916 lines
38 KiB
Python
916 lines
38 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Tokenization class for Wav2Vec2."""
|
||
|
|
||
|
import json
|
||
|
import os
|
||
|
import warnings
|
||
|
from dataclasses import dataclass
|
||
|
from itertools import groupby
|
||
|
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from ...tokenization_utils import PreTrainedTokenizer
|
||
|
from ...tokenization_utils_base import AddedToken, BatchEncoding
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
PaddingStrategy,
|
||
|
TensorType,
|
||
|
add_end_docstrings,
|
||
|
is_flax_available,
|
||
|
is_tf_available,
|
||
|
is_torch_available,
|
||
|
logging,
|
||
|
to_py_obj,
|
||
|
)
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
if is_tf_available():
|
||
|
import tensorflow as tf
|
||
|
if is_flax_available():
|
||
|
import jax.numpy as jnp # noqa: F401
|
||
|
|
||
|
|
||
|
VOCAB_FILES_NAMES = {
|
||
|
"vocab_file": "vocab.json",
|
||
|
"tokenizer_config_file": "tokenizer_config.json",
|
||
|
}
|
||
|
|
||
|
|
||
|
# Wav2Vec2 has no max input length
|
||
|
|
||
|
WAV2VEC2_KWARGS_DOCSTRING = r"""
|
||
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
||
|
Activates and controls padding. Accepts the following values:
|
||
|
|
||
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
||
|
sequence if provided).
|
||
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
||
|
acceptable input length for the model if that argument is not provided.
|
||
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
||
|
lengths).
|
||
|
max_length (`int`, *optional*):
|
||
|
Controls the maximum length to use by one of the truncation/padding parameters.
|
||
|
|
||
|
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
|
||
|
is required by one of the truncation/padding parameters. If the model has no specific maximum input
|
||
|
length (like XLNet) truncation/padding to a maximum length will be deactivated.
|
||
|
pad_to_multiple_of (`int`, *optional*):
|
||
|
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
|
||
|
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
|
||
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
||
|
If set, will return tensors instead of list of python integers. Acceptable values are:
|
||
|
|
||
|
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
||
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
||
|
- `'np'`: Return Numpy `np.ndarray` objects.
|
||
|
verbose (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to print more information and warnings.
|
||
|
"""
|
||
|
|
||
|
ListOfDict = List[Dict[str, Union[int, str]]]
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class Wav2Vec2CTCTokenizerOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of [` Wav2Vec2CTCTokenizer`], with transcription.
|
||
|
|
||
|
Args:
|
||
|
text (list of `str` or `str`):
|
||
|
Decoded logits in text from. Usually the speech transcription.
|
||
|
char_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`):
|
||
|
Offsets of the decoded characters. In combination with sampling rate and model downsampling rate char
|
||
|
offsets can be used to compute time stamps for each charater. Total logit score of the beam associated with
|
||
|
produced text.
|
||
|
word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`):
|
||
|
Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets
|
||
|
can be used to compute time stamps for each word.
|
||
|
"""
|
||
|
|
||
|
text: Union[List[str], str]
|
||
|
char_offsets: Union[List[ListOfDict], ListOfDict] = None
|
||
|
word_offsets: Union[List[ListOfDict], ListOfDict] = None
|
||
|
|
||
|
|
||
|
class Wav2Vec2CTCTokenizer(PreTrainedTokenizer):
|
||
|
"""
|
||
|
Constructs a Wav2Vec2CTC tokenizer.
|
||
|
|
||
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to
|
||
|
the superclass for more information regarding such methods.
|
||
|
|
||
|
Args:
|
||
|
vocab_file (`str`):
|
||
|
File containing the vocabulary.
|
||
|
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
||
|
The beginning of sentence token.
|
||
|
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
||
|
The end of sentence token.
|
||
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
||
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||
|
token instead.
|
||
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
||
|
The token used for padding, for example when batching sequences of different lengths.
|
||
|
word_delimiter_token (`str`, *optional*, defaults to `"|"`):
|
||
|
The token used for defining the end of a word.
|
||
|
do_lower_case (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to accept lowercase input and lowercase the output when decoding.
