3363 lines
150 KiB
Python
3363 lines
150 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch SpeechT5 model."""
|
||
|
|
||
|
import math
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, L1Loss
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
|
||
|
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
|
||
|
from ...modeling_outputs import (
|
||
|
BaseModelOutput,
|
||
|
BaseModelOutputWithPastAndCrossAttentions,
|
||
|
Seq2SeqLMOutput,
|
||
|
Seq2SeqModelOutput,
|
||
|
Seq2SeqSpectrogramOutput,
|
||
|
)
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
||
|
from .configuration_speecht5 import SpeechT5Config, SpeechT5HifiGanConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
_HIDDEN_STATES_START_POSITION = 1
|
||
|
|
||
|
# General docstring
|
||
|
_CONFIG_FOR_DOC = "SpeechT5Config"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
||
|
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
||
|
"""
|
||
|
Shift input ids one token to the right.
|
||
|
"""
|
||
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
||
|
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
||
|
shifted_input_ids[:, 0] = decoder_start_token_id
|
||
|
|
||
|
if pad_token_id is None:
|
||
|
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
||
|
# replace possible -100 values in labels by `pad_token_id`
|
||
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
||
|
|
||
|
return shifted_input_ids
|
||
|
|
||
|
|
||
|
def shift_spectrograms_right(input_values: torch.Tensor, reduction_factor: int = 1):
|
||
|
"""
|
||
|
Shift input spectrograms one timestep to the right. Also applies the reduction factor to the sequence length.
|
||
|
"""
|
||
|
# thin out frames for reduction factor
|
||
|
if reduction_factor > 1:
|
||
|
input_values = input_values[:, reduction_factor - 1 :: reduction_factor]
|
||
|
|
||
|
shifted_input_values = input_values.new_zeros(input_values.shape)
|
||
|
shifted_input_values[:, 1:] = input_values[:, :-1].clone()
|
||
|
|
||
|
# replace possible -100 values in labels by zeros
|
||
|
shifted_input_values.masked_fill_(shifted_input_values == -100.0, 0.0)
|
||
|
|
||
|
return shifted_input_values
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
|
||
|
def _compute_mask_indices(
|
||
|
shape: Tuple[int, int],
|
||
|
mask_prob: float,
|
||
|
mask_length: int,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
min_masks: int = 0,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
|
||
|
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
|
||
|
CPU as part of the preprocessing during training.
|
||
|
|
||
|
Args:
|
||
|
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
|
||
|
the first element is the batch size and the second element is the length of the axis to span.
|
||
|
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
|
||
|
independently generated mask spans of length `mask_length` is computed by
|
||
|
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
|
||
|
actual percentage will be smaller.
|
||
|
mask_length: size of the mask
|
||
|
min_masks: minimum number of masked spans
|
||
|
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
|
||
|
each batch dimension.
|
||
|
"""
|
||
|
batch_size, sequence_length = shape
|
||
|
|
||
|
if mask_length < 1:
|
||
|
raise ValueError("`mask_length` has to be bigger than 0.")
|
||
|
|
||
|
if mask_length > sequence_length:
|
||
|
raise ValueError(
|
||
|
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
|
||
|
f" and `sequence_length`: {sequence_length}`"
|
||
|
)
|
||
|
|
||
|
# epsilon is used for probabilistic rounding
|
||
|
epsilon = np.random.rand(1).item()
|
||
|
|
||
|
def compute_num_masked_span(input_length):
|
||
|
"""Given input length, compute how many spans should be masked"""
|
||
|
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
|
||
|
num_masked_span = max(num_masked_span, min_masks)
|
||
|
|
||
|
# make sure num masked span <= sequence_length
|
||
|
if num_masked_span * mask_length > sequence_length:
|
||
|
num_masked_span = sequence_length // mask_length
|
||
|
|
||
|
# make sure num_masked span is also <= input_length - (mask_length - 1)
|
||
|
if input_length - (mask_length - 1) < num_masked_span:
|
||
|
num_masked_span = max(input_length - (mask_length - 1), 0)
|
||
|
|
||
|
return num_masked_span
|
||
|
|
||
|
# compute number of masked spans in batch
|
||
|
input_lengths = (
|
||
|
attention_mask.sum(-1).detach().tolist()
|
||
|
if attention_mask is not None
|
||
|
else [sequence_length for _ in range(batch_size)]
|
||
|
)
|
||
|
|
||
|
# SpecAugment mask to fill
|
||
|
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
|
||
|
spec_aug_mask_idxs = []
|
||
|
|
||
|
max_num_masked_span = compute_num_masked_span(sequence_length)
|
||
|
|
||
|
if max_num_masked_span == 0:
|
||
|
return spec_aug_mask
|
||
|
|
||
|
for input_length in input_lengths:
|
||
|
# compute num of masked spans for this input
|
||
|
num_masked_span = compute_num_masked_span(input_length)
|
||
|
|
||
|
# get random indices to mask
|
||
|
spec_aug_mask_idx = np.random.choice(
|
||
|
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
|
||
|
)
|
||
|
|
||
|
# pick first sampled index that will serve as a dummy index to pad vector
|
||
|
# to ensure same dimension for all batches due to probabilistic rounding
|
||
|
# Picking first sample just pads those vectors twice.
|
||
|
if len(spec_aug_mask_idx) == 0:
|
||
|
# this case can only happen if `input_length` is strictly smaller then
|
||
|
# `sequence_length` in which case the last token has to be a padding
|
||
|
# token which we can use as a dummy mask id
|
||
|
dummy_mask_idx = sequence_length - 1
|
||
|
else:
|
||
|
dummy_mask_idx = spec_aug_mask_idx[0]
|
||
|
|
||
|
spec_aug_mask_idx = np.concatenate(
|
||
|
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
|
||
|
)
|
||
|
spec_aug_mask_idxs.append(spec_aug_mask_idx)
|
||
|
|
||
|
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
|
||
|
|
||
|
# expand masked indices to masked spans
|
||
|
spec_aug_mask_idxs = np.broadcast_to(
|
||
|
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
|
||
|
)
|
||
|
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
|
||
|
|
||
|
# add offset to the starting indexes so that indexes now create a span
|
||
|
offsets = np.arange(mask_length)[None, None, :]
|
||
|
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
|
||
|
batch_size, max_num_masked_span * mask_length
|
||
|
)
|
||
|
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
|
||
|
|
||
|
# ensure that we cannot have indices larger than sequence_length
|
||
|
if spec_aug_mask_idxs.max() > sequence_length - 1:
|
||
|
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
|
||
|
|
||
|
# scatter indices to mask
|
||
|
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
|
||
|
|
||
|
return spec_aug_mask
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SpeechT5
|
||
|
class SpeechT5NoLayerNormConvLayer(nn.Module):
|
||
|
def __init__(self, config, layer_id=0):
|
||
|
super().__init__()
|
||
|
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
|
||
|
self.out_conv_dim = config.conv_dim[layer_id]
|
||
|
|
||
|
self.conv = nn.Conv1d(
|
||
|
self.in_conv_dim,
|
||
|
self.out_conv_dim,
|
||
|
kernel_size=config.conv_kernel[layer_id],
|
||
|
stride=config.conv_stride[layer_id],
|
||
|
bias=config.conv_bias,
|
||
|
)
|
||
|
self.activation = ACT2FN[config.feat_extract_activation]
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
hidden_states = self.activation(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SpeechT5
|
||
|
class SpeechT5LayerNormConvLayer(nn.Module):
|
||
|
def __init__(self, config, layer_id=0):
|
||
|
super().__init__()
|
||
|
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
|
||
|
self.out_conv_dim = config.conv_dim[layer_id]
|
||
|
|
||
|
self.conv = nn.Conv1d(
|
||
|
self.in_conv_dim,
|
||
|
self.out_conv_dim,
|
||
|
kernel_size=config.conv_kernel[layer_id],
|
||
|
stride=config.conv_stride[layer_id],
|
||
|
bias=config.conv_bias,
|
||
|
)
|
||
|
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
|
||
|
self.activation = ACT2FN[config.feat_extract_activation]
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states.transpose(-2, -1)
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = hidden_states.transpose(-2, -1)
|
||
|
|
||
|
hidden_states = self.activation(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SpeechT5
|
||
|
class SpeechT5GroupNormConvLayer(nn.Module):
|
||
|
def __init__(self, config, layer_id=0):
|
||
|
super().__init__()
|
||
|
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
|
||
|
self.out_conv_dim = config.conv_dim[layer_id]
|
||
|
|
||
|
self.conv = nn.Conv1d(
|
||
|
self.in_conv_dim,
|
||
|
self.out_conv_dim,
|
||
|
kernel_size=config.conv_kernel[layer_id],
|
||
|
stride=config.conv_stride[layer_id],
|
||
|
bias=config.conv_bias,
|
||
|
)
|
||
|
self.activation = ACT2FN[config.feat_extract_activation]
|
||
|
|
||
|
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = self.activation(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextSinusoidalPositionalEmbedding with Speech2Text->SpeechT5
|
||
|
class SpeechT5SinusoidalPositionalEmbedding(nn.Module):
|
||
|
"""This module produces sinusoidal positional embeddings of any length."""
|
||
|
|
||
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
||
|
super().__init__()
|
||
|
self.offset = 2
|
||
|
self.embedding_dim = embedding_dim
|
||
|
self.padding_idx = padding_idx
|
||
|
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
||
|
|
||
|
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
||
|
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
|
||
|
if hasattr(self, "weights"):
|
||
|
# in forward put the weights on the correct dtype and device of the param
|
||
|
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
|
||
|
|
||
|
self.weights = nn.Parameter(emb_weights)
|
||
|
self.weights.requires_grad = False
|
||
|
self.weights.detach_()
|
||
|
|
||
|
@staticmethod
|
||
|
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
||
|
"""
|
||
|
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
|
||
|
description in Section 3.5 of "Attention Is All You Need".
