205 lines
9.9 KiB
Python
205 lines
9.9 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2024 The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
Processor class for UDOP.
|
||
|
"""
|
||
|
|
||
|
from typing import List, Optional, Union
|
||
|
|
||
|
from ...image_utils import ImageInput
|
||
|
from ...processing_utils import ProcessorMixin
|
||
|
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
||
|
from ...utils import TensorType
|
||
|
|
||
|
|
||
|
class UdopProcessor(ProcessorMixin):
|
||
|
r"""
|
||
|
Constructs a UDOP processor which combines a LayoutLMv3 image processor and a UDOP tokenizer into a single processor.
|
||
|
|
||
|
[`UdopProcessor`] offers all the functionalities you need to prepare data for the model.
|
||
|
|
||
|
It first uses [`LayoutLMv3ImageProcessor`] to resize, rescale and normalize document images, and optionally applies OCR
|
||
|
to get words and normalized bounding boxes. These are then provided to [`UdopTokenizer`] or [`UdopTokenizerFast`],
|
||
|
which turns the words and bounding boxes into token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`.
|
||
|
Optionally, one can provide integer `word_labels`, which are turned into token-level `labels` for token
|
||
|
classification tasks (such as FUNSD, CORD).
|
||
|
|
||
|
Additionally, it also supports passing `text_target` and `text_pair_target` to the tokenizer, which can be used to
|
||
|
prepare labels for language modeling tasks.
|
||
|
|
||
|
Args:
|
||
|
image_processor (`LayoutLMv3ImageProcessor`):
|
||
|
An instance of [`LayoutLMv3ImageProcessor`]. The image processor is a required input.
|
||
|
tokenizer (`UdopTokenizer` or `UdopTokenizerFast`):
|
||
|
An instance of [`UdopTokenizer`] or [`UdopTokenizerFast`]. The tokenizer is a required input.
|
||
|
"""
|
||
|
|
||
|
attributes = ["image_processor", "tokenizer"]
|
||
|
image_processor_class = "LayoutLMv3ImageProcessor"
|
||
|
tokenizer_class = ("UdopTokenizer", "UdopTokenizerFast")
|
||
|
|
||
|
def __init__(self, image_processor, tokenizer):
|
||
|
super().__init__(image_processor, tokenizer)
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
images: Optional[ImageInput] = None,
|
||
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
||
|
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
||
|
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
|
||
|
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
||
|
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
||
|
text_pair_target: Optional[
|
||
|
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
|
||
|
] = None,
|
||
|
add_special_tokens: bool = True,
|
||
|
padding: Union[bool, str, PaddingStrategy] = False,
|
||
|
truncation: Union[bool, str, TruncationStrategy] = False,
|
||
|
max_length: Optional[int] = None,
|
||
|
stride: int = 0,
|
||
|
pad_to_multiple_of: Optional[int] = None,
|
||
|
return_token_type_ids: Optional[bool] = None,
|
||
|
return_attention_mask: Optional[bool] = None,
|
||
|
return_overflowing_tokens: bool = False,
|
||
|
return_special_tokens_mask: bool = False,
|
||
|
return_offsets_mapping: bool = False,
|
||
|
return_length: bool = False,
|
||
|
verbose: bool = True,
|
||
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
||
|
) -> BatchEncoding:
|
||
|
"""
|
||
|
This method first forwards the `images` argument to [`~UdopImageProcessor.__call__`]. In case
|
||
|
[`UdopImageProcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and
|
||
|
bounding boxes along with the additional arguments to [`~UdopTokenizer.__call__`] and returns the output,
|
||
|
together with the prepared `pixel_values`. In case [`UdopImageProcessor`] was initialized with `apply_ocr` set
|
||
|
to `False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the
|
||
|
additional arguments to [`~UdopTokenizer.__call__`] and returns the output, together with the prepared
|
||
|
`pixel_values`.
|
||
|
|
||
|
Alternatively, one can pass `text_target` and `text_pair_target` to prepare the targets of UDOP.
|
||
|
|
||
|
Please refer to the docstring of the above two methods for more information.
|
||
|
"""
|
||
|
# verify input
|
||
|
if self.image_processor.apply_ocr and (boxes is not None):
|
||
|
raise ValueError(
|
||
|
"You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True."
|
||
|
)
|
||
|
|
||
|
if self.image_processor.apply_ocr and (word_labels is not None):
|
||
|
raise ValueError(
|
||
|
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True."