|
||
|
target_lang (`str`, *optional*):
|
||
|
A target language the tokenizer should set by default. `target_lang` has to be defined for multi-lingual,
|
||
|
nested vocabulary such as [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all).
|
||
|
|
||
|
**kwargs
|
||
|
Additional keyword arguments passed along to [`PreTrainedTokenizer`]
|
||
|
"""
|
||
|
|
||
|
vocab_files_names = VOCAB_FILES_NAMES
|
||
|
model_input_names = ["input_ids", "attention_mask"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_file,
|
||
|
bos_token="<s>",
|
||
|
eos_token="</s>",
|
||
|
unk_token="<unk>",
|
||
|
pad_token="<pad>",
|
||
|
word_delimiter_token="|",
|
||
|
replace_word_delimiter_char=" ",
|
||
|
do_lower_case=False,
|
||
|
target_lang=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self._word_delimiter_token = word_delimiter_token
|
||
|
|
||
|
self.do_lower_case = do_lower_case
|
||
|
self.replace_word_delimiter_char = replace_word_delimiter_char
|
||
|
self.target_lang = target_lang
|
||
|
|
||
|
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
||
|
self.vocab = json.load(vocab_handle)
|
||
|
|
||
|
# if target lang is defined vocab must be a nested dict
|
||
|
# with each target lang being one vocabulary
|
||
|
if target_lang is not None:
|
||
|
self.encoder = self.vocab[target_lang]
|
||
|
else:
|
||
|
self.encoder = self.vocab
|
||
|
|
||
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
||
|
|
||
|
super().__init__(
|
||
|
unk_token=unk_token,
|
||
|
bos_token=bos_token,
|
||
|
eos_token=eos_token,
|
||
|
pad_token=pad_token,
|
||
|
do_lower_case=do_lower_case,
|
||
|
word_delimiter_token=word_delimiter_token,
|
||
|
replace_word_delimiter_char=replace_word_delimiter_char,
|
||
|
target_lang=target_lang,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
# make sure that tokens made of several
|
||
|
# characters are not split at tokenization
|
||
|
for token in self.encoder.keys():
|
||
|
if len(token) > 1:
|
||
|
self.add_tokens(AddedToken(token, rstrip=True, lstrip=True, normalized=False))
|
||
|
|
||
|
def set_target_lang(self, target_lang: str):
|
||
|
"""
|
||
|
Set the target language of a nested multi-lingual dictionary
|
||
|
"""
|
||
|
if self.vocab == self.encoder:
|
||
|
raise ValueError(f"{self.vocab} is not a multi-lingual, nested tokenizer. Cannot set target language.")
|
||
|
|
||
|
if target_lang not in self.vocab:
|
||
|
raise ValueError(f"{target_lang} does not exist. Choose one of {', '.join(self.vocab.keys())}.")
|
||
|
|
||
|
self.target_lang = target_lang
|
||
|
self.init_kwargs["target_lang"] = target_lang
|
||
|
self.encoder = self.vocab[target_lang]
|
||
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
||
|
|
||
|
# make sure that tokens made of several
|
||
|
# characters are not split at tokenization
|
||
|
for token in self.encoder.keys():
|
||
|
if len(token) > 1:
|
||
|
self.add_tokens(AddedToken(token, rstrip=True, lstrip=True, normalized=False))
|
||
|
|
||
|
@property
|
||
|
def word_delimiter_token(self) -> str:
|
||
|
"""
|
||
|
`str`: Word delimiter token. Log an error if used while not having been set.
|
||
|
"""
|
||
|
if self._word_delimiter_token is None and self.verbose:
|
||
|
logger.error("Using word_delimiter_token, but it is not set yet.")
|
||
|
return None
|
||
|
return str(self._word_delimiter_token)
|
||
|
|
||
|
@property
|
||
|
def word_delimiter_token_id(self) -> Optional[int]:
|
||
|
"""
|
||
|
`Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been
|
||
|
set.
