1088 lines
44 KiB
Python
1088 lines
44 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch SqueezeBert model."""
|
||
|
|
||
|
|
||
|
import math
|
||
|
from typing import Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_outputs import (
|
||
|
BaseModelOutput,
|
||
|
BaseModelOutputWithPooling,
|
||
|
MaskedLMOutput,
|
||
|
MultipleChoiceModelOutput,
|
||
|
QuestionAnsweringModelOutput,
|
||
|
SequenceClassifierOutput,
|
||
|
TokenClassifierOutput,
|
||
|
)
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
||
|
from .configuration_squeezebert import SqueezeBertConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CHECKPOINT_FOR_DOC = "squeezebert/squeezebert-uncased"
|
||
|
_CONFIG_FOR_DOC = "SqueezeBertConfig"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class SqueezeBertEmbeddings(nn.Module):
|
||
|
"""Construct the embeddings from word, position and token_type embeddings."""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
|
||
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
|
||
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
|
||
|
|
||
|
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||
|
# any TensorFlow checkpoint file
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||
|
self.register_buffer(
|
||
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
||
|
)
|
||
|
|
||
|
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
|
||
|
if input_ids is not None:
|
||
|
input_shape = input_ids.size()
|
||
|
else:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
|
||
|
seq_length = input_shape[1]
|
||
|
|
||
|
if position_ids is None:
|
||
|
position_ids = self.position_ids[:, :seq_length]
|
||
|
|
||
|
if token_type_ids is None:
|
||
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
position_embeddings = self.position_embeddings(position_ids)
|
||
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
||
|
|
||
|
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
|
||
|
embeddings = self.LayerNorm(embeddings)
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class MatMulWrapper(nn.Module):
|
||
|
"""
|
||
|
Wrapper for torch.matmul(). This makes flop-counting easier to implement. Note that if you directly call
|
||
|
torch.matmul() in your code, the flop counter will typically ignore the flops of the matmul.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
def forward(self, mat1, mat2):
|
||
|
"""
|
||
|
|
||
|
:param inputs: two torch tensors :return: matmul of these tensors
|
||
|
|
||
|
Here are the typical dimensions found in BERT (the B is optional) mat1.shape: [B, <optional extra dims>, M, K]
|
||
|
mat2.shape: [B, <optional extra dims>, K, N] output shape: [B, <optional extra dims>, M, N]
|
||
|
"""
|
||
|
return torch.matmul(mat1, mat2)
|
||
|
|
||
|
|
||
|
class SqueezeBertLayerNorm(nn.LayerNorm):
|
||
|
"""
|
||
|
This is a nn.LayerNorm subclass that accepts NCW data layout and performs normalization in the C dimension.
|
||
|
|
||
|
N = batch C = channels W = sequence length
|
||
|
"""
|
||
|
|
||
|
def __init__(self, hidden_size, eps=1e-12):
|
||
|
nn.LayerNorm.__init__(self, normalized_shape=hidden_size, eps=eps) # instantiates self.{weight, bias, eps}
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = x.permute(0, 2, 1)
|
||
|
x = nn.LayerNorm.forward(self, x)
|
||
|
return x.permute(0, 2, 1)
|
||
|
|
||
|
|
||
|
class ConvDropoutLayerNorm(nn.Module):
|
||
|
"""
|
||
|
ConvDropoutLayerNorm: Conv, Dropout, LayerNorm
|
||
|
"""
|
||
|
|
||
|
def __init__(self, cin, cout, groups, dropout_prob):
|
||
|
super().__init__()
|
||
|
|
||
|
self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups)
|
||
|
self.layernorm = SqueezeBertLayerNorm(cout)
|
||
|
self.dropout = nn.Dropout(dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states, input_tensor):
|
||
|
x = self.conv1d(hidden_states)
|
||
|
x = self.dropout(x)
|
||
|
x = x + input_tensor
|
||
|
x = self.layernorm(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class ConvActivation(nn.Module):
|
||
|
"""
|
||
|
ConvActivation: Conv, Activation
|
||
|
"""
|
||
|
|
||
|
def __init__(self, cin, cout, groups, act):
|
||
|
super().__init__()
|
||
|
self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups)
|
||
|
self.act = ACT2FN[act]
|
||
|
|
||
|
def forward(self, x):
|
||
|
output = self.conv1d(x)
|
||
|
return self.act(output)
|
||
|
|
||
|
|
||
|
class SqueezeBertSelfAttention(nn.Module):
|
||
|
def __init__(self, config, cin, q_groups=1, k_groups=1, v_groups=1):
|
||
|
"""
|
||
|
config = used for some things; ignored for others (work in progress...) cin = input channels = output channels
|
||
|
groups = number of groups to use in conv1d layers