|
||
|
"""
|
||
|
half_dim = embedding_dim // 2
|
||
|
emb = math.log(10000) / (half_dim - 1)
|
||
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
|
||
|
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
|
||
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
|
||
|
if embedding_dim % 2 == 1:
|
||
|
# zero pad
|
||
|
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
|
||
|
if padding_idx is not None:
|
||
|
emb[padding_idx, :] = 0
|
||
|
return emb.to(torch.get_default_dtype())
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
|
||
|
bsz, seq_len = input_ids.size()
|
||
|
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
||
|
position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
|
||
|
input_ids.device
|
||
|
)
|
||
|
|
||
|
# expand embeddings if needed
|
||
|
max_pos = self.padding_idx + 1 + seq_len
|
||
|
if max_pos > self.weights.size(0):
|
||
|
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
|
||
|
|
||
|
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach()
|
||
|
|
||
|
def create_position_ids_from_input_ids(
|
||
|
self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0
|
||
|
):
|
||
|
"""
|
||
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
|
||
|
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
|
||
|
|
||
|
Args:
|
||
|
x: torch.Tensor x:
|
||
|
Returns: torch.Tensor
|
||
|
"""
|
||
|
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
||
|
mask = input_ids.ne(padding_idx).int()
|
||
|
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
||
|
return incremental_indices.long() + padding_idx
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->SpeechT5
|
||
|
class SpeechT5PositionalConvEmbedding(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.conv = nn.Conv1d(
|
||
|
config.hidden_size,
|
||
|
config.hidden_size,
|
||
|
kernel_size=config.num_conv_pos_embeddings,
|
||
|
padding=config.num_conv_pos_embeddings // 2,
|
||
|
groups=config.num_conv_pos_embedding_groups,
|
||
|
)
|
||
|
|
||
|
weight_norm = nn.utils.weight_norm
|
||
|
if hasattr(nn.utils.parametrizations, "weight_norm"):
|
||
|
weight_norm = nn.utils.parametrizations.weight_norm
|
||
|
|
||
|
if is_deepspeed_zero3_enabled():
|
||
|
import deepspeed
|
||
|
|
||
|
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
|
||
|
self.conv = weight_norm(self.conv, name="weight", dim=2)
|
||
|
deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
|
||
|
deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
|
||
|
else:
|
||
|
self.conv = weight_norm(self.conv, name="weight", dim=2)
|
||
|
|
||
|
self.padding = SpeechT5SamePadLayer(config.num_conv_pos_embeddings)
|
||
|
self.activation = ACT2FN[config.feat_extract_activation]
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = hidden_states.transpose(1, 2)
|
||
|
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
hidden_states = self.padding(hidden_states)
|
||
|
hidden_states = self.activation(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states.transpose(1, 2)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class SpeechT5ScaledPositionalEncoding(nn.Module):
|
||
|
"""
|
||
|
Scaled positional encoding, see §3.2 in https://arxiv.org/abs/1809.08895
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dropout, dim, max_len=5000):
|
||
|
pe = torch.zeros(max_len, dim)
|
||
|
position = torch.arange(0, max_len).unsqueeze(1)
|
||
|
div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / dim)))
|
||
|
pe[:, 0::2] = torch.sin(position.float() * div_term)
|
||
|
pe[:, 1::2] = torch.cos(position.float() * div_term)
|
||
|
pe = pe.unsqueeze(0)
|
||
|
super().__init__()
|
||
|
self.register_buffer("pe", pe, persistent=False)
|
||
|
self.dropout = nn.Dropout(p=dropout)
|
||
|
self.dim = dim
|
||
|
self.alpha = torch.nn.Parameter(torch.tensor(1.0))
|
||
|
|
||
|
def forward(self, emb):
|
||
|
emb = emb + self.alpha * self.pe[:, : emb.size(1)]
|
||
|
emb = self.dropout(emb)
|
||
|
return emb
|
||
|
|
||
|
|
||
|
class SpeechT5RelativePositionalEncoding(torch.nn.Module):
|
||
|
def __init__(self, dim, max_length=1000):
|
||
|
super().__init__()
|
||
|
self.dim = dim
|
||
|
self.max_length = max_length
|
||
|
self.pe_k = torch.nn.Embedding(2 * max_length, dim)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
seq_len = hidden_states.shape[1]
|
||
|
pos_seq = torch.arange(0, seq_len).long().to(hidden_states.device)
|
||
|
pos_seq = pos_seq[:, None] - pos_seq[None, :]
|
||
|
|
||
|
pos_seq[pos_seq < -self.max_length] = -self.max_length
|
||
|
pos_seq[pos_seq >= self.max_length] = self.max_length - 1
|
||
|
pos_seq = pos_seq + self.max_length
|
||
|
|
||
|
return self.pe_k(pos_seq)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SpeechT5
|
||
|
class SpeechT5SamePadLayer(nn.Module):
|
||
|
def __init__(self, num_conv_pos_embeddings):
|
||
|
super().__init__()
|
||
|
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
if self.num_pad_remove > 0:
|
||
|
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SpeechT5
|
||
|
class SpeechT5FeatureEncoder(nn.Module):
|
||
|
"""Construct the features from raw audio waveform"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
if config.feat_extract_norm == "group":
|
||
|
conv_layers = [SpeechT5GroupNormConvLayer(config, layer_id=0)] + [
|
||
|
SpeechT5NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1)
|
||
|
]
|
||
|
elif config.feat_extract_norm == "layer":
|
||
|
conv_layers = [
|
||
|
SpeechT5LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
|
||
|
]
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
|
||
|
)
|
||
|
self.conv_layers = nn.ModuleList(conv_layers)
|
||
|
self.gradient_checkpointing = False
|
||
|
self._requires_grad = True
|
||
|
|
||
|
def _freeze_parameters(self):
|
||
|
for param in self.parameters():
|
||
|
param.requires_grad = False
|
||
|
self._requires_grad = False
|
||
|
|
||
|
def forward(self, input_values):
|
||
|
hidden_states = input_values[:, None]
|
||
|
|
||
|
# make sure hidden_states require grad for gradient_checkpointing
|
||
|
if self._requires_grad and self.training:
|
||
|
hidden_states.requires_grad = True
|
||
|
|
||
|
for conv_layer in self.conv_layers:
|
||
|
if self._requires_grad and self.gradient_checkpointing and self.training:
|
||
|
hidden_states = self._gradient_checkpointing_func(
|
||
|
conv_layer.__call__,
|
||
|
hidden_states,
|
||
|
)
|
||
|
else:
|
||
|
hidden_states = conv_layer(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->SpeechT5
|
||
|
class SpeechT5FeatureProjection(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
|
||
|
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
|
||
|
self.dropout = nn.Dropout(config.feat_proj_dropout)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
# non-projected hidden states are needed for quantization
|
||
|
norm_hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = self.projection(norm_hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
return hidden_states, norm_hidden_states
|
||
|
|
||
|
|
||
|
class SpeechT5SpeechEncoderPrenet(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.feature_encoder = SpeechT5FeatureEncoder(config)
|
||
|
self.feature_projection = SpeechT5FeatureProjection(config)
|
||
|
|
||
|
# model only needs masking vector if mask prob is > 0.0
|
||
|
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
||
|
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
|
||
|
|
||
|
self.pos_conv_embed = SpeechT5PositionalConvEmbedding(config)
|
||
|
self.pos_sinusoidal_embed = SpeechT5SinusoidalPositionalEmbedding(
|
||
|
config.max_speech_positions + config.pad_token_id + 1,
|
||
|
config.hidden_size,
|
||
|
config.pad_token_id,
|
||
|
)
|
||
|
|
||
|
def freeze_feature_encoder(self):
|
||
|
self.feature_encoder._freeze_parameters()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: torch.Tensor,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||
|
):
|
||
|
extract_features = self.feature_encoder(input_values)
|
||
|
extract_features = extract_features.transpose(1, 2)
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
# compute reduced attention_mask corresponding to feature vectors
|
||
|
attention_mask = self._get_feature_vector_attention_mask(
|
||
|
extract_features.shape[1],
|
||
|
attention_mask,
|
||
|
)
|
||
|
|
||
|
hidden_states, extract_features = self.feature_projection(extract_features)
|
||
|
hidden_states = self._mask_hidden_states(
|
||
|
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
||
|
)
|
||
|
|
||
|
positional_conv_embedding = self.pos_conv_embed(hidden_states)
|
||
|
hidden_states = hidden_states + positional_conv_embedding
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
padding_mask = attention_mask.ne(1).long()
|
||
|
else:
|
||
|
padding_mask = torch.zeros(hidden_states.shape[:2], dtype=torch.long, device=hidden_states.device)
|
||
|
|
||
|
positional_sinusoidal_embeddings = self.pos_sinusoidal_embed(padding_mask)
|
||
|
hidden_states = hidden_states + positional_sinusoidal_embeddings
|
||
|
|
||
|
return hidden_states, attention_mask
|
||
|
|
||
|
# Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feature_vector_attention_mask
|
||
|
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
|
||
|
# Effectively attention_mask.sum(-1), but not inplace to be able to run
|
||
|
# on inference mode.
|
||
|
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
|
||
|
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long)
|
||
|
batch_size = attention_mask.shape[0]
|
||
|
|
||
|
attention_mask = torch.zeros(
|
||
|
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
|
||
|
)
|
||
|
# these two operations makes sure that all values before the output lengths idxs are attended to
|
||
|
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
|
||
|
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
|
||
|
return attention_mask
|
||
|
|
||
|
# Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feat_extract_output_lengths
|
||
|
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
|
||
|
"""
|
||
|
Computes the output length of the convolutional layers
|
||
|
"""
|
||
|
|
||
|
def _conv_out_length(input_length, kernel_size, stride):
|
||
|
# 1D convolutional layer output length formula taken
|
||
|
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
|
||
|
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
|
||
|
|
||
|
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
|
||
|
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
|
||
|
|
||
|
return input_lengths
|
||
|
|
||
|
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
|
||
|
def _mask_hidden_states(
|
||
|
self,
|
||
|
hidden_states: torch.FloatTensor,
|
||
|
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
):
|
||
|
"""
|
||
|
Masks extracted features along time axis and/or along feature axis according to
|
||
|
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
||
|
"""
|
||
|
|
||
|
# `config.apply_spec_augment` can set masking to False
|
||
|
if not getattr(self.config, "apply_spec_augment", True):
|
||
|
return hidden_states
|
||
|
|
||
|
# generate indices & apply SpecAugment along time axis
|
||
|
batch_size, sequence_length, hidden_size = hidden_states.size()
|
||
|
|
||
|
if mask_time_indices is not None:
|
||
|
# apply SpecAugment along time axis with given mask_time_indices
|
||
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
||
|
elif self.config.mask_time_prob > 0 and self.training:
|
||
|
mask_time_indices = _compute_mask_indices(
|
||
|
(batch_size, sequence_length),
|
||
|
mask_prob=self.config.mask_time_prob,
|
||
|
mask_length=self.config.mask_time_length,
|
||
|
attention_mask=attention_mask,
|
||
|
min_masks=self.config.mask_time_min_masks,
|
||
|
)
|
||
|
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
||
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
||
|
|
||
|
if self.config.mask_feature_prob > 0 and self.training:
|
||
|
# generate indices & apply SpecAugment along feature axis
|
||
|
mask_feature_indices = _compute_mask_indices(
|
||
|
(batch_size, hidden_size),
|
||
|
mask_prob=self.config.mask_feature_prob,
|
||
|
mask_length=self.config.mask_feature_length,
|
||
|
min_masks=self.config.mask_feature_min_masks,
|
||
|
)
|
||
|
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
|
||
|
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
|
||
|
hidden_states[mask_feature_indices] = 0
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class SpeechT5SpeechDecoderPrenet(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
|
||
|
self.layers = nn.ModuleList(
|
||
|
[
|
||
|
nn.Linear(
|
||
|
config.num_mel_bins if i == 0 else config.speech_decoder_prenet_units,
|
||
|
config.speech_decoder_prenet_units,
|
||
|
)
|
||
|
for i in range(config.speech_decoder_prenet_layers)
|
||
|
]
|
||
|
)
|
||
|
|
||
|
self.final_layer = nn.Linear(config.speech_decoder_prenet_units, config.hidden_size)
|
||
|
self.encode_positions = SpeechT5ScaledPositionalEncoding(
|
||
|
config.positional_dropout,
|
||
|
config.hidden_size,
|
||
|
config.max_speech_positions,
|
||
|
)
|
||
|
self.speaker_embeds_layer = nn.Linear(config.speaker_embedding_dim + config.hidden_size, config.hidden_size)
|
||
|
|
||
|
def _consistent_dropout(self, inputs_embeds, p):
|
||
|
mask = torch.bernoulli(inputs_embeds[0], p=p)
|
||
|
all_masks = mask.unsqueeze(0).repeat(inputs_embeds.size(0), 1, 1)
|
||
|
return torch.where(all_masks == 1, inputs_embeds, 0) * 1 / (1 - p)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: torch.Tensor,
|
||
|
speaker_embeddings: Optional[torch.Tensor] = None,
|
||
|
):