|
||
|
"""
|
||
|
if self._word_delimiter_token is None:
|
||
|
return None
|
||
|
return self.convert_tokens_to_ids(self.word_delimiter_token)
|
||
|
|
||
|
@word_delimiter_token.setter
|
||
|
def word_delimiter_token(self, value):
|
||
|
self._word_delimiter_token = value
|
||
|
|
||
|
@word_delimiter_token_id.setter
|
||
|
def word_delimiter_token_id(self, value):
|
||
|
self._word_delimiter_token = self.convert_tokens_to_ids(value)
|
||
|
|
||
|
@property
|
||
|
def vocab_size(self) -> int:
|
||
|
return len(self.decoder)
|
||
|
|
||
|
def get_vocab(self) -> Dict:
|
||
|
vocab = dict(self.encoder)
|
||
|
vocab.update(self.added_tokens_encoder)
|
||
|
return vocab
|
||
|
|
||
|
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
||
|
# Overwritten to never strip!
|
||
|
to_add = []
|
||
|
for token in new_tokens:
|
||
|
if isinstance(token, str):
|
||
|
to_add.append(AddedToken(token, rstrip=False, lstrip=False, normalized=False))
|
||
|
else:
|
||
|
to_add.append(token)
|
||
|
|
||
|
return super()._add_tokens(to_add, special_tokens)
|
||
|
|
||
|
def _tokenize(self, text, **kwargs):
|
||
|
"""
|
||
|
Converts a string into a sequence of tokens (string), using the tokenizer.
|
||
|
"""
|
||
|
if self.do_lower_case:
|
||
|
text = text.upper()
|
||
|
|
||
|
return list(text.replace(" ", self.word_delimiter_token))
|
||
|
|
||
|
def _convert_token_to_id(self, token: str) -> int:
|
||
|
"""Converts a token (str) in an index (integer) using the vocab."""
|
||
|
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
||
|
|
||
|
def _convert_id_to_token(self, index: int) -> str:
|
||
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
||
|
result = self.decoder.get(index, self.unk_token)
|
||
|
return result
|
||
|
|
||
|
def convert_tokens_to_string(
|
||
|
self,
|
||
|
tokens: List[str],
|
||
|
group_tokens: bool = True,
|
||
|
spaces_between_special_tokens: bool = False,
|
||
|
output_char_offsets: bool = False,
|
||
|
output_word_offsets: bool = False,
|
||
|
) -> Dict[str, Union[str, float]]:
|
||
|
"""
|
||
|
Converts a connectionist-temporal-classification (CTC) output tokens into a single string.
|
||
|
"""
|
||
|
if len(tokens) == 0:
|
||
|
return {"text": "", "char_offsets": [], "word_offsets": []}
|
||
|
# group same tokens into non-repeating tokens in CTC style decoding
|
||
|
if group_tokens:
|
||
|
chars, char_repetitions = zip(*((token, len(list(group_iter))) for token, group_iter in groupby(tokens)))
|
||
|
else:
|
||
|
chars = tokens
|
||
|
char_repetitions = len(tokens) * [1]
|
||
|
|
||
|
# filter self.pad_token which is used as CTC-blank token
|
||
|
processed_chars = list(filter(lambda char: char != self.pad_token, chars))
|
||
|
|
||
|
# replace delimiter token
|
||
|
processed_chars = [
|
||
|
self.replace_word_delimiter_char if char == self.word_delimiter_token else char for char in processed_chars
|
||
|
]
|
||
|
|
||
|
# retrieve offsets
|
||
|
char_offsets = word_offsets = None
|
||
|
if output_char_offsets or output_word_offsets:
|
||
|
char_offsets = self._compute_offsets(char_repetitions, chars, self.pad_token)
|
||
|
|
||
|
if len(char_offsets) != len(processed_chars):
|
||
|
raise ValueError(
|
||
|
f"`char_offsets`: {char_offsets} and `processed_tokens`: {processed_chars}"
|
||
|
" have to be of the same length, but are: "
|
||
|
f"`len(offsets)`: {len(char_offsets)} and `len(processed_tokens)`:"
|
||
|
f" {len(processed_chars)}"
|
||
|
)
|
||
|
|
||
|
# set tokens to correct processed token
|
||
|
for i, char in enumerate(processed_chars):
|
||
|
char_offsets[i]["char"] = char
|
||
|
|
||
|
# retrieve word offsets from character offsets
|
||
|
word_offsets = None
|
||
|
if output_word_offsets:
|
||
|
word_offsets = self._get_word_offsets(char_offsets, self.replace_word_delimiter_char)
