160 lines
7.4 KiB
Python
160 lines
7.4 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" Swinv2 Transformer model configuration"""
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class Swinv2Config(BackboneConfigMixin, PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`Swinv2Model`]. It is used to instantiate a Swin
|
||
|
Transformer v2 model according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the Swin Transformer v2
|
||
|
[microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256)
|
||
|
architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
image_size (`int`, *optional*, defaults to 224):
|
||
|
The size (resolution) of each image.
|
||
|
patch_size (`int`, *optional*, defaults to 4):
|
||
|
The size (resolution) of each patch.
|
||
|
num_channels (`int`, *optional*, defaults to 3):
|
||
|
The number of input channels.
|
||
|
embed_dim (`int`, *optional*, defaults to 96):
|
||
|
Dimensionality of patch embedding.
|
||
|
depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
|
||
|
Depth of each layer in the Transformer encoder.
|
||
|
num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
|
||
|
Number of attention heads in each layer of the Transformer encoder.
|
||
|
window_size (`int`, *optional*, defaults to 7):
|
||
|
Size of windows.
|
||
|
pretrained_window_sizes (`list(int)`, *optional*, defaults to `[0, 0, 0, 0]`):
|
||
|
Size of windows during pretraining.
|
||
|
mlp_ratio (`float`, *optional*, defaults to 4.0):
|
||
|
Ratio of MLP hidden dimensionality to embedding dimensionality.
|
||
|
qkv_bias (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not a learnable bias should be added to the queries, keys and values.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability for all fully connected layers in the embeddings and encoder.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
||
|
Stochastic depth rate.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
|
||
|
`"selu"` and `"gelu_new"` are supported.
|
||
|
use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to add absolute position embeddings to the patch embeddings.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
encoder_stride (`int`, *optional*, defaults to 32):
|
||
|
Factor to increase the spatial resolution by in the decoder head for masked image modeling.
|
||
|
out_features (`List[str]`, *optional*):
|
||
|
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
||
|
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
||
|
corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
|
||
|
out_indices (`List[int]`, *optional*):
|
||
|
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
||
|
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
||
|
If unset and `out_features` is unset, will default to the last stage.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import Swinv2Config, Swinv2Model
|
||
|
|
||
|
>>> # Initializing a Swinv2 microsoft/swinv2-tiny-patch4-window8-256 style configuration
|
||
|
>>> configuration = Swinv2Config()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the microsoft/swinv2-tiny-patch4-window8-256 style configuration
|
||
|
>>> model = Swinv2Model(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "swinv2"
|
||
|
|
||
|
attribute_map = {
|
||
|
"num_attention_heads": "num_heads",
|
||
|
"num_hidden_layers": "num_layers",
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
image_size=224,
|
||
|
patch_size=4,
|
||
|
num_channels=3,
|
||
|
embed_dim=96,
|
||
|
depths=[2, 2, 6, 2],
|
||
|
num_heads=[3, 6, 12, 24],
|
||
|
window_size=7,
|
||
|
pretrained_window_sizes=[0, 0, 0, 0],
|
||
|
mlp_ratio=4.0,
|
||
|
qkv_bias=True,
|
||
|
hidden_dropout_prob=0.0,
|
||
|
attention_probs_dropout_prob=0.0,
|
||
|
drop_path_rate=0.1,
|
||
|
hidden_act="gelu",
|
||
|
use_absolute_embeddings=False,
|
||
|
initializer_range=0.02,
|
||
|
layer_norm_eps=1e-5,
|
||
|
encoder_stride=32,
|
||
|
out_features=None,
|
||
|
out_indices=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.image_size = image_size
|
||
|
self.patch_size = patch_size
|
||
|
self.num_channels = num_channels
|
||
|
self.embed_dim = embed_dim
|
||
|
self.depths = depths
|
||
|
self.num_layers = len(depths)
|
||
|
self.num_heads = num_heads
|
||
|
self.window_size = window_size
|
||
|
self.pretrained_window_sizes = pretrained_window_sizes
|
||
|
self.mlp_ratio = mlp_ratio
|
||
|
self.qkv_bias = qkv_bias
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.drop_path_rate = drop_path_rate
|
||
|
self.hidden_act = hidden_act
|
||
|
self.use_absolute_embeddings = use_absolute_embeddings
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.initializer_range = initializer_range
|
||
|
self.encoder_stride = encoder_stride
|
||
|
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
|
||
|
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
||
|
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
||
|
)
|
||
|
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
|
||
|
# this indicates the channel dimension after the last stage of the model
|
||
|
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
|