|
||
|
# Dropout is always applied, even when evaluating. See §2.2 in https://arxiv.org/abs/1712.05884.
|
||
|
|
||
|
inputs_embeds = input_values
|
||
|
for layer in self.layers:
|
||
|
inputs_embeds = nn.functional.relu(layer(inputs_embeds))
|
||
|
inputs_embeds = self._consistent_dropout(inputs_embeds, self.config.speech_decoder_prenet_dropout)
|
||
|
|
||
|
inputs_embeds = self.final_layer(inputs_embeds)
|
||
|
inputs_embeds = self.encode_positions(inputs_embeds)
|
||
|
|
||
|
if speaker_embeddings is not None:
|
||
|
speaker_embeddings = nn.functional.normalize(speaker_embeddings)
|
||
|
speaker_embeddings = speaker_embeddings.unsqueeze(1).expand(-1, inputs_embeds.size(1), -1)
|
||
|
inputs_embeds = torch.cat([inputs_embeds, speaker_embeddings], dim=-1)
|
||
|
inputs_embeds = nn.functional.relu(self.speaker_embeds_layer(inputs_embeds))
|
||
|
|
||
|
return inputs_embeds
|
||
|
|
||
|
|
||
|
class SpeechT5BatchNormConvLayer(nn.Module):
|
||
|
def __init__(self, config, layer_id=0):
|
||
|
super().__init__()
|
||
|
|
||
|
if layer_id == 0:
|
||
|
in_conv_dim = config.num_mel_bins
|
||
|
else:
|
||
|
in_conv_dim = config.speech_decoder_postnet_units
|
||
|
|
||
|
if layer_id == config.speech_decoder_postnet_layers - 1:
|
||
|
out_conv_dim = config.num_mel_bins
|
||
|
else:
|
||
|
out_conv_dim = config.speech_decoder_postnet_units
|
||
|
|
||
|
self.conv = nn.Conv1d(
|
||
|
in_conv_dim,
|
||
|
out_conv_dim,
|
||
|
kernel_size=config.speech_decoder_postnet_kernel,
|
||
|
stride=1,
|
||
|
padding=(config.speech_decoder_postnet_kernel - 1) // 2,
|
||
|
bias=False,
|
||
|
)
|
||
|
self.batch_norm = nn.BatchNorm1d(out_conv_dim)
|
||
|
|
||
|
if layer_id < config.speech_decoder_postnet_layers - 1:
|
||
|
self.activation = nn.Tanh()
|
||
|
else:
|
||
|
self.activation = None
|
||
|
|
||
|
self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
hidden_states = self.batch_norm(hidden_states)
|
||
|
if self.activation is not None:
|
||
|
hidden_states = self.activation(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class SpeechT5SpeechDecoderPostnet(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
|
||
|
self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor)
|
||
|
self.prob_out = nn.Linear(config.hidden_size, config.reduction_factor)
|
||
|
|
||
|
self.layers = nn.ModuleList(
|
||
|
[SpeechT5BatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)]
|
||
|
)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor):
|
||
|
outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins)
|
||
|
outputs_after_postnet = self.postnet(outputs_before_postnet)
|
||
|
logits = self.prob_out(hidden_states).view(hidden_states.size(0), -1)
|
||
|
return outputs_before_postnet, outputs_after_postnet, logits
|
||
|
|
||
|
def postnet(self, hidden_states: torch.Tensor):
|
||
|
layer_output = hidden_states.transpose(1, 2)
|
||
|
for layer in self.layers:
|
||
|
layer_output = layer(layer_output)
|
||
|
return hidden_states + layer_output.transpose(1, 2)
|
||
|
|
||
|
|
||
|
class SpeechT5TextEncoderPrenet(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
||
|
self.encode_positions = SpeechT5ScaledPositionalEncoding(
|
||
|
config.positional_dropout,
|
||
|
config.hidden_size,
|
||
|
config.max_text_positions,
|
||
|
)
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.embed_tokens = value
|
||
|
|
||
|
def forward(self, input_ids: torch.Tensor):
|
||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||
|
inputs_embeds = self.encode_positions(inputs_embeds)
|
||
|
return inputs_embeds
|
||
|
|
||
|
|
||
|
class SpeechT5TextDecoderPrenet(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.dropout = nn.Dropout(config.positional_dropout)
|
||
|
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
|
||
|
|
||
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
||
|
|
||
|
self.embed_positions = SpeechT5SinusoidalPositionalEmbedding(
|
||
|
config.max_text_positions + config.pad_token_id + 1,
|
||
|
config.hidden_size,
|
||
|
config.pad_token_id,
|
||
|
)
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.embed_tokens = value
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.Tensor,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
):
|
||
|
if input_ids is not None:
|
||
|
input_shape = input_ids.size()
|
||
|
input_ids = input_ids.view(-1, input_shape[-1])
|
||
|
else:
|
||
|
raise ValueError("You have to specify `decoder_input_ids`")
|
||
|
|
||
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||
|
positions = self.embed_positions(input_ids, past_key_values_length)
|
||
|
|
||
|
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
||
|
inputs_embeds += positions
|
||
|
inputs_embeds = self.dropout(inputs_embeds)
|
||
|
|
||
|
return inputs_embeds, attention_mask
|
||
|
|
||
|
|
||
|
class SpeechT5TextDecoderPostnet(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor):
|
||
|
return self.lm_head(hidden_states)
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.lm_head
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.lm_head = new_embeddings
|
||
|
|
||
|
|
||
|
class SpeechT5Attention(nn.Module):
|
||
|
"""
|
||
|
Multi-headed attention from 'Attention Is All You Need' paper with relative position bias (see
|
||
|
https://aclanthology.org/N18-2074.pdf)
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embed_dim: int,
|
||
|
num_heads: int,
|
||
|
dropout: float = 0.0,
|
||
|
is_decoder: bool = False,
|
||
|
bias: bool = True,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.embed_dim = embed_dim
|
||
|
self.num_heads = num_heads
|
||
|
self.dropout = dropout
|
||
|
self.head_dim = embed_dim // num_heads
|
||
|
|
||
|
if (self.head_dim * num_heads) != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
||
|
f" and `num_heads`: {num_heads})."
|
||
|
)
|
||
|
self.scaling = self.head_dim**-0.5
|
||
|
self.is_decoder = is_decoder
|
||
|
|
||
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
|
||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
key_value_states: Optional[torch.Tensor] = None,
|
||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
layer_head_mask: Optional[torch.Tensor] = None,
|
||
|
position_bias: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
# if key_value_states are provided this layer is used as a cross-attention layer
|
||
|
# for the decoder
|
||
|
is_cross_attention = key_value_states is not None
|
||
|
|
||
|
bsz, tgt_len, _ = hidden_states.size()
|
||
|
|
||
|
# get query proj
|
||
|
query_states = self.q_proj(hidden_states) * self.scaling
|
||
|
# get key, value proj
|
||
|
if is_cross_attention and past_key_value is not None:
|
||
|
# reuse k,v, cross_attentions
|
||
|
key_states = past_key_value[0]
|
||
|
value_states = past_key_value[1]
|
||
|
elif is_cross_attention:
|
||
|
# cross_attentions
|
||
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
||
|
elif past_key_value is not None:
|
||
|
# reuse k, v, self_attention
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||
|
else:
|
||
|
# self_attention
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
|
||
|
if self.is_decoder:
|
||
|
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
||
|
# Further calls to cross_attention layer can then reuse all cross-attention
|
||
|
# key/value_states (first "if" case)
|
||
|
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
||
|
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
||
|
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
||
|
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
||
|
past_key_value = (key_states, value_states)
|
||
|
|
||
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||
|
key_states = key_states.view(*proj_shape)
|
||
|
value_states = value_states.view(*proj_shape)
|
||
|
|
||
|
src_len = key_states.size(1)
|
||
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||
|
|
||
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
||
|
f" {attn_weights.size()}"
|
||
|
)
|
||
|
|
||
|
# relative attention bias
|
||
|
if position_bias is not None:
|
||
|
reshape_q = query_states.contiguous().view(bsz * self.num_heads, -1, self.head_dim).transpose(0, 1)
|
||
|
rel_pos_bias = torch.matmul(reshape_q, position_bias.transpose(-2, -1))
|
||
|
rel_pos_bias = rel_pos_bias.transpose(0, 1).view(
|
||
|
bsz * self.num_heads, position_bias.size(0), position_bias.size(1)
|
||
|
)
|
||
|
attn_weights += rel_pos_bias
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||
|
)
|
||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||
|
|
||
|
if layer_head_mask is not None:
|
||
|
if layer_head_mask.size() != (self.num_heads,):
|
||
|
raise ValueError(
|
||
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
||
|
f" {layer_head_mask.size()}"
|
||
|
)
|
||
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
if output_attentions:
|
||
|
# this operation is a bit awkward, but it's required to
|
||
|
# make sure that attn_weights keeps its gradient.
|
||
|
# In order to do so, attn_weights have to be reshaped
|
||
|
# twice and have to be reused in the following
|
||
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
else:
|
||
|
attn_weights_reshaped = None
|
||
|
|
||
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||
|
|
||
|
attn_output = torch.bmm(attn_probs, value_states)
|
||
|
|
||
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||
|
raise ValueError(
|
||
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
||
|
f" {attn_output.size()}"
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||
|
attn_output = attn_output.transpose(1, 2)
|
||
|
|
||
|
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
||
|
# partitioned aross GPUs when using tensor-parallelism.
|
||
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
||
|
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
return attn_output, attn_weights_reshaped, past_key_value
|
||
|
|
||
|
|
||
|
class SpeechT5FeedForward(nn.Module):
|
||
|
def __init__(self, config, intermediate_size):
|
||
|
super().__init__()
|
||
|
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
|
||
|
|
||
|
self.intermediate_dense = nn.Linear(config.hidden_size, intermediate_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.intermediate_act_fn = config.hidden_act
|
||
|
|
||
|
self.output_dense = nn.Linear(intermediate_size, config.hidden_size)
|
||
|
self.output_dropout = nn.Dropout(config.hidden_dropout)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.intermediate_dense(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
hidden_states = self.intermediate_dropout(hidden_states)
|
||
|
|
||
|
hidden_states = self.output_dense(hidden_states)
|
||
|
hidden_states = self.output_dropout(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class SpeechT5EncoderLayer(nn.Module):
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__()
|
||
|
self.attention = SpeechT5Attention(
|
||
|
embed_dim=config.hidden_size,
|
||
|
num_heads=config.encoder_attention_heads,
|
||
|
dropout=config.attention_dropout,
|
||
|
is_decoder=False,
|
||
|
)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.feed_forward = SpeechT5FeedForward(config, config.encoder_ffn_dim)
|
||
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
layer_head_mask: Optional[torch.Tensor] = None,
|
||
|
position_bias: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
):
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`):
|
||
|
input to the layer of shape `(batch, seq_len, hidden_size)`
|
||
|
attention_mask (`torch.FloatTensor`):
|
||
|
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
|
||
|
large negative values.
|
||
|
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
||
|
`(config.encoder_attention_heads,)`.
|
||
|
position_bias (`torch.FloatTensor`):
|
||
|
relative position embeddings of size `(seq_len, seq_len, hidden_size // encoder_attention_heads)`
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
"""
|
||
|
residual = hidden_states
|
||
|
hidden_states, attn_weights, _ = self.attention(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
layer_head_mask=layer_head_mask,
|
||
|
position_bias=position_bias,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = hidden_states + self.feed_forward(hidden_states)
|
||
|
hidden_states = self.final_layer_norm(hidden_states)
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class SpeechT5DecoderLayer(nn.Module):
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__()
|
||
|
self.self_attn = SpeechT5Attention(
|
||
|
embed_dim=config.hidden_size,
|
||
|
num_heads=config.decoder_attention_heads,
|
||
|
dropout=config.attention_dropout,
|
||
|
is_decoder=True,
|
||
|
)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
self.encoder_attn = SpeechT5Attention(
|
||
|
config.hidden_size,
|
||
|
config.decoder_attention_heads,
|
||
|
dropout=config.attention_dropout,
|
||
|
is_decoder=True,
|
||
|
)
|
||
|
self.encoder_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
self.feed_forward = SpeechT5FeedForward(config, config.decoder_ffn_dim)
|
||
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
|
layer_head_mask: Optional[torch.Tensor] = None,
|
||
|
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
use_cache: Optional[bool] = True,
|
||
|
):
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)`
|
||
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
||
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||
|
encoder_hidden_states (`torch.FloatTensor`):
|
||
|
cross attention input to the layer of shape `(batch, seq_len, hidden_size)`
|
||
|
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
||
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||
|
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
||
|
`(encoder_attention_heads,)`.
|
||
|
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
|
||
|
size `(decoder_attention_heads,)`.