|
||
|
|
||
|
# don't output chars if not set to True
|
||
|
if not output_char_offsets:
|
||
|
char_offsets = None
|
||
|
|
||
|
# join to string
|
||
|
join_char = " " if spaces_between_special_tokens else ""
|
||
|
string = join_char.join(processed_chars).strip()
|
||
|
|
||
|
if self.do_lower_case:
|
||
|
string = string.lower()
|
||
|
|
||
|
return {"text": string, "char_offsets": char_offsets, "word_offsets": word_offsets}
|
||
|
|
||
|
@staticmethod
|
||
|
def _compute_offsets(
|
||
|
char_repetitions: List[int], chars: List[str], ctc_token: int
|
||
|
) -> List[Dict[str, Union[str, int]]]:
|
||
|
end_indices = np.asarray(char_repetitions).cumsum()
|
||
|
start_indices = np.concatenate(([0], end_indices[:-1]))
|
||
|
|
||
|
offsets = [
|
||
|
{"char": t, "start_offset": s, "end_offset": e} for t, s, e in zip(chars, start_indices, end_indices)
|
||
|
]
|
||
|
|
||
|
# filter out CTC token
|
||
|
offsets = list(filter(lambda offsets: offsets["char"] != ctc_token, offsets))
|
||
|
return offsets
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_word_offsets(
|
||
|
offsets: Dict[str, Union[str, float]], word_delimiter_char: str = " "
|
||
|
) -> Dict[str, Union[str, float]]:
|
||
|
word_offsets = []
|
||
|
|
||
|
last_state = "SPACE"
|
||
|
word = ""
|
||
|
start_offset = 0
|
||
|
end_offset = 0
|
||
|
for i, offset in enumerate(offsets):
|
||
|
char = offset["char"]
|
||
|
state = "SPACE" if char == word_delimiter_char else "WORD"
|
||
|
|
||
|
if state == last_state:
|
||
|
# If we are in the same state as before, we simply repeat what we've done before
|
||
|
end_offset = offset["end_offset"]
|
||
|
word += char
|
||
|
else:
|
||
|
# Switching state
|
||
|
if state == "SPACE":
|
||
|
# Finishing a word
|
||
|
word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset})
|
||
|
else:
|
||
|
# Starting a new word
|
||
|
start_offset = offset["start_offset"]
|
||
|
end_offset = offset["end_offset"]
|
||
|
word = char
|
||
|
|
||
|
last_state = state
|
||
|
if last_state == "WORD":
|
||
|
word_offsets.append({"word": word, "start_offset": start_offset, "end_offset": end_offset})
|
||
|
|
||
|
return word_offsets
|
||
|
|
||
|
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
||
|
if is_split_into_words:
|
||
|
text = " " + text
|
||
|
return (text, kwargs)
|
||
|
|
||
|
def _decode(
|
||
|
self,
|
||
|
token_ids: List[int],
|
||
|
skip_special_tokens: bool = False,
|
||
|
clean_up_tokenization_spaces: bool = None,
|
||
|
group_tokens: bool = True,
|
||
|
spaces_between_special_tokens: bool = False,
|
||
|
output_word_offsets: Optional[bool] = False,
|
||
|
output_char_offsets: Optional[bool] = False,
|
||
|
) -> str:
|
||
|
"""
|
||
|
special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the
|
||
|
same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on
|
||
|
the whole token list and not individually on added tokens
|
||
|
"""
|
||
|
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
|
||
|
|
||
|
result = []
|
||
|
for token in filtered_tokens:
|
||
|
if skip_special_tokens and (
|
||
|
token in self.all_special_ids or (token != self.pad_token and token in self.all_special_tokens)
|
||
|
):
|
||
|
continue
|
||
|
result.append(token)
|
||
|
|
||
|
string_output = self.convert_tokens_to_string(
|
||
|
result,
|
||
|
group_tokens=group_tokens,
|
||
|
spaces_between_special_tokens=spaces_between_special_tokens,
|
||
|
output_word_offsets=output_word_offsets,
|
||
|
output_char_offsets=output_char_offsets,
|
||
|
)
|
||
|
|
||
|
text = string_output["text"]
|
||
|
|
||
|
clean_up_tokenization_spaces = (
|
||
|
clean_up_tokenization_spaces
|
||
|
if clean_up_tokenization_spaces is not None
|
||
|
else self.clean_up_tokenization_spaces
|
||
|
)
|
||
|
if clean_up_tokenization_spaces:
|
||
|
