:
|
||
|
self.sequence_reduction = nn.Conv2d(
|
||
|
hidden_size, hidden_size, kernel_size=sequences_reduction_ratio, stride=sequences_reduction_ratio
|
||
|
)
|
||
|
self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def transpose_for_scores(self, hidden_states: int) -> torch.Tensor:
|
||
|
new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||
|
hidden_states = hidden_states.view(new_shape)
|
||
|
return hidden_states.permute(0, 2, 1, 3)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
height: int,
|
||
|
width: int,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Tuple[torch.Tensor]:
|
||
|
query_layer = self.transpose_for_scores(self.query(hidden_states))
|
||
|
|
||
|
if self.sequences_reduction_ratio > 1:
|
||
|
batch_size, seq_len, num_channels = hidden_states.shape
|
||
|
# Reshape to (batch_size, num_channels, height, width)
|
||
|
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
|
||
|
# Apply sequence reduction
|
||
|
hidden_states = self.sequence_reduction(hidden_states)
|
||
|
# Reshape back to (batch_size, seq_len, num_channels)
|
||
|
hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1)
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
|
||
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||
|
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||
|
|
||
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attention_probs = self.dropout(attention_probs)
|
||
|
|
||
|
context_layer = torch.matmul(attention_probs, value_layer)
|
||
|
|
||
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||
|
context_layer = context_layer.view(new_context_layer_shape)
|
||
|
|
||
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class PvtAttention(nn.Module):
|
||
|
def __init__(
|
||
|
self, config: PvtConfig, hidden_size: int, num_attention_heads: int, sequences_reduction_ratio: float
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.self = PvtEfficientSelfAttention(
|
||
|
config,
|
||
|
hidden_size=hidden_size,
|
||
|
num_attention_heads=num_attention_heads,
|
||
|
sequences_reduction_ratio=sequences_reduction_ratio,
|
||
|
)
|
||
|
self.output = PvtSelfOutput(config, hidden_size=hidden_size)
|
||
|
self.pruned_heads = set()
|
||
|
|
||
|
def prune_heads(self, heads):
|
||
|
if len(heads) == 0:
|
||
|
return
|
||
|
heads, index = find_pruneable_heads_and_indices(
|
||
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
||
|
)
|
||
|
|
||
|
# Prune linear layers
|
||
|
self.self.query = prune_linear_layer(self.self.query, index)
|
||
|
self.self.key = prune_linear_layer(self.self.key, index)
|
||
|
self.self.value = prune_linear_layer(self.self.value, index)
|
||
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||
|
|
||
|
# Update hyper params and store pruned heads
|
||
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
||
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
||
|
self.pruned_heads = self.pruned_heads.union(heads)
|
||
|
|
||
|
def forward(
|
||
|
self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False
|
||
|
) -> Tuple[torch.Tensor]:
|
||
|
self_outputs = self.self(hidden_states, height, width, output_attentions)
|
||
|
|
||
|
attention_output = self.output(self_outputs[0])
|
||
|
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class PvtFFN(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: PvtConfig,
|
||
|
in_features: int,
|
||
|
hidden_features: Optional[int] = None,
|
||
|
out_features: Optional[int] = None,
|
||
|
):
|
||
|
super().__init__()
|
||
|
out_features = out_features if out_features is not None else in_features
|
||
|
self.dense1 = nn.Linear(in_features, hidden_features)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.intermediate_act_fn = config.hidden_act
|
||
|
self.dense2 = nn.Linear(hidden_features, out_features)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense1(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.dense2(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class PvtLayer(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: PvtConfig,
|
||
|
hidden_size: int,
|
||
|
num_attention_heads: int,
|
||
|
drop_path: float,
|
||
|
sequences_reduction_ratio: float,
|
||
|
mlp_ratio: float,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
|
||
|
self.attention = PvtAttention(
|
||
|
config=config,
|
||
|
hidden_size=hidden_size,
|
||
|
num_attention_heads=num_attention_heads,
|
||
|
sequences_reduction_ratio=sequences_reduction_ratio,
|
||
|
)
|
||
|
self.drop_path = PvtDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||
|
self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
|
||
|
mlp_hidden_size = int(hidden_size * mlp_ratio)
|
||
|
self.mlp = PvtFFN(config=config, in_features=hidden_size, hidden_features=mlp_hidden_size)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False):
|
||
|
self_attention_outputs = self.attention(
|
||
|
hidden_states=self.layer_norm_1(hidden_states),
|
||
|
height=height,
|
||
|
width=width,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
attention_output = self_attention_outputs[0]
|
||
|
outputs = self_attention_outputs[1:]
|
||
|
|
||
|
attention_output = self.drop_path(attention_output)
|
||
|
hidden_states = attention_output + hidden_states
|
||
|
|
||
|
mlp_output = self.mlp(self.layer_norm_2(hidden_states))
|
||
|
|
||
|
mlp_output = self.drop_path(mlp_output)
|
||
|
layer_output = hidden_states + mlp_output
|
||
|
|
||
|
outputs = (layer_output,) + outputs
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class PvtEncoder(nn.Module):
|
||
|
def __init__(self, config: PvtConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
|
||
|
# stochastic depth decay rule
|
||
|
drop_path_decays = torch.linspace(0, config.drop_path_rate, sum(config.depths)).tolist()
|
||
|
|
||
|
# patch embeddings
|
||
|
embeddings = []
|
||
|
|
||
|
for i in range(config.num_encoder_blocks):
|
||
|
embeddings.append(
|
||
|
PvtPatchEmbeddings(
|
||
|
config=config,
|
||
|