|
||
|
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
"""
|
||
|
residual = hidden_states
|
||
|
|
||
|
# Self Attention
|
||
|
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||
|
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
||
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
past_key_value=self_attn_past_key_value,
|
||
|
attention_mask=attention_mask,
|
||
|
layer_head_mask=layer_head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
||
|
|
||
|
# Cross-Attention Block
|
||
|
cross_attn_present_key_value = None
|
||
|
cross_attn_weights = None
|
||
|
if encoder_hidden_states is not None:
|
||
|
residual = hidden_states
|
||
|
|
||
|
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
||
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
||
|
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
key_value_states=encoder_hidden_states,
|
||
|
attention_mask=encoder_attention_mask,
|
||
|
layer_head_mask=cross_attn_layer_head_mask,
|
||
|
past_key_value=cross_attn_past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
||
|
|
||
|
# add cross-attn to positions 3,4 of present_key_value tuple
|
||
|
present_key_value = present_key_value + cross_attn_present_key_value
|
||
|
|
||
|
# Fully Connected
|
||
|
hidden_states = hidden_states + self.feed_forward(hidden_states)
|
||
|
hidden_states = self.final_layer_norm(hidden_states)
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (self_attn_weights, cross_attn_weights)
|
||
|
|
||
|
if use_cache:
|
||
|
outputs += (present_key_value,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class SpeechT5PreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = SpeechT5Config
|
||
|
base_model_prefix = "speecht5"
|
||
|
main_input_name = "input_values"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, SpeechT5PositionalConvEmbedding):
|
||
|
nn.init.normal_(
|
||
|
module.conv.weight,
|
||
|
mean=0,
|
||
|
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
|
||
|
)
|
||
|
nn.init.constant_(module.conv.bias, 0)
|
||
|
elif isinstance(module, SpeechT5FeatureProjection):
|
||
|
k = math.sqrt(1 / module.projection.in_features)
|
||
|
nn.init.uniform_(module.projection.weight, a=-k, b=k)
|
||
|
nn.init.uniform_(module.projection.bias, a=-k, b=k)
|
||
|
elif isinstance(module, nn.Linear):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
elif isinstance(module, nn.Conv1d):
|
||
|
nn.init.kaiming_normal_(module.weight)
|
||
|
if module.bias is not None:
|
||
|
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
|
||
|
nn.init.uniform_(module.bias, a=-k, b=k)
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
|
||
|
|
||
|
class SpeechT5Encoder(SpeechT5PreTrainedModel):
|
||
|
"""
|
||
|
Transformer encoder consisting of *config.encoder_layers* layers. Each layer is a [`SpeechT5EncoderLayer`].
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__(config)
|
||
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.layerdrop = config.encoder_layerdrop
|
||
|
|
||
|
self.layers = nn.ModuleList([SpeechT5EncoderLayer(config) for _ in range(config.encoder_layers)])
|
||
|
|
||
|
self.embed_positions = SpeechT5RelativePositionalEncoding(
|
||
|
config.hidden_size // config.encoder_attention_heads, config.encoder_max_relative_position
|
||
|
)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.FloatTensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`):
|
||
|
Features extracted from the speech or text input by the encoder prenet.
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
|
||
|
`[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||
|
for more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# expand attention_mask
|
||
|
if attention_mask is not None:
|
||
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||
|
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
||
|
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
|
||
|
position_bias = self.embed_positions(hidden_states)
|
||
|
|
||
|
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
||
|
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
# check if head_mask has a correct number of layers specified if desired
|
||
|
if head_mask is not None:
|
||
|
if head_mask.size()[0] != len(self.layers):
|
||
|
raise ValueError(
|
||
|
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
||
|
f" {head_mask.size()[0]}."
|
||
|
)
|
||
|
|
||
|
for idx, encoder_layer in enumerate(self.layers):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||
|
skip_the_layer = False
|
||
|
if self.training:
|
||
|
dropout_probability = torch.rand([])
|
||
|
skip_the_layer = dropout_probability < self.layerdrop
|
||
|
|
||
|
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
||
|
# under deepspeed zero3 all gpus must run in sync
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
encoder_layer.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
(head_mask[idx] if head_mask is not None else None),
|
||
|
position_bias,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = encoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
position_bias=position_bias,
|
||
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if skip_the_layer:
|
||
|
layer_outputs = (None, None)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class SpeechT5EncoderWithSpeechPrenet(SpeechT5PreTrainedModel):
|
||
|
"""
|
||
|
Wrapper around SpeechT5Encoder that applies SpeechT5SpeechEncoderPrenet to convert the audio waveform data to
|
||
|
hidden features.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__(config)
|
||
|
self.prenet = SpeechT5SpeechEncoderPrenet(config)
|
||
|
self.wrapped_encoder = SpeechT5Encoder(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: torch.FloatTensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
hidden_states, attention_mask = self.prenet(input_values, attention_mask)
|
||
|
|
||
|
outputs = self.wrapped_encoder(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class SpeechT5EncoderWithTextPrenet(SpeechT5PreTrainedModel):
|
||
|
"""
|
||
|
Wrapper around SpeechT5Encoder that applies SpeechT5TextEncoderPrenet to convert the input_ids to hidden features.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__(config)
|
||
|
self.prenet = SpeechT5TextEncoderPrenet(config)
|
||
|
self.wrapped_encoder = SpeechT5Encoder(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.prenet.get_input_embeddings()
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.prenet.set_input_embeddings(value)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: torch.FloatTensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
hidden_states = self.prenet(input_values)
|
||
|
|
||
|
outputs = self.wrapped_encoder(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class SpeechT5EncoderWithoutPrenet(SpeechT5PreTrainedModel):
|
||
|
"""
|
||
|
This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with
|
||
|
[`SpeechT5Model`].
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__(config)
|
||
|
self.wrapped_encoder = SpeechT5Encoder(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: torch.FloatTensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
return self.wrapped_encoder(
|
||
|
hidden_states=input_values,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
|
||
|
class SpeechT5Decoder(SpeechT5PreTrainedModel):
|
||
|
"""
|
||
|
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SpeechT5DecoderLayer`]
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__(config)
|
||
|
self.layerdrop = config.decoder_layerdrop
|
||
|
|
||
|
self.layers = nn.ModuleList([SpeechT5DecoderLayer(config) for _ in range(config.decoder_layers)])
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
||
|
r"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`):
|
||
|
Features extracted from the speech or text input by the decoder prenet.
|
||
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
||
|
of the decoder.
|
||
|
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
||
|
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
||
|
selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
|
||
|
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
||
|
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
||
|
|
||
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
||
|
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||
|
|
||
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
||
|
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
||
|
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||
|
than the model's internal embedding lookup matrix.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||
|
for more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
input_shape = hidden_states.size()[:-1]
|
||
|
|
||
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||
|
|
||
|
attention_mask = _prepare_4d_causal_attention_mask(
|
||
|
attention_mask, input_shape, hidden_states, past_key_values_length
|
||
|
)
|
||
|
|
||
|
# expand encoder attention mask
|
||
|
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
||
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||
|
encoder_attention_mask = _prepare_4d_attention_mask(
|
||
|
encoder_attention_mask, hidden_states.dtype, tgt_len=input_shape[-1]
|
||
|
)
|
||
|
|
||
|
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
if use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
# decoder layers
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
||
|
next_decoder_cache = () if use_cache else None
|
||
|
|
||
|
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
||
|
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
||
|
if attn_mask is not None:
|
||
|
if attn_mask.size()[0] != (len(self.layers)):
|
||
|
raise ValueError(
|
||
|
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
||
|
f" {head_mask.size()[0]}."
|
||
|
)
|
||
|
|
||
|
for idx, decoder_layer in enumerate(self.layers):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||
|
skip_the_layer = False
|
||
|
if self.training:
|
||
|
dropout_probability = torch.rand([])
|
||
|
skip_the_layer = dropout_probability < self.layerdrop
|
||
|
if skip_the_layer and not deepspeed_zero3_is_enabled:
|
||
|
continue
|
||
|
|
||
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
decoder_layer.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
encoder_hidden_states,
|
||
|
encoder_attention_mask,
|
||
|
head_mask[idx] if head_mask is not None else None,
|
||
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
||
|
None,
|
||
|
output_attentions,
|
||
|
use_cache,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = decoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
||
|
cross_attn_layer_head_mask=(
|
||
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
||
|
),
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
)
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if use_cache:
|
||
|
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if encoder_hidden_states is not None:
|
||
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
next_cache = next_decoder_cache if use_cache else None
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions, all_cross_attentions]
|
||
|
if v is not None
|
||
|
)
|
||
|
|
||
|
return BaseModelOutputWithPastAndCrossAttentions(
|
||
|
last_hidden_state=hidden_states,
|
||
|
past_key_values=next_cache,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
cross_attentions=all_cross_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class SpeechT5DecoderWithSpeechPrenet(SpeechT5PreTrainedModel):
|
||
|
"""
|
||
|
Wrapper around SpeechT5Decoder that applies SpeechT5SpeechDecoderPrenet to convert log-mel filterbanks to hidden
|
||
|
features.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__(config)
|
||
|
self.prenet = SpeechT5SpeechDecoderPrenet(config)
|
||
|
self.wrapped_decoder = SpeechT5Decoder(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.LongTensor] = None,
|
||
|
speaker_embeddings: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
||
|
decoder_hidden_states = self.prenet(input_values, speaker_embeddings)
|
||
|
|
||
|
outputs = self.wrapped_decoder(
|
||
|
hidden_states=decoder_hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
cross_attn_head_mask=cross_attn_head_mask,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class SpeechT5DecoderWithTextPrenet(SpeechT5PreTrainedModel):
|
||
|
"""
|
||
|
Wrapper around SpeechT5Decoder that applies SpeechT5TextDecoderPrenet to convert input tokens to hidden features.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__(config)
|
||
|
self.prenet = SpeechT5TextDecoderPrenet(config)
|
||
|
self.wrapped_decoder = SpeechT5Decoder(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.prenet.get_input_embeddings()
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.prenet.set_input_embeddings(value)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
||
|
decoder_hidden_states, attention_mask = self.prenet(input_values, attention_mask, past_key_values)
|
||
|
|
||
|
outputs = self.wrapped_decoder(
|
||
|
hidden_states=decoder_hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
cross_attn_head_mask=cross_attn_head_mask,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class SpeechT5DecoderWithoutPrenet(SpeechT5PreTrainedModel):
|
||
|
"""
|
||
|
This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with
|
||
|
[`SpeechT5Model`].
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__(config)
|
||
|
self.wrapped_decoder = SpeechT5Decoder(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
||
|
outputs = self.wrapped_decoder(
|
||
|
hidden_states=input_values,
|
||
|
attention_mask=attention_mask,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
cross_attn_head_mask=cross_attn_head_mask,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class SpeechT5GuidedMultiheadAttentionLoss(nn.Module):
|
||
|
"""
|
||
|
Guided attention loss from the paper [Efficiently Trainable Text-to-Speech System Based on Deep Convolutional
|
||
|
Networks with Guided Attention](https://arxiv.org/abs/1710.08969), adapted for multi-head attention.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__()
|
||
|
self.sigma = config.guided_attention_loss_sigma
|
||
|
self.scale = config.guided_attention_loss_scale
|
||
|
|
||
|
def forward(
|
||
|
self, attentions: torch.FloatTensor, input_masks: torch.BoolTensor, output_masks: torch.BoolTensor
|
||
|
) -> torch.Tensor:
|
||
|
"""
|
||
|
Compute the attention loss.
|
||
|
|
||
|
Args:
|
||
|
attentions (`torch.FloatTensor` of shape `(batch_size, layers * heads, output_sequence_length, input_sequence_length)`):
|
||
|
Batch of multi-head attention weights
|
||
|
input_masks (`torch.BoolTensor` of shape `(batch_size, input_sequence_length)`):
|
||
|
Input attention mask as booleans.