text = self.clean_up_tokenization(text)
|
||
|
|
||
|
if output_word_offsets or output_char_offsets:
|
||
|
return Wav2Vec2CTCTokenizerOutput(
|
||
|
text=text,
|
||
|
char_offsets=string_output["char_offsets"],
|
||
|
word_offsets=string_output["word_offsets"],
|
||
|
)
|
||
|
else:
|
||
|
return text
|
||
|
|
||
|
# overwritten from `tokenization_utils_base.py` because tokenizer can output
|
||
|
# `ModelOutput` which should not be a list for batched output and
|
||
|
# because we need docs for `output_char_offsets` here
|
||
|
def batch_decode(
|
||
|
self,
|
||
|
sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
||
|
skip_special_tokens: bool = False,
|
||
|
clean_up_tokenization_spaces: bool = None,
|
||
|
output_char_offsets: bool = False,
|
||
|
output_word_offsets: bool = False,
|
||
|
**kwargs,
|
||
|
) -> List[str]:
|
||
|
"""
|
||
|
Convert a list of lists of token ids into a list of strings by calling decode.
|
||
|
|
||
|
Args:
|
||
|
sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`):
|
||
|
List of tokenized input ids. Can be obtained using the `__call__` method.
|
||
|
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to remove special tokens in the decoding.
|
||
|
clean_up_tokenization_spaces (`bool`, *optional*):
|
||
|
Whether or not to clean up the tokenization spaces.
|
||
|
output_char_offsets (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to output character offsets. Character offsets can be used in combination with the
|
||
|
sampling rate and model downsampling rate to compute the time-stamps of transcribed characters.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make
|
||
|
use of `output_char_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched
|
||
|
output.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
output_word_offsets (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate
|
||
|
and model downsampling rate to compute the time-stamps of transcribed words.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
Please take a look at the Example of [`~Wav2Vec2CTCTokenizer.decode`] to better understand how to make
|
||
|
use of `output_word_offsets`. [`~Wav2Vec2CTCTokenizer.batch_decode`] works the same way with batched
|
||
|
output.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
kwargs (additional keyword arguments, *optional*):
|
||
|
Will be passed to the underlying model specific decode method.
|
||
|
|
||
|
Returns:
|
||
|
`List[str]` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded
|
||
|
sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when
|
||
|
`output_char_offsets == True` or `output_word_offsets == True`.
|
||
|
"""
|
||
|
batch_decoded = [
|
||
|
self.decode(
|
||
|
seq,
|
||
|
skip_special_tokens=skip_special_tokens,
|
||
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||
|
output_char_offsets=output_char_offsets,
|
||
|
output_word_offsets=output_word_offsets,
|
||
|
**kwargs,
|
||
|
)
|
||
|
for seq in sequences
|
||
|
]
|
||
|
if output_char_offsets or output_word_offsets:
|
||
|
# transform list of dicts to dict of lists
|
||
|
return Wav2Vec2CTCTokenizerOutput({k: [d[k] for d in batch_decoded] for k in batch_decoded[0]})
|
||
|
|
||
|
return batch_decoded
|
||
|
|
||
|
# overwritten from `tokenization_utils_base.py` because we need docs for `output_char_offsets`
|
||
|
# and `output_word_offsets` here
|
||
|
def decode(
|
||
|
self,
|
||
|
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
||
|
skip_special_tokens: bool = False,
|
||
|
clean_up_tokenization_spaces: bool = None,
|
||
|
output_char_offsets: bool = False,
|
||
|
output_word_offsets: bool = False,
|
||
|
**kwargs,
|
||
|
) -> str:
|
||
|
"""
|
||
|
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
|
||
|
tokens and clean up tokenization spaces.