|
||
|
"""
|
||
|
super().__init__()
|
||
|
if cin % config.num_attention_heads != 0:
|
||
|
raise ValueError(
|
||
|
f"cin ({cin}) is not a multiple of the number of attention heads ({config.num_attention_heads})"
|
||
|
)
|
||
|
self.num_attention_heads = config.num_attention_heads
|
||
|
self.attention_head_size = int(cin / config.num_attention_heads)
|
||
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||
|
|
||
|
self.query = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=q_groups)
|
||
|
self.key = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=k_groups)
|
||
|
self.value = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=v_groups)
|
||
|
|
||
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||
|
self.softmax = nn.Softmax(dim=-1)
|
||
|
|
||
|
self.matmul_qk = MatMulWrapper()
|
||
|
self.matmul_qkv = MatMulWrapper()
|
||
|
|
||
|
def transpose_for_scores(self, x):
|
||
|
"""
|
||
|
- input: [N, C, W]
|
||
|
- output: [N, C1, W, C2] where C1 is the head index, and C2 is one head's contents
|
||
|
"""
|
||
|
new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W]
|
||
|
x = x.view(*new_x_shape)
|
||
|
return x.permute(0, 1, 3, 2) # [N, C1, C2, W] --> [N, C1, W, C2]
|
||
|
|
||
|
def transpose_key_for_scores(self, x):
|
||
|
"""
|
||
|
- input: [N, C, W]
|
||
|
- output: [N, C1, C2, W] where C1 is the head index, and C2 is one head's contents
|
||
|
"""
|
||
|
new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W]
|
||
|
x = x.view(*new_x_shape)
|
||
|
# no `permute` needed
|
||
|
return x
|
||
|
|
||
|
def transpose_output(self, x):
|
||
|
"""
|
||
|
- input: [N, C1, W, C2]
|
||
|
- output: [N, C, W]
|
||
|
"""
|
||
|
x = x.permute(0, 1, 3, 2).contiguous() # [N, C1, C2, W]
|
||
|
new_x_shape = (x.size()[0], self.all_head_size, x.size()[3]) # [N, C, W]
|
||
|
x = x.view(*new_x_shape)
|
||
|
return x
|
||
|
|
||
|
def forward(self, hidden_states, attention_mask, output_attentions):
|
||
|
"""
|
||
|
expects hidden_states in [N, C, W] data layout.
|
||
|
|
||
|
The attention_mask data layout is [N, W], and it does not need to be transposed.
|
||
|
"""
|
||
|
mixed_query_layer = self.query(hidden_states)
|
||
|
mixed_key_layer = self.key(hidden_states)
|
||
|
mixed_value_layer = self.value(hidden_states)
|
||
|
|
||
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||
|
key_layer = self.transpose_key_for_scores(mixed_key_layer)
|
||
|
value_layer = self.transpose_for_scores(mixed_value_layer)
|
||
|
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attention_score = self.matmul_qk(query_layer, key_layer)
|
||
|
attention_score = attention_score / math.sqrt(self.attention_head_size)
|
||
|
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
||
|
attention_score = attention_score + attention_mask
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attention_probs = self.softmax(attention_score)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attention_probs = self.dropout(attention_probs)
|
||
|
|
||
|
context_layer = self.matmul_qkv(attention_probs, value_layer)
|
||
|
context_layer = self.transpose_output(context_layer)
|
||
|
|
||
|
result = {"context_layer": context_layer}
|
||
|
if output_attentions:
|
||
|
result["attention_score"] = attention_score
|
||
|
return result
|
||
|
|
||
|
|
||
|
class SqueezeBertModule(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
"""
|
||
|
- hidden_size = input chans = output chans for Q, K, V (they are all the same ... for now) = output chans for
|
||
|
the module
|
||
|
- intermediate_size = output chans for intermediate layer
|
||
|
- groups = number of groups for all layers in the BertModule. (eventually we could change the interface to
|
||
|
allow different groups for different layers)
|
||
|
"""
|
||
|
super().__init__()
|
||
|
|
||
|
c0 = config.hidden_size
|
||
|
c1 = config.hidden_size
|
||
|
c2 = config.intermediate_size
|
||
|
c3 = config.hidden_size
|
||
|
|
||
|
self.attention = SqueezeBertSelfAttention(
|
||
|
config=config, cin=c0, q_groups=config.q_groups, k_groups=config.k_groups, v_groups=config.v_groups
|
||
|
)
|
||
|
self.post_attention = ConvDropoutLayerNorm(
|
||
|
cin=c0, cout=c1, groups=config.post_attention_groups, dropout_prob=config.hidden_dropout_prob
|
||
|
)
|
||
|
self.intermediate = ConvActivation(cin=c1, cout=c2, groups=config.intermediate_groups, act=config.hidden_act)
|
||
|
self.output = ConvDropoutLayerNorm(
|
||
|
cin=c2, cout=c3, groups=config.output_groups, dropout_prob=config.hidden_dropout_prob
|
||
|
)
|
||
|
|
||
|
def forward(self, hidden_states, attention_mask, output_attentions):
|
||
|