|
||
|
output_masks (`torch.BoolTensor` of shape `(batch_size, output_sequence_length)`):
|
||
|
Target attention mask as booleans.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor` with the loss value
|
||
|
"""
|
||
|
guided_attn_masks = self._make_guided_attention_masks(input_masks, output_masks, attentions.device)
|
||
|
masks = output_masks.unsqueeze(-1) & input_masks.unsqueeze(-2)
|
||
|
masks = masks.to(attentions.device).unsqueeze(1)
|
||
|
|
||
|
losses = guided_attn_masks * attentions
|
||
|
loss = torch.mean(losses.masked_select(masks))
|
||
|
return self.scale * loss
|
||
|
|
||
|
def _make_guided_attention_masks(self, input_masks, output_masks, device):
|
||
|
input_lengths = input_masks.sum(-1)
|
||
|
output_lengths = output_masks.sum(-1)
|
||
|
|
||
|
guided_attn_masks = torch.zeros((len(input_masks), output_masks.shape[1], input_masks.shape[1]), device=device)
|
||
|
|
||
|
for idx, (ilen, olen) in enumerate(zip(input_lengths, output_lengths)):
|
||
|
guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask(ilen, olen, self.sigma, device)
|
||
|
|
||
|
return guided_attn_masks.unsqueeze(1)
|
||
|
|
||
|
@staticmethod
|
||
|
def _make_guided_attention_mask(input_length, output_length, sigma, device):
|
||
|
grid_y, grid_x = torch.meshgrid(
|
||
|
torch.arange(input_length, device=device),
|
||
|
torch.arange(output_length, device=device),
|
||
|
indexing="xy",
|
||
|
)
|
||
|
grid_x = grid_x.float() / output_length
|
||
|
grid_y = grid_y.float() / input_length
|
||
|
return 1.0 - torch.exp(-((grid_y - grid_x) ** 2) / (2 * (sigma**2)))
|
||
|
|
||
|
|
||
|
class SpeechT5SpectrogramLoss(nn.Module):
|
||
|
"""
|
||
|
Loss computation used by SpeechT5ForTextToSpeech.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__()
|
||
|
self.use_guided_attention_loss = config.use_guided_attention_loss
|
||
|
self.guided_attention_loss_num_heads = config.guided_attention_loss_num_heads
|
||
|
self.reduction_factor = config.reduction_factor
|
||
|
|
||
|
self.l1_criterion = L1Loss()
|
||
|
self.bce_criterion = BCEWithLogitsLoss(pos_weight=torch.tensor(5.0))
|
||
|
|
||
|
if self.use_guided_attention_loss:
|
||
|
self.attn_criterion = SpeechT5GuidedMultiheadAttentionLoss(config)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
attention_mask: torch.LongTensor,
|
||
|
outputs_before_postnet: torch.FloatTensor,
|
||
|
outputs_after_postnet: torch.FloatTensor,
|
||
|
logits: torch.FloatTensor,
|
||
|
labels: torch.FloatTensor,
|
||
|
cross_attentions: Optional[torch.FloatTensor] = None,
|
||
|
) -> torch.Tensor:
|
||
|
padding_mask = labels != -100.0
|
||
|
|
||
|
# mask out the padded portions
|
||
|
labels = labels.masked_select(padding_mask)
|
||
|
outputs_before_postnet = outputs_before_postnet.masked_select(padding_mask)
|
||
|
outputs_after_postnet = outputs_after_postnet.masked_select(padding_mask)
|
||
|
|
||
|
# spectrogram loss
|
||
|
l1_loss = self.l1_criterion(outputs_after_postnet, labels) + self.l1_criterion(outputs_before_postnet, labels)
|
||
|
|
||
|
# construct stop labels from the padding mask
|
||
|
masks = padding_mask[:, :, 0]
|
||
|
stop_labels = torch.cat([~masks * 1.0, torch.ones(masks.size(0), 1).to(masks.device)], dim=1)
|
||
|
stop_labels = stop_labels[:, 1:].masked_select(masks)
|
||
|
logits = logits.masked_select(masks)
|
||
|
|
||
|
# stop token loss
|
||
|
bce_loss = self.bce_criterion(logits, stop_labels)
|
||
|
|
||
|
# combined loss
|
||
|
loss = l1_loss + bce_loss
|
||
|
|
||
|
# guided attention loss
|
||
|
if self.use_guided_attention_loss:
|
||
|
attn = torch.cat([x[:, : self.guided_attention_loss_num_heads] for x in cross_attentions], dim=1)
|
||
|
input_masks = attention_mask == 1
|
||
|
output_masks = padding_mask[:, :, 0]
|
||
|
if self.reduction_factor > 1:
|
||
|
output_masks = output_masks[:, self.reduction_factor - 1 :: self.reduction_factor]
|
||
|
attn_loss = self.attn_criterion(attn, input_masks, output_masks)
|
||
|
loss += attn_loss
|
||
|
|
||
|
return loss
|
||
|
|
||
|
|
||
|
SPEECHT5_BASE_START_DOCSTRING = r"""
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`SpeechT5Config`]):
|
||
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||
|
load the weights associated with the model, only the configuration. Check out the
|
||
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
encoder ([`SpeechT5EncoderWithSpeechPrenet`] or [`SpeechT5EncoderWithTextPrenet`] or `None`):
|
||
|
The Transformer encoder module that applies the appropiate speech or text encoder prenet. If `None`,
|
||
|
[`SpeechT5EncoderWithoutPrenet`] will be used and the `input_values` are assumed to be hidden states.
|
||
|
decoder ([`SpeechT5DecoderWithSpeechPrenet`] or [`SpeechT5DecoderWithTextPrenet`] or `None`):
|
||
|
The Transformer decoder module that applies the appropiate speech or text decoder prenet. If `None`,
|
||
|
[`SpeechT5DecoderWithoutPrenet`] will be used and the `decoder_input_values` are assumed to be hidden
|
||
|
states.
|
||
|
"""
|
||
|
|
||
|
|
||
|
SPEECHT5_START_DOCSTRING = r"""
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`SpeechT5Config`]):
|
||
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||
|
load the weights associated with the model, only the configuration. Check out the
|
||
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
|
||
|
SPEECHT5_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
|
||
|
1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
|
||
|
<Tip warning={true}>
|
||
|
|
||
|
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
|
||
|
True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should
|
||
|
**not** be passed to avoid degraded performance when doing batched inference. For such models
|
||
|
`input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these
|
||
|
models also yield slightly different results depending on whether `input_values` is padded or not.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
||
|
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_values`. Causal mask will
|
||
|
also be used by default.
|
||
|
|
||
|
If you want to change padding behavior, you should read [`SpeechT5Decoder._prepare_decoder_attention_mask`]
|
||
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
||
|
information on the default strategy.
|
||
|
|
||
|
head_mask (`torch.FloatTensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
decoder_head_mask (`torch.FloatTensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
||
|
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
||
|
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
||
|
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
||
|
|
||
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
||
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
||
|
|
||
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||
|
|
||
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_values` (those
|
||
|
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||
|
`decoder_input_values` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`torch.FloatTensor`
|
||
|
of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
|
||
|
`decoder_input_values` you can choose to directly pass an embedded representation. If `past_key_values` is
|
||
|
used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is
|
||
|
useful if you want more control over how to convert `decoder_input_values` indices into associated vectors
|
||
|
than the model's internal embedding lookup matrix.
|
||
|
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||
|
`past_key_values`).
|
||
|
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare SpeechT5 Encoder-Decoder Model outputting raw hidden-states without any specific pre- or post-nets.",
|
||
|
SPEECHT5_BASE_START_DOCSTRING,
|
||
|
)
|
||
|
class SpeechT5Model(SpeechT5PreTrainedModel):
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: SpeechT5Config,
|
||
|
encoder: Optional[nn.Module] = None,
|
||
|
decoder: Optional[nn.Module] = None,
|
||
|
):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
self.encoder = SpeechT5EncoderWithoutPrenet(config) if encoder is None else encoder
|
||
|
self.decoder = SpeechT5DecoderWithoutPrenet(config) if decoder is None else decoder
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet):
|
||
|
return self.encoder.get_input_embeddings()
|
||
|
if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet):
|
||
|
return self.decoder.get_input_embeddings()
|
||
|
return None
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet):
|
||
|
self.encoder.set_input_embeddings(value)
|
||
|
if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet):
|
||
|
self.decoder.set_input_embeddings(value)
|
||
|
|
||
|
def get_encoder(self):
|
||
|
return self.encoder
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.decoder
|
||
|
|
||
|
def freeze_feature_encoder(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
if isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet):
|
||
|
self.encoder.prenet.freeze_feature_encoder()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
decoder_input_values: Optional[torch.Tensor] = None,
|
||
|
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
speaker_embeddings: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
||
|
r"""
|
||
|
input_values (`torch.Tensor` of shape `(batch_size, sequence_length)`):
|
||
|
Depending on which encoder is being used, the `input_values` are either: float values of the input raw
|
||
|
speech waveform, or indices of input sequence tokens in the vocabulary, or hidden states.
|
||
|
|
||
|
decoder_input_values (`torch.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
||
|
Depending on which decoder is being used, the `decoder_input_values` are either: float values of log-mel
|
||
|
filterbank features extracted from the raw speech waveform, or indices of decoder input sequence tokens in
|
||
|
the vocabulary, or hidden states.
|
||
|
|
||
|
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
|
||
|
Tensor containing the speaker embeddings.
|
||
|
|
||
|
Returns:
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# Encode if needed (training, first prediction pass)
|
||
|
if encoder_outputs is None:
|
||
|
encoder_outputs = self.encoder(
|
||
|
input_values=input_values,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
||
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
||
|
encoder_outputs = BaseModelOutput(
|
||
|
last_hidden_state=encoder_outputs[0],
|
||
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
||
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
||
|
)
|
||
|
|
||
|
# downsample encoder attention mask (only for encoders with speech input)
|
||
|
if attention_mask is not None and isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet):
|
||
|
encoder_attention_mask = self.encoder.prenet._get_feature_vector_attention_mask(
|
||
|
encoder_outputs[0].shape[1], attention_mask
|
||
|
)
|
||
|
else:
|
||
|
encoder_attention_mask = attention_mask
|
||
|
|
||
|
if isinstance(self.decoder, SpeechT5DecoderWithSpeechPrenet):
|
||
|
decoder_args = {"speaker_embeddings": speaker_embeddings}
|
||
|
else:
|
||
|
decoder_args = {}
|
||
|
|
||
|
decoder_outputs = self.decoder(
|
||
|
input_values=decoder_input_values,
|
||
|
attention_mask=decoder_attention_mask,
|
||
|
encoder_hidden_states=encoder_outputs[0],
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
head_mask=decoder_head_mask,
|
||
|
cross_attn_head_mask=cross_attn_head_mask,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
**decoder_args,
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
return decoder_outputs + encoder_outputs
|
||
|
|
||
|
return Seq2SeqModelOutput(
|
||
|
last_hidden_state=decoder_outputs.last_hidden_state,
|
||
|
past_key_values=decoder_outputs.past_key_values,
|
||
|
decoder_hidden_states=decoder_outputs.hidden_states,
|
||
|
decoder_attentions=decoder_outputs.attentions,
|
||
|
cross_attentions=decoder_outputs.cross_attentions,
|
||
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
||
|
encoder_hidden_states=encoder_outputs.hidden_states,
|
||
|
encoder_attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""SpeechT5 Model with a speech encoder and a text decoder.""",
|
||
|
SPEECHT5_START_DOCSTRING,
|
||
|
)
|
||
|
class SpeechT5ForSpeechToText(SpeechT5PreTrainedModel):
|
||
|
_tied_weights_keys = ["text_decoder_postnet.lm_head.weight"]
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
if config.vocab_size is None:
|
||
|
raise ValueError(
|
||
|
f"You are trying to instantiate {self.__class__} with a configuration that does not define the"
|
||
|
" vocabulary size of the language model head. Please instantiate the model as follows:"
|
||
|
" `SpeechT5ForSpeechToText.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of"
|
||
|
" your model's configuration."