|
||
|
|
||
|
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
|
||
|
|
||
|
Args:
|
||
|
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
|
||
|
List of tokenized input ids. Can be obtained using the `__call__` method.
|
||
|
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to remove special tokens in the decoding.
|
||
|
clean_up_tokenization_spaces (`bool`, *optional*):
|
||
|
Whether or not to clean up the tokenization spaces.
|
||
|
output_char_offsets (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to output character offsets. Character offsets can be used in combination with the
|
||
|
sampling rate and model downsampling rate to compute the time-stamps of transcribed characters.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
Please take a look at the example below to better understand how to make use of `output_char_offsets`.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
output_word_offsets (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate
|
||
|
and model downsampling rate to compute the time-stamps of transcribed words.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
Please take a look at the example below to better understand how to make use of `output_word_offsets`.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
kwargs (additional keyword arguments, *optional*):
|
||
|
Will be passed to the underlying model specific decode method.
|
||
|
|
||
|
Returns:
|
||
|
`str` or [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`]: The list of decoded
|
||
|
sentences. Will be a [`~models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizerOutput`] when
|
||
|
`output_char_offsets == True` or `output_word_offsets == True`.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> # Let's see how to retrieve time steps for a model
|
||
|
>>> from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC
|
||
|
>>> from datasets import load_dataset
|
||
|
>>> import datasets
|
||
|
>>> import torch
|
||
|
|
||
|
>>> # import model, feature extractor, tokenizer
|
||
|
>>> model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
||
|
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
|
||
|
|
||
|
>>> # load first sample of English common_voice
|
||
|
>>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True)
|
||
|
>>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
|
||
|
>>> dataset_iter = iter(dataset)
|
||
|
>>> sample = next(dataset_iter)
|
||
|
|
||
|
>>> # forward sample through model to get greedily predicted transcription ids
|
||
|
>>> input_values = feature_extractor(sample["audio"]["array"], return_tensors="pt").input_values
|
||
|
>>> logits = model(input_values).logits[0]
|
||
|
>>> pred_ids = torch.argmax(logits, axis=-1)
|
||
|
|
||
|
>>> # retrieve word stamps (analogous commands for `output_char_offsets`)
|
||
|
>>> outputs = tokenizer.decode(pred_ids, output_word_offsets=True)
|
||
|
>>> # compute `time_offset` in seconds as product of downsampling ratio and sampling_rate
|
||
|
>>> time_offset = model.config.inputs_to_logits_ratio / feature_extractor.sampling_rate
|
||
|
|
||
|
>>> word_offsets = [
|
||
|
... {
|
||
|
... "word": d["word"],
|
||
|
... "start_time": round(d["start_offset"] * time_offset, 2),
|
||
|
... "end_time": round(d["end_offset"] * time_offset, 2),
|
||
|
... }
|
||
|
... for d in outputs.word_offsets
|
||
|
... ]
|
||
|
>>> # compare word offsets with audio `en_train_0/common_voice_en_19121553.mp3` online on the dataset viewer:
|
||
|
>>> # https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/en
|
||
|
>>> word_offsets[:3]
|
||
|
[{'word': 'THE', 'start_time': 0.7, 'end_time': 0.78}, {'word': 'TRICK', 'start_time': 0.88, 'end_time': 1.08}, {'word': 'APPEARS', 'start_time': 1.2, 'end_time': 1.64}]
|
||
|
```"""
|
||
|
# Convert inputs to python lists
|
||
|
token_ids = to_py_obj(token_ids)
|
||
|
|
||
|
return self._decode(
|
||
|
token_ids=token_ids,
|
||
|
skip_special_tokens=skip_special_tokens,
|
||
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||
|
output_char_offsets=output_char_offsets,
|
||
|
output_word_offsets=output_word_offsets,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||
|
if not os.path.isdir(save_directory):
|
||
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||
|
return
|
||
|
vocab_file = os.path.join(
|
||
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||
|
)
|
||
|
|
||
|
with open(vocab_file, "w", encoding="utf-8") as f:
|
||
|
f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
||
|
|
||
|
return (vocab_file,)
|
||
|
|
||
|
|
||
|
class Wav2Vec2Tokenizer(PreTrainedTokenizer):
|
||
|
"""
|
||
|
Constructs a Wav2Vec2 tokenizer.
