ai-content-maker/.venv/Lib/site-packages/transformers/models/vitmatte/configuration_vitmatte.py

137 lines
6.3 KiB
Python
Raw Permalink Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VitMatte model configuration"""
import copy
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class VitMatteConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of [`VitMatteForImageMatting`]. It is used to
instantiate a ViTMatte model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the ViTMatte
[hustvl/vitmatte-small-composition-1k](https://huggingface.co/hustvl/vitmatte-small-composition-1k) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `VitDetConfig()`):
The configuration of the backbone model.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use pretrained weights for the backbone.
use_timm_backbone (`bool`, *optional*, defaults to `False`):
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
library.
backbone_kwargs (`dict`, *optional*):
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
hidden_size (`int`, *optional*, defaults to 384):
The number of input channels of the decoder.
batch_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the batch norm layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
convstream_hidden_sizes (`List[int]`, *optional*, defaults to `[48, 96, 192]`):
The output channels of the ConvStream module.
fusion_hidden_sizes (`List[int]`, *optional*, defaults to `[256, 128, 64, 32]`):
The output channels of the Fusion blocks.
Example:
```python
>>> from transformers import VitMatteConfig, VitMatteForImageMatting
>>> # Initializing a ViTMatte hustvl/vitmatte-small-composition-1k style configuration
>>> configuration = VitMatteConfig()
>>> # Initializing a model (with random weights) from the hustvl/vitmatte-small-composition-1k style configuration
>>> model = VitMatteForImageMatting(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vitmatte"
def __init__(
self,
backbone_config: PretrainedConfig = None,
backbone=None,
use_pretrained_backbone=False,
use_timm_backbone=False,
backbone_kwargs=None,
hidden_size: int = 384,
batch_norm_eps: float = 1e-5,
initializer_range: float = 0.02,
convstream_hidden_sizes: List[int] = [48, 96, 192],
fusion_hidden_sizes: List[int] = [256, 128, 64, 32],
**kwargs,
):
super().__init__(**kwargs)
if use_pretrained_backbone:
raise ValueError("Pretrained backbones are not supported yet.")
if backbone_config is not None and backbone is not None:
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
if backbone_config is None and backbone is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `VitDet` backbone.")
backbone_config = CONFIG_MAPPING["vitdet"](out_features=["stage4"])
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
self.backbone_config = backbone_config
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.use_timm_backbone = use_timm_backbone
self.backbone_kwargs = backbone_kwargs
self.batch_norm_eps = batch_norm_eps
self.hidden_size = hidden_size
self.initializer_range = initializer_range
self.convstream_hidden_sizes = convstream_hidden_sizes
self.fusion_hidden_sizes = fusion_hidden_sizes
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["backbone_config"] = self.backbone_config.to_dict()
output["model_type"] = self.__class__.model_type
return output