image_size=config.image_size if i == 0 else self.config.image_size // (2 ** (i + 1)),
|
||
|
patch_size=config.patch_sizes[i],
|
||
|
stride=config.strides[i],
|
||
|
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
|
||
|
hidden_size=config.hidden_sizes[i],
|
||
|
cls_token=i == config.num_encoder_blocks - 1,
|
||
|
)
|
||
|
)
|
||
|
self.patch_embeddings = nn.ModuleList(embeddings)
|
||
|
|
||
|
# Transformer blocks
|
||
|
blocks = []
|
||
|
cur = 0
|
||
|
for i in range(config.num_encoder_blocks):
|
||
|
# each block consists of layers
|
||
|
layers = []
|
||
|
if i != 0:
|
||
|
cur += config.depths[i - 1]
|
||
|
for j in range(config.depths[i]):
|
||
|
layers.append(
|
||
|
PvtLayer(
|
||
|
config=config,
|
||
|
hidden_size=config.hidden_sizes[i],
|
||
|
num_attention_heads=config.num_attention_heads[i],
|
||
|
drop_path=drop_path_decays[cur + j],
|
||
|
sequences_reduction_ratio=config.sequence_reduction_ratios[i],
|
||
|
mlp_ratio=config.mlp_ratios[i],
|
||
|
)
|
||
|
)
|
||
|
blocks.append(nn.ModuleList(layers))
|
||
|
|
||
|
self.block = nn.ModuleList(blocks)
|
||
|
|
||
|
# Layer norms
|
||
|
self.layer_norm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
output_hidden_states: Optional[bool] = False,
|
||
|
return_dict: Optional[bool] = True,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
batch_size = pixel_values.shape[0]
|
||
|
num_blocks = len(self.block)
|
||
|
hidden_states = pixel_values
|
||
|
for idx, (embedding_layer, block_layer) in enumerate(zip(self.patch_embeddings, self.block)):
|
||
|
# first, obtain patch embeddings
|
||
|
hidden_states, height, width = embedding_layer(hidden_states)
|
||
|
# second, send embeddings through blocks
|
||
|
for block in block_layer:
|
||
|
layer_outputs = block(hidden_states, height, width, output_attentions)
|
||
|
hidden_states = layer_outputs[0]
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
if idx != num_blocks - 1:
|
||
|
hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class PvtPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = PvtConfig
|
||
|
base_model_prefix = "pvt"
|
||
|
main_input_name = "pixel_values"
|
||
|
|
||
|
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, nn.Linear):
|
||
|
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
||
|
# `trunc_normal_cpu` not implemented in `half` issues
|
||
|
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
elif isinstance(module, PvtPatchEmbeddings):
|
||
|
module.position_embeddings.data = nn.init.trunc_normal_(
|
||
|
module.position_embeddings.data,
|
||
|
mean=0.0,
|
||
|
std=self.config.initializer_range,
|
||
|
)
|
||
|
if module.cls_token is not None:
|
||
|
module.cls_token.data = nn.init.trunc_normal_(
|
||
|
module.cls_token.data,
|
||
|
mean=0.0,
|
||
|
std=self.config.initializer_range,
|
||
|
)
|
||
|
|
||
|
|
||
|
PVT_START_DOCSTRING = r"""
|
||
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
||
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
||
|
behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`~PvtConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
PVT_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PvtImageProcessor.__call__`]
|
||
|
for details.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare Pvt encoder outputting raw hidden-states without any specific head on top.",
|
||
|
PVT_START_DOCSTRING,
|
||
|
)
|
||
|
class PvtModel(PvtPreTrainedModel):
|
||
|
def __init__(self, config: PvtConfig):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
|
||
|
# hierarchical Transformer encoder
|
||
|
self.encoder = PvtEncoder(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune):
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PVT_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=BaseModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
modality="vision",
|
||
|
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
sequence_output = encoder_outputs[0]
|
||
|
|
||
|
if not return_dict:
|
||
|
return (sequence_output,) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=sequence_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Pvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
|
||
|
the [CLS] token) e.g. for ImageNet.
|
||
|
""",
|
||
|
PVT_START_DOCSTRING,
|
||
|
)
|
||
|
class PvtForImageClassification(PvtPreTrainedModel):
|
||
|
def __init__(self, config: PvtConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.num_labels = config.num_labels
|
||
|
self.pvt = PvtModel(config)
|
||
|
|
||
|
# Classifier head
|
||
|
self.classifier = (
|
||
|
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
|
||
|
)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(PVT_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
||
|
output_type=ImageClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.Tensor],
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[tuple, ImageClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.pvt(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
logits = self.classifier(sequence_output[:, 0, :])
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
if self.config.problem_type is None:
|
||
|
if self.num_labels == 1:
|
||
|
self.config.problem_type = "regression"
|
||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||
|
self.config.problem_type = "single_label_classification"
|
||
|
else:
|
||
|
self.config.problem_type = "multi_label_classification"
|
||
|
|
||
|
if self.config.problem_type == "regression":
|
||
|
loss_fct = MSELoss()
|
||
|
if self.num_labels == 1:
|
||
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||
|
else:
|
||
|
loss = loss_fct(logits, labels)
|
||
|
elif self.config.problem_type == "single_label_classification":
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
elif self.config.problem_type == "multi_label_classification":
|
||
|
loss_fct = BCEWithLogitsLoss()
|
||
|
loss = loss_fct(logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return ImageClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|