ai-content-maker/.venv/Lib/site-packages/transformers/models/resnet/modeling_resnet.py

512 lines
19 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2022 Microsoft Research, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch ResNet model."""
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "ResNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/resnet-50"
_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/resnet-50"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat"
from ..deprecated._archive_maps import RESNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
class ResNetConvLayer(nn.Module):
def __init__(
self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, activation: str = "relu"
):
super().__init__()
self.convolution = nn.Conv2d(
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, bias=False
)
self.normalization = nn.BatchNorm2d(out_channels)
self.activation = ACT2FN[activation] if activation is not None else nn.Identity()
def forward(self, input: Tensor) -> Tensor:
hidden_state = self.convolution(input)
hidden_state = self.normalization(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
class ResNetEmbeddings(nn.Module):
"""
ResNet Embeddings (stem) composed of a single aggressive convolution.
"""
def __init__(self, config: ResNetConfig):
super().__init__()
self.embedder = ResNetConvLayer(
config.num_channels, config.embedding_size, kernel_size=7, stride=2, activation=config.hidden_act
)
self.pooler = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.num_channels = config.num_channels
def forward(self, pixel_values: Tensor) -> Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embedding = self.embedder(pixel_values)
embedding = self.pooler(embedding)
return embedding
class ResNetShortCut(nn.Module):
"""
ResNet shortcut, used to project the residual features to the correct size. If needed, it is also used to
downsample the input using `stride=2`.
"""
def __init__(self, in_channels: int, out_channels: int, stride: int = 2):
super().__init__()
self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
self.normalization = nn.BatchNorm2d(out_channels)
def forward(self, input: Tensor) -> Tensor:
hidden_state = self.convolution(input)
hidden_state = self.normalization(hidden_state)
return hidden_state
class ResNetBasicLayer(nn.Module):
"""
A classic ResNet's residual layer composed by two `3x3` convolutions.
"""
def __init__(self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu"):
super().__init__()
should_apply_shortcut = in_channels != out_channels or stride != 1
self.shortcut = (
ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity()
)
self.layer = nn.Sequential(
ResNetConvLayer(in_channels, out_channels, stride=stride),
ResNetConvLayer(out_channels, out_channels, activation=None),
)
self.activation = ACT2FN[activation]
def forward(self, hidden_state):
residual = hidden_state
hidden_state = self.layer(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
class ResNetBottleNeckLayer(nn.Module):
"""
A classic ResNet's bottleneck layer composed by three `3x3` convolutions.
The first `1x1` convolution reduces the input by a factor of `reduction` in order to make the second `3x3`
convolution faster. The last `1x1` convolution remaps the reduced features to `out_channels`. If
`downsample_in_bottleneck` is true, downsample will be in the first layer instead of the second layer.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
stride: int = 1,
activation: str = "relu",
reduction: int = 4,
downsample_in_bottleneck: bool = False,
):
super().__init__()
should_apply_shortcut = in_channels != out_channels or stride != 1
reduces_channels = out_channels // reduction
self.shortcut = (
ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity()
)
self.layer = nn.Sequential(
ResNetConvLayer(
in_channels, reduces_channels, kernel_size=1, stride=stride if downsample_in_bottleneck else 1
),
ResNetConvLayer(reduces_channels, reduces_channels, stride=stride if not downsample_in_bottleneck else 1),
ResNetConvLayer(reduces_channels, out_channels, kernel_size=1, activation=None),
)
self.activation = ACT2FN[activation]
def forward(self, hidden_state):
residual = hidden_state
hidden_state = self.layer(hidden_state)
residual = self.shortcut(residual)
hidden_state += residual
hidden_state = self.activation(hidden_state)
return hidden_state
class ResNetStage(nn.Module):
"""
A ResNet stage composed by stacked layers.
"""
def __init__(
self,
config: ResNetConfig,
in_channels: int,
out_channels: int,
stride: int = 2,
depth: int = 2,
):
super().__init__()
layer = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer
if config.layer_type == "bottleneck":
first_layer = layer(
in_channels,
out_channels,
stride=stride,
activation=config.hidden_act,
downsample_in_bottleneck=config.downsample_in_bottleneck,
)
else:
first_layer = layer(in_channels, out_channels, stride=stride, activation=config.hidden_act)
self.layers = nn.Sequential(
first_layer, *[layer(out_channels, out_channels, activation=config.hidden_act) for _ in range(depth - 1)]
)
def forward(self, input: Tensor) -> Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
class ResNetEncoder(nn.Module):
def __init__(self, config: ResNetConfig):
super().__init__()
self.stages = nn.ModuleList([])
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
config,
config.embedding_size,
config.hidden_sizes[0],
stride=2 if config.downsample_in_first_stage else 1,
depth=config.depths[0],
)
)
in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:])
for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]):
self.stages.append(ResNetStage(config, in_channels, out_channels, depth=depth))
def forward(
self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True
) -> BaseModelOutputWithNoAttention:
hidden_states = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
hidden_state = stage_module(hidden_state)
if output_hidden_states:
hidden_states = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_state,
hidden_states=hidden_states,
)
class ResNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ResNetConfig
base_model_prefix = "resnet"
main_input_name = "pixel_values"
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
RESNET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
RESNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare ResNet model outputting raw features without any specific head on top.",
RESNET_START_DOCSTRING,
)
class ResNetModel(ResNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embedder = ResNetEmbeddings(config)
self.encoder = ResNetEncoder(config)
self.pooler = nn.AdaptiveAvgPool2d((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
) -> BaseModelOutputWithPoolingAndNoAttention:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embedder(pixel_values)
encoder_outputs = self.encoder(
embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict
)
last_hidden_state = encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
RESNET_START_DOCSTRING,
)
class ResNetForImageClassification(ResNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.resnet = ResNetModel(config)
# classification head
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(),
)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> ImageClassifierOutputWithNoAttention:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.resnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""
ResNet backbone, to be used with frameworks like DETR and MaskFormer.
""",
RESNET_START_DOCSTRING,
)
class ResNetBackbone(ResNetPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.embedding_size] + config.hidden_sizes
self.embedder = ResNetEmbeddings(config)
self.encoder = ResNetEncoder(config)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
>>> model = AutoBackbone.from_pretrained(
... "microsoft/resnet-50", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 2048, 7, 7]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
embedding_output = self.embedder(pixel_values)
outputs = self.encoder(embedding_output, output_hidden_states=True, return_dict=True)
hidden_states = outputs.hidden_states
feature_maps = ()
for idx, stage in enumerate(self.stage_names):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)