att = self.attention(hidden_states, attention_mask, output_attentions)
|
||
|
attention_output = att["context_layer"]
|
||
|
|
||
|
post_attention_output = self.post_attention(attention_output, hidden_states)
|
||
|
intermediate_output = self.intermediate(post_attention_output)
|
||
|
layer_output = self.output(intermediate_output, post_attention_output)
|
||
|
|
||
|
output_dict = {"feature_map": layer_output}
|
||
|
if output_attentions:
|
||
|
output_dict["attention_score"] = att["attention_score"]
|
||
|
|
||
|
return output_dict
|
||
|
|
||
|
|
||
|
class SqueezeBertEncoder(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
assert config.embedding_size == config.hidden_size, (
|
||
|
"If you want embedding_size != intermediate hidden_size, "
|
||
|
"please insert a Conv1d layer to adjust the number of channels "
|
||
|
"before the first SqueezeBertModule."
|
||
|
)
|
||
|
|
||
|
self.layers = nn.ModuleList(SqueezeBertModule(config) for _ in range(config.num_hidden_layers))
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
attention_mask=None,
|
||
|
head_mask=None,
|
||
|
output_attentions=False,
|
||
|
output_hidden_states=False,
|
||
|
return_dict=True,
|
||
|
):
|
||
|
if head_mask is None:
|
||
|
head_mask_is_all_none = True
|
||
|
elif head_mask.count(None) == len(head_mask):
|
||
|
head_mask_is_all_none = True
|
||
|
else:
|
||
|
head_mask_is_all_none = False
|
||
|
assert head_mask_is_all_none is True, "head_mask is not yet supported in the SqueezeBert implementation."
|
||
|
|
||
|
# [batch_size, sequence_length, hidden_size] --> [batch_size, hidden_size, sequence_length]
|
||
|
hidden_states = hidden_states.permute(0, 2, 1)
|
||
|
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
|
||
|
for layer in self.layers:
|
||
|
if output_hidden_states:
|
||
|
hidden_states = hidden_states.permute(0, 2, 1)
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
hidden_states = hidden_states.permute(0, 2, 1)
|
||
|
|
||
|
layer_output = layer.forward(hidden_states, attention_mask, output_attentions)
|
||
|
|
||
|
hidden_states = layer_output["feature_map"]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_attentions += (layer_output["attention_score"],)
|
||
|
|
||
|
# [batch_size, hidden_size, sequence_length] --> [batch_size, sequence_length, hidden_size]
|
||
|
hidden_states = hidden_states.permute(0, 2, 1)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
||
|
)
|
||
|
|
||
|
|
||
|
class SqueezeBertPooler(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.activation = nn.Tanh()
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
# We "pool" the model by simply taking the hidden state corresponding
|
||
|
# to the first token.
|
||
|
first_token_tensor = hidden_states[:, 0]
|
||
|
pooled_output = self.dense(first_token_tensor)
|
||
|
pooled_output = self.activation(pooled_output)
|
||
|
return pooled_output
|
||
|
|
||
|
|
||
|
class SqueezeBertPredictionHeadTransform(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.transform_act_fn = config.hidden_act
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.transform_act_fn(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class SqueezeBertLMPredictionHead(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.transform = SqueezeBertPredictionHeadTransform(config)
|
||
|
|
||
|
# The output weights are the same as the input embeddings, but there is
|
||
|
# an output-only bias for each token.
|
||
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||
|
|
||
|
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
||
|
self.decoder.bias = self.bias
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.transform(hidden_states)
|
||
|
hidden_states = self.decoder(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class SqueezeBertOnlyMLMHead(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.predictions = SqueezeBertLMPredictionHead(config)
|
||
|
|
||
|
def forward(self, sequence_output):
|
||
|
prediction_scores = self.predictions(sequence_output)
|
||
|
return prediction_scores
|
||
|
|
||
|
|
||
|
class SqueezeBertPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = SqueezeBertConfig
|
||
|
base_model_prefix = "transformer"
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
||
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
||
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
elif isinstance(module, SqueezeBertLayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
|
||
|
SQUEEZEBERT_START_DOCSTRING = r"""
|
||
|
|
||
|
The SqueezeBERT model was proposed in [SqueezeBERT: What can computer vision teach NLP about efficient neural
|
||
|
networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W.