|
||
|
|
||
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to
|
||
|
the superclass for more information regarding such methods.
|
||
|
|
||
|
Args:
|
||
|
vocab_file (`str`):
|
||
|
File containing the vocabulary.
|
||
|
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
||
|
The beginning of sentence token.
|
||
|
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
||
|
The end of sentence token.
|
||
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
||
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||
|
token instead.
|
||
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
||
|
The token used for padding, for example when batching sequences of different lengths.
|
||
|
word_delimiter_token (`str`, *optional*, defaults to `"|"`):
|
||
|
The token used for defining the end of a word.
|
||
|
do_lower_case (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to lowercase the output when decoding.
|
||
|
do_normalize (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly
|
||
|
improve the performance for some models, *e.g.*,
|
||
|
[wav2vec2-lv60](https://huggingface.co/models?search=lv60).
|
||
|
return_attention_mask (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not [`~Wav2Vec2Tokenizer.__call__`] should return `attention_mask`.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as
|
||
|
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using
|
||
|
`attention_mask`. For such models, `input_values` should simply be padded with 0 and no `attention_mask`
|
||
|
should be passed.
|
||
|
|
||
|
For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as
|
||
|
[wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should be
|
||
|
passed for batched inference.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
**kwargs
|
||
|
Additional keyword arguments passed along to [`PreTrainedTokenizer`]
|
||
|
"""
|
||
|
|
||
|
vocab_files_names = VOCAB_FILES_NAMES
|
||
|
pretrained_vocab_files_map = {
|
||
|
"vocab_file": {
|
||
|
"facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json"
|
||
|
},
|
||
|
"tokenizer_config_file": {
|
||
|
"facebook/wav2vec2-base-960h": (
|
||
|
"https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/tokenizer.json"
|
||
|
),
|
||
|
},
|
||
|
}
|
||
|
model_input_names = ["input_values", "attention_mask"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_file,
|
||
|
bos_token="<s>",
|
||
|
eos_token="</s>",
|
||
|
unk_token="<unk>",
|
||
|
pad_token="<pad>",
|
||
|
word_delimiter_token="|",
|
||
|
do_lower_case=False,
|
||
|
do_normalize=False,
|
||
|
return_attention_mask=False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
warnings.warn(
|
||
|
"The class `Wav2Vec2Tokenizer` is deprecated and will be removed in version 5 of Transformers. Please use"
|
||
|
" `Wav2Vec2Processor` or `Wav2Vec2CTCTokenizer` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
|
||
|
self._word_delimiter_token = word_delimiter_token
|
||
|
|
||
|
self.do_lower_case = do_lower_case
|
||
|
self.return_attention_mask = return_attention_mask
|
||
|
self.do_normalize = do_normalize
|
||
|
|
||
|
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
||
|
self.encoder = json.load(vocab_handle)
|
||
|
|
||
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
||
|
|
||
|
super().__init__(
|
||
|
unk_token=unk_token,
|
||
|
bos_token=bos_token,
|
||
|
eos_token=eos_token,
|
||
|
pad_token=pad_token,
|
||
|
do_lower_case=do_lower_case,
|
||
|
do_normalize=do_normalize,
|
||
|
return_attention_mask=return_attention_mask,
|
||
|
word_delimiter_token=word_delimiter_token,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def word_delimiter_token(self) -> str:
|
||
|
"""
|
||
|
`str`: Padding token. Log an error if used while not having been set.
|
||
|
"""
|
||
|
if self._word_delimiter_token is None and self.verbose:
|
||
|
logger.error("Using word_delimiter_token, but it is not set yet.")
|
||
|
return None
|
||
|
return str(self._word_delimiter_token)
|
||
|
|
||
|
@property
|
||
|
def word_delimiter_token_id(self) -> Optional[int]:
|
||
|
"""
|
||
|
`Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been
|
||
|
set.