|
||
|
)
|
||
|
|
||
|
speech_encoder = SpeechT5EncoderWithSpeechPrenet(config)
|
||
|
text_decoder = SpeechT5DecoderWithTextPrenet(config)
|
||
|
self.speecht5 = SpeechT5Model(config, speech_encoder, text_decoder)
|
||
|
|
||
|
self.text_decoder_postnet = SpeechT5TextDecoderPostnet(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_encoder(self):
|
||
|
return self.speecht5.get_encoder()
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.speecht5.get_decoder()
|
||
|
|
||
|
def freeze_feature_encoder(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
self.get_encoder().prenet.freeze_feature_encoder()
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.text_decoder_postnet.get_output_embeddings()
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.text_decoder_postnet.set_output_embeddings(new_embeddings)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
decoder_input_ids: Optional[torch.LongTensor] = None,
|
||
|
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
) -> Union[Tuple, Seq2SeqLMOutput]:
|
||
|
r"""
|
||
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file
|
||
|
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install
|
||
|
soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding
|
||
|
and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details.
|
||
|
|
||
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
||
|
Indices of decoder input sequence tokens in the vocabulary.
|
||
|
|
||
|
Indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
||
|
|
||
|
SpeechT5 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
|
||
|
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
||
|
`past_key_values`).
|
||
|
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
|
||
|
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
|
||
|
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||
|
|
||
|
Label indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToText
|
||
|
>>> from datasets import load_dataset
|
||
|
|
||
|
>>> dataset = load_dataset(
|
||
|
... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation"
|
||
|
... ) # doctest: +IGNORE_RESULT
|
||
|
>>> dataset = dataset.sort("id")
|
||
|
>>> sampling_rate = dataset.features["audio"].sampling_rate
|
||
|
|
||
|
>>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_asr")
|
||
|
>>> model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr")
|
||
|
|
||
|
>>> # audio file is decoded on the fly
|
||
|
>>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
|
||
|
>>> predicted_ids = model.generate(**inputs, max_length=100)
|
||
|
|
||
|
>>> # transcribe speech
|
||
|
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
||
|
>>> transcription[0]
|
||
|
'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel'
|
||
|
```
|
||
|
|
||
|
```python
|
||
|
>>> inputs["labels"] = processor(text_target=dataset[0]["text"], return_tensors="pt").input_ids
|
||
|
|
||
|
>>> # compute loss
|
||
|
>>> loss = model(**inputs).loss
|
||
|
>>> round(loss.item(), 2)
|
||
|
19.68
|
||
|
```
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if labels is not None:
|
||
|
if decoder_input_ids is None:
|
||
|
decoder_input_ids = shift_tokens_right(
|
||
|
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
||
|
)
|
||
|
|
||
|
outputs = self.speecht5(
|
||
|
input_values=input_values,
|
||
|
attention_mask=attention_mask,
|
||
|
decoder_input_values=decoder_input_ids,
|
||
|
decoder_attention_mask=decoder_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
decoder_head_mask=decoder_head_mask,
|
||
|
cross_attn_head_mask=cross_attn_head_mask,
|
||
|
encoder_outputs=encoder_outputs,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=True,
|
||
|
)
|
||
|
|
||
|
logits = self.text_decoder_postnet(outputs[0])
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return Seq2SeqLMOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
decoder_hidden_states=outputs.decoder_hidden_states,
|
||
|
decoder_attentions=outputs.decoder_attentions,
|
||
|
cross_attentions=outputs.cross_attentions,
|
||
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
||
|
encoder_hidden_states=outputs.encoder_hidden_states,
|
||
|
encoder_attentions=outputs.encoder_attentions,
|
||
|
)
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self,
|
||
|
decoder_input_ids,
|
||
|
past_key_values=None,
|
||
|
attention_mask=None,
|
||
|
head_mask=None,
|
||
|
decoder_head_mask=None,
|
||
|
cross_attn_head_mask=None,
|
||
|
use_cache=None,
|
||
|
encoder_outputs=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
# cut decoder_input_ids if past is used
|
||
|
if past_key_values is not None:
|
||
|
past_length = past_key_values[0][0].shape[2]
|
||
|
|
||
|
# Some generation methods already pass only the last input ID
|
||
|
if decoder_input_ids.shape[1] > past_length:
|
||
|
remove_prefix_length = past_length
|
||
|
else:
|
||
|
# Default to old behavior: keep only final ID
|
||
|
remove_prefix_length = decoder_input_ids.shape[1] - 1
|
||
|
|
||
|
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
|
||
|
|
||
|
return {
|
||
|
"encoder_outputs": encoder_outputs,
|
||
|
"past_key_values": past_key_values,
|
||
|
"decoder_input_ids": decoder_input_ids,
|
||
|
"attention_mask": attention_mask,
|
||
|
"head_mask": head_mask,
|
||
|
"decoder_head_mask": decoder_head_mask,
|
||
|
"cross_attn_head_mask": cross_attn_head_mask,
|
||
|
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
||
|
}
|
||
|
|
||
|
@staticmethod
|
||
|
def _reorder_cache(past_key_values, beam_idx):
|
||
|
reordered_past = ()
|
||
|
for layer_past in past_key_values:
|
||
|
reordered_past += (
|
||
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
||
|
)
|
||
|
return reordered_past
|
||
|
|
||
|
|
||
|
def _generate_speech(
|
||
|
model: SpeechT5PreTrainedModel,
|
||
|
input_values: torch.FloatTensor,
|
||
|
speaker_embeddings: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
threshold: float = 0.5,
|
||
|
minlenratio: float = 0.0,
|
||
|
maxlenratio: float = 20.0,
|
||
|
vocoder: Optional[nn.Module] = None,
|
||
|
output_cross_attentions: bool = False,
|
||
|
return_output_lengths: bool = False,
|
||
|
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]:
|
||
|
if speaker_embeddings is None:
|
||
|
raise ValueError(
|
||
|
"""`speaker_embeddings` must be specified. For example, you can use a speaker embeddings by following
|
||
|
the code snippet provided in this link:
|
||
|
https://huggingface.co/datasets/Matthijs/cmu-arctic-xvectors
|
||
|
"""
|
||
|
)
|
||
|
|
||
|
if attention_mask is None:
|
||
|
encoder_attention_mask = 1 - (input_values == model.config.pad_token_id).int()
|
||
|
else:
|
||
|
encoder_attention_mask = attention_mask
|
||
|
|
||
|
bsz = input_values.size(0)
|
||
|
|
||
|
encoder_out = model.speecht5.encoder(
|
||
|
input_values=input_values,
|
||
|
attention_mask=encoder_attention_mask,
|
||
|
return_dict=True,
|
||
|
)
|
||
|
|
||
|
encoder_last_hidden_state = encoder_out.last_hidden_state
|
||
|
|
||
|
# downsample encoder attention mask
|
||
|
if isinstance(model.speecht5.encoder, SpeechT5EncoderWithSpeechPrenet):
|
||
|
encoder_attention_mask = model.speecht5.encoder.prenet._get_feature_vector_attention_mask(
|
||
|
encoder_out[0].shape[1], encoder_attention_mask
|
||
|
)
|
||
|
|
||
|
maxlen = int(encoder_last_hidden_state.size(1) * maxlenratio / model.config.reduction_factor)
|
||
|
minlen = int(encoder_last_hidden_state.size(1) * minlenratio / model.config.reduction_factor)
|
||
|
|
||
|
# Start the output sequence with a mel spectrum that is all zeros.
|
||
|
output_sequence = encoder_last_hidden_state.new_zeros(bsz, 1, model.config.num_mel_bins)
|
||
|
|
||
|
spectrogram = []
|
||
|
cross_attentions = []
|
||
|
past_key_values = None
|
||
|
idx = 0
|
||
|
result_spectrogram = {}
|
||
|
|
||
|
while True:
|
||
|
idx += 1
|
||
|
|
||
|
# Run the decoder prenet on the entire output sequence.
|
||
|
decoder_hidden_states = model.speecht5.decoder.prenet(output_sequence, speaker_embeddings)
|
||
|
# Run the decoder layers on the last element of the prenet output.
|
||
|
decoder_out = model.speecht5.decoder.wrapped_decoder(
|
||
|
hidden_states=decoder_hidden_states[:, -1:],
|
||
|
attention_mask=None,
|
||
|
encoder_hidden_states=encoder_last_hidden_state,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=True,
|
||
|
output_attentions=output_cross_attentions,
|
||
|
return_dict=True,
|
||
|
)
|
||
|
|
||
|
if output_cross_attentions:
|
||
|
cross_attentions.append(torch.cat(decoder_out.cross_attentions, dim=0))
|
||
|
|
||
|
last_decoder_output = decoder_out.last_hidden_state.squeeze(1)
|
||
|
past_key_values = decoder_out.past_key_values
|
||
|
|
||
|
# Predict the new mel spectrum for this step in the sequence.
|
||
|
spectrum = model.speech_decoder_postnet.feat_out(last_decoder_output)
|
||
|
spectrum = spectrum.view(bsz, model.config.reduction_factor, model.config.num_mel_bins)
|
||
|
spectrogram.append(spectrum)
|
||
|
|
||
|
# Extend the output sequence with the new mel spectrum.
|
||
|
new_spectrogram = spectrum[:, -1, :].view(bsz, 1, model.config.num_mel_bins)
|
||
|
output_sequence = torch.cat((output_sequence, new_spectrogram), dim=1)
|
||
|
# Predict the probability that this is the stop token.
|
||
|
prob = torch.sigmoid(model.speech_decoder_postnet.prob_out(last_decoder_output))
|
||
|
|
||
|
if idx < minlen:
|
||
|
continue
|
||
|
else:
|
||
|
# If the generation loop is less than maximum length time, check the ones in the batch that have met
|
||
|
# the prob threshold. Otherwise, assume all have met thresholds and fill other spectrograms for the batch.
|
||
|
if idx < maxlen:
|
||
|
meet_thresholds = torch.sum(prob, dim=-1) >= threshold
|
||
|
meet_indexes = torch.where(meet_thresholds)[0].tolist()
|
||
|
else:
|
||
|
meet_indexes = range(len(prob))
|
||
|
meet_indexes = [i for i in meet_indexes if i not in result_spectrogram]
|
||
|
if len(meet_indexes) > 0:
|
||
|
spectrograms = torch.stack(spectrogram)
|
||
|
spectrograms = spectrograms.transpose(0, 1).flatten(1, 2)
|
||
|
spectrograms = model.speech_decoder_postnet.postnet(spectrograms)
|
||
|
for meet_index in meet_indexes:
|
||
|
result_spectrogram[meet_index] = spectrograms[meet_index]
|
||
|
if len(result_spectrogram) >= bsz:
|
||
|
break
|
||
|
spectrograms = [result_spectrogram[i] for i in range(len(result_spectrogram))]
|
||
|
if not return_output_lengths:
|
||
|
spectrogram = spectrograms[0] if bsz == 1 else torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True)
|
||
|
if vocoder is not None:
|
||
|
outputs = vocoder(spectrogram)
|
||
|
else:
|
||
|
outputs = spectrogram
|
||
|
if output_cross_attentions:
|
||
|
cross_attentions = torch.cat(cross_attentions, dim=2)
|
||
|
if bsz > 1:
|
||
|
cross_attentions = cross_attentions.view(
|
||
|
bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:]
|
||
|
)
|
||
|
outputs = (outputs, cross_attentions)
|
||
|
else:
|
||
|
# batched return values should also include the spectrogram/waveform lengths
|
||
|
spectrogram_lengths = []
|
||
|
for i in range(bsz):
|
||
|
spectrogram_lengths.append(spectrograms[i].size(0))
|
||
|
if vocoder is None:
|
||
|
spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True)
|
||
|
outputs = (spectrograms, spectrogram_lengths)
|
||
|
else:
|
||
|
waveforms = []
|
||
|
spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True)
|
||
|
waveforms = vocoder(spectrograms)
|
||
|
waveform_lengths = [int(waveforms.size(1) / max(spectrogram_lengths)) * i for i in spectrogram_lengths]
|
||
|
outputs = (waveforms, waveform_lengths)
|
||
|
if output_cross_attentions:
|
||
|
cross_attentions = torch.cat(cross_attentions, dim=2)
|
||
|
cross_attentions = cross_attentions.view(
|
||
|
bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:]
|
||
|
)
|
||
|
outputs = (*outputs, cross_attentions)
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""SpeechT5 Model with a text encoder and a speech decoder.""",
|
||
|
SPEECHT5_START_DOCSTRING,
|
||
|
)
|
||
|
class SpeechT5ForTextToSpeech(SpeechT5PreTrainedModel):
|
||
|
main_input_name = "input_ids"
|
||
|
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
if config.vocab_size is None:
|
||
|
raise ValueError(
|
||
|
f"You are trying to instantiate {self.__class__} with a configuration that does not define the"
|
||
|
" vocabulary size of the language model head. Please instantiate the model as follows:"
|
||
|
" `SpeechT5ForTextToSpeech.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of"
|
||
|
" your model's configuration."