|
||
|
Keutzer
|
||
|
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
For best results finetuning SqueezeBERT on text classification tasks, it is recommended to use the
|
||
|
*squeezebert/squeezebert-mnli-headless* checkpoint as a starting point.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`SqueezeBertConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
|
||
|
Hierarchy:
|
||
|
|
||
|
```
|
||
|
Internal class hierarchy:
|
||
|
SqueezeBertModel
|
||
|
SqueezeBertEncoder
|
||
|
SqueezeBertModule
|
||
|
SqueezeBertSelfAttention
|
||
|
ConvActivation
|
||
|
ConvDropoutLayerNorm
|
||
|
```
|
||
|
|
||
|
Data layouts:
|
||
|
|
||
|
```
|
||
|
Input data is in [batch, sequence_length, hidden_size] format.
|
||
|
|
||
|
Data inside the encoder is in [batch, hidden_size, sequence_length] format. But, if `output_hidden_states == True`, the data from inside the encoder is returned in [batch, sequence_length, hidden_size] format.
|
||
|
|
||
|
The final output of the encoder is in [batch, sequence_length, hidden_size] format.
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
SQUEEZEBERT_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
||
|
Indices of input sequence tokens in the vocabulary.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
||
|
1]`:
|
||
|
|
||
|
- 0 corresponds to a *sentence A* token,
|
||
|
- 1 corresponds to a *sentence B* token.
|
||
|
|
||
|
[What are token type IDs?](../glossary#token-type-ids)
|
||
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
|
config.max_position_embeddings - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare SqueezeBERT Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
SQUEEZEBERT_START_DOCSTRING,
|
||
|
)
|
||
|
class SqueezeBertModel(SqueezeBertPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.embeddings = SqueezeBertEmbeddings(config)
|
||
|
self.encoder = SqueezeBertEncoder(config)
|
||
|
self.pooler = SqueezeBertPooler(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embeddings.word_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, new_embeddings):
|
||
|
self.embeddings.word_embeddings = new_embeddings
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune):
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=BaseModelOutputWithPooling,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||
|
elif input_ids is not None:
|
||
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
||
|
input_shape = input_ids.size()
|
||
|
elif inputs_embeds is not None:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
else:
|
||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(input_shape, device=device)
|
||
|
if token_type_ids is None:
|
||
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
||
|
|
||
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape bsz x n_heads x N x N
|
||
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
|
||
|
embedding_output = self.embeddings(
|
||
|
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
||
|
)
|
||
|
encoder_outputs = self.encoder(
|
||
|
hidden_states=embedding_output,
|
||
|
attention_mask=extended_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
sequence_output = encoder_outputs[0]
|
||
|
pooled_output = self.pooler(sequence_output)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=sequence_output,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings("""SqueezeBERT Model with a `language modeling` head on top.""", SQUEEZEBERT_START_DOCSTRING)
|
||
|
class SqueezeBertForMaskedLM(SqueezeBertPreTrainedModel):
|
||
|
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.transformer = SqueezeBertModel(config)
|
||
|
self.cls = SqueezeBertOnlyMLMHead(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.cls.predictions.decoder
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.cls.predictions.decoder = new_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=MaskedLMOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, MaskedLMOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
||
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
||
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
prediction_scores = self.cls(sequence_output)
|
||
|
|
||
|
masked_lm_loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
||
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (prediction_scores,) + outputs[2:]
|
||
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
||
|
|
||
|
return MaskedLMOutput(
|
||
|
loss=masked_lm_loss,
|
||
|
logits=prediction_scores,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
SqueezeBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
||
|
pooled output) e.g. for GLUE tasks.