|
||
|
)
|
||
|
|
||
|
if return_overflowing_tokens is True and return_offsets_mapping is False:
|
||
|
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.")
|
||
|
|
||
|
if text_target is not None:
|
||
|
# use the processor to prepare the targets of UDOP
|
||
|
return self.tokenizer(
|
||
|
text_target=text_target,
|
||
|
text_pair_target=text_pair_target,
|
||
|
add_special_tokens=add_special_tokens,
|
||
|
padding=padding,
|
||
|
truncation=truncation,
|
||
|
max_length=max_length,
|
||
|
stride=stride,
|
||
|
pad_to_multiple_of=pad_to_multiple_of,
|
||
|
return_token_type_ids=return_token_type_ids,
|
||
|
return_attention_mask=return_attention_mask,
|
||
|
return_overflowing_tokens=return_overflowing_tokens,
|
||
|
return_special_tokens_mask=return_special_tokens_mask,
|
||
|
return_offsets_mapping=return_offsets_mapping,
|
||
|
return_length=return_length,
|
||
|
verbose=verbose,
|
||
|
return_tensors=return_tensors,
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
# use the processor to prepare the inputs of UDOP
|
||
|
# first, apply the image processor
|
||
|
features = self.image_processor(images=images, return_tensors=return_tensors)
|
||
|
|
||
|
# second, apply the tokenizer
|
||
|
if text is not None and self.image_processor.apply_ocr and text_pair is None:
|
||
|
if isinstance(text, str):
|
||
|
text = [text] # add batch dimension (as the image processor always adds a batch dimension)
|
||
|
text_pair = features["words"]
|
||
|
|
||
|
encoded_inputs = self.tokenizer(
|
||
|
text=text if text is not None else features["words"],
|
||
|
text_pair=text_pair if text_pair is not None else None,
|
||
|
boxes=boxes if boxes is not None else features["boxes"],
|
||
|
word_labels=word_labels,
|
||
|
add_special_tokens=add_special_tokens,
|
||
|
padding=padding,
|
||
|
truncation=truncation,
|
||
|
max_length=max_length,
|
||
|
stride=stride,
|
||
|
pad_to_multiple_of=pad_to_multiple_of,
|
||
|
return_token_type_ids=return_token_type_ids,
|
||
|
return_attention_mask=return_attention_mask,
|
||
|
return_overflowing_tokens=return_overflowing_tokens,
|
||
|
return_special_tokens_mask=return_special_tokens_mask,
|
||
|
return_offsets_mapping=return_offsets_mapping,
|
||
|
return_length=return_length,
|
||
|
verbose=verbose,
|
||
|
return_tensors=return_tensors,
|
||
|
)
|
||
|
|
||
|
# add pixel values
|
||
|
pixel_values = features.pop("pixel_values")
|
||
|
if return_overflowing_tokens is True:
|
||
|
pixel_values = self.get_overflowing_images(pixel_values, encoded_inputs["overflow_to_sample_mapping"])
|
||
|
encoded_inputs["pixel_values"] = pixel_values
|
||
|
|
||
|
return encoded_inputs
|
||
|
|
||
|
# Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.get_overflowing_images
|
||
|
def get_overflowing_images(self, images, overflow_to_sample_mapping):
|
||
|
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
|
||
|
images_with_overflow = []
|
||
|
for sample_idx in overflow_to_sample_mapping:
|
||
|
images_with_overflow.append(images[sample_idx])
|
||
|
|
||
|
if len(images_with_overflow) != len(overflow_to_sample_mapping):
|
||
|
raise ValueError(
|
||
|
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
|
||
|
f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}"
|
||
|
)
|
||
|
|
||
|
return images_with_overflow
|
||
|
|
||
|
# Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.batch_decode
|
||
|
def batch_decode(self, *args, **kwargs):
|
||
|
"""
|
||
|
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
||
|
refer to the docstring of this method for more information.
|
||
|
"""
|
||
|
return self.tokenizer.batch_decode(*args, **kwargs)
|
||
|
|
||
|
# Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.decode
|
||
|
def decode(self, *args, **kwargs):
|
||
|
"""
|
||
|
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
|
||
|
to the docstring of this method for more information.
|
||
|
"""
|
||
|
return self.tokenizer.decode(*args, **kwargs)
|
||
|
|
||
|
@property
|
||
|
# Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.model_input_names
|
||
|
def model_input_names(self):
|
||
|
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
|