|
||
|
)
|
||
|
|
||
|
text_encoder = SpeechT5EncoderWithTextPrenet(config)
|
||
|
speech_decoder = SpeechT5DecoderWithSpeechPrenet(config)
|
||
|
self.speecht5 = SpeechT5Model(config, text_encoder, speech_decoder)
|
||
|
|
||
|
self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_encoder(self):
|
||
|
return self.speecht5.get_encoder()
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.speecht5.get_decoder()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
decoder_input_values: Optional[torch.FloatTensor] = None,
|
||
|
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
speaker_embeddings: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.FloatTensor] = None,
|
||
|
stop_labels: Optional[torch.Tensor] = None,
|
||
|
) -> Union[Tuple, Seq2SeqSpectrogramOutput]:
|
||
|
r"""
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary.
|
||
|
|
||
|
Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and
|
||
|
[`~PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`):
|
||
|
Float values of input mel spectrogram.
|
||
|
|
||
|
SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If
|
||
|
`past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see
|
||
|
`past_key_values`).
|
||
|
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
|
||
|
Tensor containing the speaker embeddings.
|
||
|
labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*):
|
||
|
Float values of target mel spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss
|
||
|
computation. Spectrograms can be obtained using [`SpeechT5Processor`]. See [`SpeechT5Processor.__call__`]
|
||
|
for details.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, set_seed
|
||
|
>>> import torch
|
||
|
|
||
|
>>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
||
|
>>> model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
||
|
>>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
||
|
|
||
|
>>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt")
|
||
|
>>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file
|
||
|
|
||
|
>>> set_seed(555) # make deterministic
|
||
|
|
||
|
>>> # generate speech
|
||
|
>>> speech = model.generate(inputs["input_ids"], speaker_embeddings=speaker_embeddings, vocoder=vocoder)
|
||
|
>>> speech.shape
|
||
|
torch.Size([15872])
|
||
|
```
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if labels is not None:
|
||
|
if decoder_input_values is None:
|
||
|
decoder_input_values = shift_spectrograms_right(labels, self.config.reduction_factor)
|
||
|
if self.config.use_guided_attention_loss:
|
||
|
output_attentions = True
|
||
|
|
||
|
outputs = self.speecht5(
|
||
|
input_values=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
decoder_input_values=decoder_input_values,
|
||
|
decoder_attention_mask=decoder_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
decoder_head_mask=decoder_head_mask,
|
||
|
cross_attn_head_mask=cross_attn_head_mask,
|
||
|
encoder_outputs=encoder_outputs,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=use_cache,
|
||
|
speaker_embeddings=speaker_embeddings,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=True,
|
||
|
)
|
||
|
|
||
|
outputs_before_postnet, outputs_after_postnet, logits = self.speech_decoder_postnet(outputs[0])
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
criterion = SpeechT5SpectrogramLoss(self.config)
|
||
|
loss = criterion(
|
||
|
attention_mask,
|
||
|
outputs_before_postnet,
|
||
|
outputs_after_postnet,
|
||
|
logits,
|
||
|
labels,
|
||
|
outputs.cross_attentions,
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (outputs_after_postnet,) + outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return Seq2SeqSpectrogramOutput(
|
||
|
loss=loss,
|
||
|
spectrogram=outputs_after_postnet,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
decoder_hidden_states=outputs.decoder_hidden_states,
|
||
|
decoder_attentions=outputs.decoder_attentions,
|
||
|
cross_attentions=outputs.cross_attentions,
|
||
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
||
|
encoder_hidden_states=outputs.encoder_hidden_states,
|
||
|
encoder_attentions=outputs.encoder_attentions,
|
||
|
)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def generate(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
speaker_embeddings: Optional[torch.FloatTensor] = None,
|
||
|
threshold: float = 0.5,
|
||
|
minlenratio: float = 0.0,
|
||
|
maxlenratio: float = 20.0,
|
||
|
vocoder: Optional[nn.Module] = None,
|
||
|
output_cross_attentions: bool = False,
|
||
|
return_output_lengths: bool = False,
|
||
|
**kwargs,
|
||
|
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]:
|
||
|
r"""
|
||
|
Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a
|
||
|
speech waveform using a vocoder.
|
||
|
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary.
|
||
|
|
||
|
Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and
|
||
|
[`~PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Attention mask from the tokenizer, required for batched inference to signal to the model where to
|
||
|
ignore padded tokens from the input_ids.
|
||
|
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
|
||
|
Tensor containing the speaker embeddings.
|
||
|
threshold (`float`, *optional*, defaults to 0.5):
|
||
|
The generated sequence ends when the predicted stop token probability exceeds this value.
|
||
|
minlenratio (`float`, *optional*, defaults to 0.0):
|
||
|
Used to calculate the minimum required length for the output sequence.
|
||
|
maxlenratio (`float`, *optional*, defaults to 20.0):
|
||
|
Used to calculate the maximum allowed length for the output sequence.
|
||
|
vocoder (`nn.Module`, *optional*):
|
||
|
The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel
|
||
|
spectrogram.
|
||
|
output_cross_attentions (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the attentions tensors of the decoder's cross-attention layers.
|
||
|
return_output_lengths (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the concrete spectrogram/waveform lengths.
|
||
|
|
||
|
Returns:
|
||
|
`tuple(torch.FloatTensor)` comprising various elements depending on the inputs:
|
||
|
- when `return_output_lengths` is False
|
||
|
- **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram.
|
||
|
- **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(num_frames,)` -- The predicted speech waveform.
|
||
|
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
|
||
|
`torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads,
|
||
|
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
|
||
|
- when `return_output_lengths` is True
|
||
|
- **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that
|
||
|
are padded to the maximum length.
|
||
|
- **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of
|
||
|
all the concrete lengths for each spectrogram.
|
||
|
- **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length.
|
||
|
- **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all
|
||
|
the concrete lengths for each waveform.
|
||
|
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
|
||
|
`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads,
|
||
|
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
|
||
|
"""
|
||
|
if speaker_embeddings is not None:
|
||
|
batch_size = input_ids.size(0)
|
||
|
if speaker_embeddings.size(0) != batch_size:
|
||
|
if speaker_embeddings.size(0) == 1:
|
||
|
speaker_embeddings = speaker_embeddings.repeat(batch_size, 1)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"The first dimension of speaker_embeddings must be either 1 or the same as batch_size."
|
||
|
)
|
||
|
|
||
|
return _generate_speech(
|
||
|
self,
|
||
|
input_ids,
|
||
|
speaker_embeddings,
|
||
|
attention_mask,
|
||
|
threshold,
|
||
|
minlenratio,
|
||
|
maxlenratio,
|
||
|
vocoder,
|
||
|
output_cross_attentions,
|
||
|
return_output_lengths,
|
||
|
)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def generate_speech(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor,
|
||
|
speaker_embeddings: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
threshold: float = 0.5,
|
||
|
minlenratio: float = 0.0,
|
||
|
maxlenratio: float = 20.0,
|
||
|
vocoder: Optional[nn.Module] = None,
|
||
|
output_cross_attentions: bool = False,
|
||
|
return_output_lengths: bool = False,
|
||
|
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]:
|
||
|
r"""
|
||
|
Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a
|
||
|
speech waveform using a vocoder.
|
||
|
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary.
|
||
|
|
||
|
Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and
|
||
|
[`~PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
|
||
|
Tensor containing the speaker embeddings.
|
||
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
|
||
|
`[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
threshold (`float`, *optional*, defaults to 0.5):
|
||
|
The generated sequence ends when the predicted stop token probability exceeds this value.
|
||
|
minlenratio (`float`, *optional*, defaults to 0.0):
|
||
|
Used to calculate the minimum required length for the output sequence.
|
||
|
maxlenratio (`float`, *optional*, defaults to 20.0):
|
||
|
Used to calculate the maximum allowed length for the output sequence.
|
||
|
vocoder (`nn.Module`, *optional*, defaults to `None`):
|
||
|
The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel
|
||
|
spectrogram.
|
||
|
output_cross_attentions (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the attentions tensors of the decoder's cross-attention layers.
|
||
|
return_output_lengths (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the concrete spectrogram/waveform lengths.
|
||
|
|
||
|
Returns:
|
||
|
`tuple(torch.FloatTensor)` comprising various elements depending on the inputs:
|
||
|
- when `return_output_lengths` is False
|
||
|
- **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram.
|
||
|
- **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(num_frames,)` -- The predicted speech waveform.
|
||
|
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
|
||
|
`torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads,
|
||
|
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
|
||
|
- when `return_output_lengths` is True
|
||
|
- **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that
|
||
|
are padded to the maximum length.
|
||
|
- **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of
|
||
|
all the concrete lengths for each spectrogram.
|
||
|
- **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length.
|
||
|
- **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all
|
||
|
the concrete lengths for each waveform.
|
||
|
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
|
||
|
`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads,
|
||
|
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
|
||
|
"""
|
||
|
if speaker_embeddings is not None:
|
||
|
batch_size = input_ids.size(0)
|
||
|
if speaker_embeddings.size(0) != batch_size:
|
||
|
if speaker_embeddings.size(0) == 1:
|
||
|
speaker_embeddings = speaker_embeddings.repeat(batch_size, 1)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"The first dimension of speaker_embeddings must be either 1 or the same as batch size."
|
||
|
)
|
||
|
|
||
|
return _generate_speech(
|
||
|
self,
|
||
|
input_ids,
|
||
|
speaker_embeddings,
|
||
|
attention_mask,
|
||
|
threshold,
|
||
|
minlenratio,
|
||
|
maxlenratio,
|
||
|
vocoder,
|
||
|
output_cross_attentions,
|
||
|
return_output_lengths,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""SpeechT5 Model with a speech encoder and a speech decoder.""",
|
||
|
SPEECHT5_START_DOCSTRING,
|
||
|
)
|
||
|
class SpeechT5ForSpeechToSpeech(SpeechT5PreTrainedModel):
|
||
|
def __init__(self, config: SpeechT5Config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
speech_encoder = SpeechT5EncoderWithSpeechPrenet(config)
|
||
|
speech_decoder = SpeechT5DecoderWithSpeechPrenet(config)
|
||
|
self.speecht5 = SpeechT5Model(config, speech_encoder, speech_decoder)
|
||
|
|
||
|
self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_encoder(self):
|
||
|
return self.speecht5.get_encoder()
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.speecht5.get_decoder()
|
||
|
|
||
|
def freeze_feature_encoder(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
self.get_encoder().prenet.freeze_feature_encoder()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
decoder_input_values: Optional[torch.FloatTensor] = None,
|
||
|
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
||
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
speaker_embeddings: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.FloatTensor] = None,
|
||
|
stop_labels: Optional[torch.Tensor] = None,
|
||
|
) -> Union[Tuple, Seq2SeqSpectrogramOutput]:
|
||
|
r"""
|
||
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file
|
||
|
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install
|
||
|
soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding
|
||
|
and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details.
|
||
|
decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`):
|
||
|
Float values of input mel spectrogram.
|
||
|
|
||
|
SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If
|
||
|
`past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see
|
||
|
`past_key_values`).
|
||
|
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
|
||
|
Tensor containing the speaker embeddings.
