ai-content-maker/.venv/Lib/site-packages/transformers/models/seggpt/configuration_seggpt.py

145 lines
6.4 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SegGpt model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import SEGGPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class SegGptConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SegGptModel`]. It is used to instantiate a SegGPT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the SegGPT
[BAAI/seggpt-vit-large](https://huggingface.co/BAAI/seggpt-vit-large) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
image_size (`List[int]`, *optional*, defaults to `[896, 448]`):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
mlp_dim (`int`, *optional*):
The dimensionality of the MLP layer in the Transformer encoder. If unset, defaults to
`hidden_size` * 4.
drop_path_rate (`float`, *optional*, defaults to 0.1):
The drop path rate for the dropout layers.
pretrain_image_size (`int`, *optional*, defaults to 224):
The pretrained size of the absolute position embeddings.
decoder_hidden_size (`int`, *optional*, defaults to 64):
Hidden size for decoder.
use_relative_position_embeddings (`bool`, *optional*, defaults to `True`):
Whether to use relative position embeddings in the attention layers.
merge_index (`int`, *optional*, defaults to 2):
The index of the encoder layer to merge the embeddings.
intermediate_hidden_state_indices (`List[int]`, *optional*, defaults to `[5, 11, 17, 23]`):
The indices of the encoder layers which we store as features for the decoder.
beta (`float`, *optional*, defaults to 0.01):
Regularization factor for SegGptLoss (smooth-l1 loss).
Example:
```python
>>> from transformers import SegGptConfig, SegGptModel
>>> # Initializing a SegGPT seggpt-vit-large style configuration
>>> configuration = SegGptConfig()
>>> # Initializing a model (with random weights) from the seggpt-vit-large style configuration
>>> model = SegGptModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "seggpt"
def __init__(
self,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
hidden_act="gelu",
hidden_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-6,
image_size=[896, 448],
patch_size=16,
num_channels=3,
qkv_bias=True,
mlp_dim=None,
drop_path_rate=0.1,
pretrain_image_size=224,
decoder_hidden_size=64,
use_relative_position_embeddings=True,
merge_index=2,
intermediate_hidden_state_indices=[5, 11, 17, 23],
beta=0.01,
**kwargs,
):
super().__init__(**kwargs)
if merge_index > min(intermediate_hidden_state_indices):
raise ValueError(
f"Merge index must be less than the minimum encoder output index, but got {merge_index=} and {intermediate_hidden_state_indices=}"
)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.drop_path_rate = drop_path_rate
self.pretrain_image_size = pretrain_image_size
self.decoder_hidden_size = decoder_hidden_size
self.use_relative_position_embeddings = use_relative_position_embeddings
self.merge_index = merge_index
self.intermediate_hidden_state_indices = intermediate_hidden_state_indices
self.beta = beta
self.mlp_dim = int(hidden_size * 4) if mlp_dim is None else mlp_dim