|
||
|
""",
|
||
|
SQUEEZEBERT_START_DOCSTRING,
|
||
|
)
|
||
|
class SqueezeBertForSequenceClassification(SqueezeBertPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
self.config = config
|
||
|
|
||
|
self.transformer = SqueezeBertModel(config)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=SequenceClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, SequenceClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = outputs[1]
|
||
|
|
||
|
pooled_output = self.dropout(pooled_output)
|
||
|
logits = self.classifier(pooled_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
if self.config.problem_type is None:
|
||
|
if self.num_labels == 1:
|
||
|
self.config.problem_type = "regression"
|
||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||
|
self.config.problem_type = "single_label_classification"
|
||
|
else:
|
||
|
self.config.problem_type = "multi_label_classification"
|
||
|
|
||
|
if self.config.problem_type == "regression":
|
||
|
loss_fct = MSELoss()
|
||
|
if self.num_labels == 1:
|
||
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||
|
else:
|
||
|
loss = loss_fct(logits, labels)
|
||
|
elif self.config.problem_type == "single_label_classification":
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
elif self.config.problem_type == "multi_label_classification":
|
||
|
loss_fct = BCEWithLogitsLoss()
|
||
|
loss = loss_fct(logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return SequenceClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
SqueezeBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
|
||
|
a softmax) e.g. for RocStories/SWAG tasks.
|
||
|
""",
|
||
|
SQUEEZEBERT_START_DOCSTRING,
|
||
|
)
|
||
|
class SqueezeBertForMultipleChoice(SqueezeBertPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.transformer = SqueezeBertModel(config)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
self.classifier = nn.Linear(config.hidden_size, 1)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(
|
||
|
SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
||
|
)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=MultipleChoiceModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
||
|
num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see
|
||
|
*input_ids* above)
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
||
|
|
||
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
||
|
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
||
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
||
|
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
||
|
inputs_embeds = (
|
||
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
||
|
if inputs_embeds is not None
|
||
|
else None
|
||
|
)
|
||
|
|
||
|
outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = outputs[1]
|
||
|
|
||
|
pooled_output = self.dropout(pooled_output)
|
||
|
logits = self.classifier(pooled_output)
|
||
|
reshaped_logits = logits.view(-1, num_choices)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(reshaped_logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (reshaped_logits,) + outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return MultipleChoiceModelOutput(
|
||
|
loss=loss,
|
||
|
logits=reshaped_logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
SqueezeBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
|
||
|
for Named-Entity-Recognition (NER) tasks.
|
||
|
""",
|
||
|
SQUEEZEBERT_START_DOCSTRING,
|
||
|
)
|
||
|
class SqueezeBertForTokenClassification(SqueezeBertPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.transformer = SqueezeBertModel(config)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=TokenClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, TokenClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
sequence_output = self.dropout(sequence_output)
|
||
|
logits = self.classifier(sequence_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return TokenClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
SqueezeBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
|
||
|
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
||
|
""",
|
||
|
SQUEEZEBERT_START_DOCSTRING,
|
||
|
)
|
||
|
class SqueezeBertForQuestionAnswering(SqueezeBertPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.transformer = SqueezeBertModel(config)
|
||
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=QuestionAnsweringModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
start_positions: Optional[torch.Tensor] = None,
|
||
|
end_positions: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
||
|
r"""
|
||
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
logits = self.qa_outputs(sequence_output)
|
||
|
start_logits, end_logits = logits.split(1, dim=-1)
|
||
|
start_logits = start_logits.squeeze(-1).contiguous()
|
||
|
end_logits = end_logits.squeeze(-1).contiguous()
|
||
|
|
||
|
total_loss = None
|
||
|
if start_positions is not None and end_positions is not None:
|
||
|
# If we are on multi-GPU, split add a dimension
|
||
|
if len(start_positions.size()) > 1:
|
||
|
start_positions = start_positions.squeeze(-1)
|
||
|
if len(end_positions.size()) > 1:
|
||
|
end_positions = end_positions.squeeze(-1)
|
||
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
||
|
ignored_index = start_logits.size(1)
|
||
|
start_positions = start_positions.clamp(0, ignored_index)
|
||
|
end_positions = end_positions.clamp(0, ignored_index)
|
||
|
|
||
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
||
|
start_loss = loss_fct(start_logits, start_positions)
|
||
|
end_loss = loss_fct(end_logits, end_positions)
|
||
|
total_loss = (start_loss + end_loss) / 2
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (start_logits, end_logits) + outputs[2:]
|
||
|
return ((total_loss,) + output) if total_loss is not None else output
|
||
|
|
||
|
return QuestionAnsweringModelOutput(
|
||
|
loss=total_loss,
|
||
|
start_logits=start_logits,
|
||
|
end_logits=end_logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|