|
||
|
labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*):
|
||
|
Float values of target mel spectrogram. Spectrograms can be obtained using [`SpeechT5Processor`]. See
|
||
|
[`SpeechT5Processor.__call__`] for details.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan, set_seed
|
||
|
>>> from datasets import load_dataset
|
||
|
>>> import torch
|
||
|
|
||
|
>>> dataset = load_dataset(
|
||
|
... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation"
|
||
|
... ) # doctest: +IGNORE_RESULT
|
||
|
>>> dataset = dataset.sort("id")
|
||
|
>>> sampling_rate = dataset.features["audio"].sampling_rate
|
||
|
|
||
|
>>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_vc")
|
||
|
>>> model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc")
|
||
|
>>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
||
|
|
||
|
>>> # audio file is decoded on the fly
|
||
|
>>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
|
||
|
|
||
|
>>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file
|
||
|
|
||
|
>>> set_seed(555) # make deterministic
|
||
|
|
||
|
>>> # generate speech
|
||
|
>>> speech = model.generate_speech(inputs["input_values"], speaker_embeddings, vocoder=vocoder)
|
||
|
>>> speech.shape
|
||
|
torch.Size([77824])
|
||
|
```
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if labels is not None:
|
||
|
if decoder_input_values is None:
|
||
|
decoder_input_values = shift_spectrograms_right(labels, self.config.reduction_factor)
|
||
|
|
||
|
outputs = self.speecht5(
|
||
|
input_values=input_values,
|
||
|
attention_mask=attention_mask,
|
||
|
decoder_input_values=decoder_input_values,
|
||
|
decoder_attention_mask=decoder_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
decoder_head_mask=decoder_head_mask,
|
||
|
cross_attn_head_mask=cross_attn_head_mask,
|
||
|
encoder_outputs=encoder_outputs,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=use_cache,
|
||
|
speaker_embeddings=speaker_embeddings,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=True,
|
||
|
)
|
||
|
|
||
|
_, spectrogram, logits = self.speech_decoder_postnet(outputs[0])
|
||
|
|
||
|
loss = None
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (spectrogram,) + outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return Seq2SeqSpectrogramOutput(
|
||
|
loss=loss,
|
||
|
spectrogram=spectrogram,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
decoder_hidden_states=outputs.decoder_hidden_states,
|
||
|
decoder_attentions=outputs.decoder_attentions,
|
||
|
cross_attentions=outputs.cross_attentions,
|
||
|
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
||
|
encoder_hidden_states=outputs.encoder_hidden_states,
|
||
|
encoder_attentions=outputs.encoder_attentions,
|
||
|
)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def generate_speech(
|
||
|
self,
|
||
|
input_values: torch.FloatTensor,
|
||
|
speaker_embeddings: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
threshold: float = 0.5,
|
||
|
minlenratio: float = 0.0,
|
||
|
maxlenratio: float = 20.0,
|
||
|
vocoder: Optional[nn.Module] = None,
|
||
|
output_cross_attentions: bool = False,
|
||
|
return_output_lengths: bool = False,
|
||
|
) -> torch.FloatTensor:
|
||
|
r"""
|
||
|
Converts a raw speech waveform into a sequence of mel spectrograms, which are subsequently turned back into a
|
||
|
speech waveform using a vocoder.
|
||
|
|
||
|
Args:
|
||
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Float values of input raw speech waveform.
|
||
|
|
||
|
Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type `List[float]` or
|
||
|
a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array
|
||
|
into `input_values`, the [`SpeechT5Processor`] should be used for padding and conversion into a tensor
|
||
|
of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details.
|
||
|
speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*):
|
||
|
Tensor containing the speaker embeddings.
|
||
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
|
||
|
`[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
threshold (`float`, *optional*, defaults to 0.5):
|
||
|
The generated sequence ends when the predicted stop token probability exceeds this value.
|
||
|
minlenratio (`float`, *optional*, defaults to 0.0):
|
||
|
Used to calculate the minimum required length for the output sequence.
|
||
|
maxlenratio (`float`, *optional*, defaults to 20.0):
|
||
|
Used to calculate the maximum allowed length for the output sequence.
|
||
|
vocoder (`nn.Module`, *optional*, defaults to `None`):
|
||
|
The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel
|
||
|
spectrogram.
|
||
|
output_cross_attentions (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the attentions tensors of the decoder's cross-attention layers.
|
||
|
return_output_lengths (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the concrete spectrogram/waveform lengths.
|
||
|
|
||
|
Returns:
|
||
|
`tuple(torch.FloatTensor)` comprising various elements depending on the inputs:
|
||
|
- when `return_output_lengths` is False
|
||
|
- **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram.
|
||
|
- **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(num_frames,)` -- The predicted speech waveform.
|
||
|
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
|
||
|
`torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads,
|
||
|
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
|
||
|
- when `return_output_lengths` is True
|
||
|
- **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that
|
||
|
are padded to the maximum length.
|
||
|
- **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of
|
||
|
all the concrete lengths for each spectrogram.
|
||
|
- **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape
|
||
|
`(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length.
|
||
|
- **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all
|
||
|
the concrete lengths for each waveform.
|
||
|
- **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`)
|
||
|
`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads,
|
||
|
output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers.
|
||
|
"""
|
||
|
if speaker_embeddings is None:
|
||
|
speaker_embeddings = torch.zeros((1, 512), device=input_values.device)
|
||
|
|
||
|
return _generate_speech(
|
||
|
self,
|
||
|
input_values,
|
||
|
speaker_embeddings,
|
||
|
attention_mask,
|
||
|
threshold,
|
||
|
minlenratio,
|
||
|
maxlenratio,
|
||
|
vocoder,
|
||
|
output_cross_attentions,
|
||
|
return_output_lengths,
|
||
|
)
|
||
|
|
||
|
|
||
|
HIFIGAN_START_DOCSTRING = r"""
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`SpeechT5HifiGanConfig`]):
|
||
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||
|
load the weights associated with the model, only the configuration. Check out the
|
||
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
|
||
|
class HifiGanResidualBlock(nn.Module):
|
||
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
|
||
|
super().__init__()
|
||
|
self.leaky_relu_slope = leaky_relu_slope
|
||
|
|
||
|
self.convs1 = nn.ModuleList(
|
||
|
[
|
||
|
nn.Conv1d(
|
||
|
channels,
|
||
|
channels,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
dilation=dilation[i],
|
||
|
padding=self.get_padding(kernel_size, dilation[i]),
|
||
|
)
|
||
|
for i in range(len(dilation))
|
||
|
]
|
||
|
)
|
||
|
self.convs2 = nn.ModuleList(
|
||
|
[
|
||
|
nn.Conv1d(
|
||
|
channels,
|
||
|
channels,
|
||
|
kernel_size,
|
||
|
stride=1,
|
||
|
dilation=1,
|
||
|
padding=self.get_padding(kernel_size, 1),
|
||
|
)
|
||
|
for _ in range(len(dilation))
|
||
|
]
|
||
|
)
|
||
|
|
||
|
def get_padding(self, kernel_size, dilation=1):
|
||
|
return (kernel_size * dilation - dilation) // 2
|
||
|
|
||
|
def apply_weight_norm(self):
|
||
|
for layer in self.convs1:
|
||
|
nn.utils.weight_norm(layer)
|
||
|
for layer in self.convs2:
|
||
|
nn.utils.weight_norm(layer)
|
||
|
|
||
|
def remove_weight_norm(self):
|
||
|
for layer in self.convs1:
|
||
|
nn.utils.remove_weight_norm(layer)
|
||
|
for layer in self.convs2:
|
||
|
nn.utils.remove_weight_norm(layer)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
for conv1, conv2 in zip(self.convs1, self.convs2):
|
||
|
residual = hidden_states
|
||
|
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
|
||
|
hidden_states = conv1(hidden_states)
|
||
|
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
|
||
|
hidden_states = conv2(hidden_states)
|
||
|
hidden_states = hidden_states + residual
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""HiFi-GAN vocoder.""",
|
||
|
HIFIGAN_START_DOCSTRING,
|
||
|
)
|
||
|
class SpeechT5HifiGan(PreTrainedModel):
|
||
|
config_class = SpeechT5HifiGanConfig
|
||
|
main_input_name = "spectrogram"
|
||
|
|
||
|
def __init__(self, config: SpeechT5HifiGanConfig):
|
||
|
super().__init__(config)
|
||
|
self.num_kernels = len(config.resblock_kernel_sizes)
|
||
|
self.num_upsamples = len(config.upsample_rates)
|
||
|
self.conv_pre = nn.Conv1d(
|
||
|
config.model_in_dim,
|
||
|
config.upsample_initial_channel,
|
||
|
kernel_size=7,
|
||
|
stride=1,
|
||
|
padding=3,
|
||
|
)
|
||
|
|
||
|
self.upsampler = nn.ModuleList()
|
||
|
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
|
||
|
self.upsampler.append(
|
||
|
nn.ConvTranspose1d(
|
||
|
config.upsample_initial_channel // (2**i),
|
||
|
config.upsample_initial_channel // (2 ** (i + 1)),
|
||
|
kernel_size=kernel_size,
|
||
|
stride=upsample_rate,
|
||
|
padding=(kernel_size - upsample_rate) // 2,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
self.resblocks = nn.ModuleList()
|
||
|
for i in range(len(self.upsampler)):
|
||
|
channels = config.upsample_initial_channel // (2 ** (i + 1))
|
||
|
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
|
||
|
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
|
||
|
|
||
|
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3)
|
||
|
|
||
|
self.register_buffer("mean", torch.zeros(config.model_in_dim))
|
||
|
self.register_buffer("scale", torch.ones(config.model_in_dim))
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights."""
|
||
|
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
|
||
|
def apply_weight_norm(self):
|
||
|
nn.utils.weight_norm(self.conv_pre)
|
||
|
for layer in self.upsampler:
|
||
|
nn.utils.weight_norm(layer)
|
||
|
for layer in self.resblocks:
|
||
|
layer.apply_weight_norm()
|
||
|
nn.utils.weight_norm(self.conv_post)
|
||
|
|
||
|
def remove_weight_norm(self):
|
||
|
nn.utils.remove_weight_norm(self.conv_pre)
|
||
|
for layer in self.upsampler:
|
||
|
nn.utils.remove_weight_norm(layer)
|
||
|
for layer in self.resblocks:
|
||
|
layer.remove_weight_norm()
|
||
|
nn.utils.remove_weight_norm(self.conv_post)
|
||
|
|
||
|
def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor:
|
||
|
r"""
|
||
|
Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch
|
||
|
of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech
|
||
|
waveform.
|
||
|
|
||
|
Args:
|
||
|
spectrogram (`torch.FloatTensor`):
|
||
|
Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
|
||
|
config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`.
|
||
|
|
||
|
Returns:
|
||
|
`torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of
|
||
|
shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`.
|
||
|
"""
|
||
|
if self.config.normalize_before:
|
||
|
spectrogram = (spectrogram - self.mean) / self.scale
|
||
|
|
||
|
is_batched = spectrogram.dim() == 3
|
||
|
if not is_batched:
|
||
|
spectrogram = spectrogram.unsqueeze(0)
|
||
|
|
||
|
hidden_states = spectrogram.transpose(2, 1)
|
||
|
|
||
|
hidden_states = self.conv_pre(hidden_states)
|
||
|
for i in range(self.num_upsamples):
|
||
|
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
|
||
|
hidden_states = self.upsampler[i](hidden_states)
|
||
|
|
||
|
res_state = self.resblocks[i * self.num_kernels](hidden_states)
|
||
|
for j in range(1, self.num_kernels):
|
||
|
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
|
||
|
hidden_states = res_state / self.num_kernels
|
||
|
|
||
|
hidden_states = nn.functional.leaky_relu(hidden_states)
|
||
|
hidden_states = self.conv_post(hidden_states)
|
||
|
hidden_states = torch.tanh(hidden_states)
|
||
|
|
||
|
if not is_batched:
|
||
|
# remove batch dim and collapse tensor to 1-d audio waveform
|
||
|
waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1)
|
||
|
else:
|
||
|
# remove seq-len dim since this collapses to 1
|
||
|
waveform = hidden_states.squeeze(1)
|
||
|
|
||
|
return waveform
|