|
||
|
"""
|
||
|
if self._word_delimiter_token is None:
|
||
|
return None
|
||
|
return self.convert_tokens_to_ids(self.word_delimiter_token)
|
||
|
|
||
|
@word_delimiter_token.setter
|
||
|
def word_delimiter_token(self, value):
|
||
|
self._word_delimiter_token = value
|
||
|
|
||
|
@word_delimiter_token_id.setter
|
||
|
def word_delimiter_token_id(self, value):
|
||
|
self._word_delimiter_token = self.convert_tokens_to_ids(value)
|
||
|
|
||
|
@add_end_docstrings(WAV2VEC2_KWARGS_DOCSTRING)
|
||
|
def __call__(
|
||
|
self,
|
||
|
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
||
|
padding: Union[bool, str, PaddingStrategy] = False,
|
||
|
max_length: Optional[int] = None,
|
||
|
pad_to_multiple_of: Optional[int] = None,
|
||
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
||
|
verbose: bool = True,
|
||
|
**kwargs,
|
||
|
) -> BatchEncoding:
|
||
|
"""
|
||
|
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
||
|
sequences.
|
||
|
|
||
|
Args:
|
||
|
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
|
||
|
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
|
||
|
values, a list of numpy array or a list of list of float values. Must be mono channel audio, not
|
||
|
stereo, i.e. single float per timestep.
|
||
|
"""
|
||
|
|
||
|
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
|
||
|
if is_batched_numpy and len(raw_speech.shape) > 2:
|
||
|
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
|
||
|
is_batched = is_batched_numpy or (
|
||
|
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
|
||
|
)
|
||
|
|
||
|
# make sure input is in list format
|
||
|
if is_batched and not isinstance(raw_speech[0], np.ndarray):
|
||
|
raw_speech = [np.asarray(speech) for speech in raw_speech]
|
||
|
elif not is_batched and not isinstance(raw_speech, np.ndarray):
|
||
|
raw_speech = np.asarray(raw_speech)
|
||
|
|
||
|
# always return batch
|
||
|
if not is_batched:
|
||
|
raw_speech = [raw_speech]
|
||
|
|
||
|
# zero-mean and unit-variance normalization
|
||
|
if self.do_normalize:
|
||
|
raw_speech = [(x - np.mean(x)) / np.sqrt(np.var(x) + 1e-5) for x in raw_speech]
|
||
|
|
||
|
# convert into correct format for padding
|
||
|
encoded_inputs = BatchEncoding({"input_values": raw_speech})
|
||
|
|
||
|
padded_inputs = self.pad(
|
||
|
encoded_inputs,
|
||
|
padding=padding,
|
||
|
max_length=max_length,
|
||
|
pad_to_multiple_of=pad_to_multiple_of,
|
||
|
return_attention_mask=self.return_attention_mask,
|
||
|
return_tensors=return_tensors,
|
||
|
verbose=verbose,
|
||
|
)
|
||
|
|
||
|
return padded_inputs
|
||
|
|
||
|
@property
|
||
|
def vocab_size(self) -> int:
|
||
|
return len(self.decoder)
|
||
|
|
||
|
def get_vocab(self) -> Dict:
|
||
|
return dict(self.encoder, **self.added_tokens_encoder)
|
||
|
|
||
|
def _convert_token_to_id(self, token: str) -> int:
|
||
|
"""Converts a token (str) in an index (integer) using the vocab."""
|
||
|
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
||
|
|
||
|
def _convert_id_to_token(self, index: int) -> str:
|
||
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
||
|
result = self.decoder.get(index, self.unk_token)
|
||
|
return result
|
||
|
|
||
|
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
||
|
"""
|
||
|
Converts a connectionist-temporal-classification (CTC) output tokens into a single string.
|
||
|
"""
|
||
|
# group same tokens into non-repeating tokens in CTC style decoding
|
||
|
grouped_tokens = [token_group[0] for token_group in groupby(tokens)]
|
||
|
|
||
|
# filter self.pad_token which is used as CTC-blank token
|
||
|
filtered_tokens = list(filter(lambda token: token != self.pad_token, grouped_tokens))
|
||
|
|
||
|
# replace delimiter token
|
||
|
string = "".join([" " if token == self.word_delimiter_token else token for token in filtered_tokens]).strip()
|
||
|
|
||
|
if self.do_lower_case:
|
||
|
string = string.lower()
|
||
|
|
||
|
return string
|
||
|
|
||
|
def _decode(
|
||
|
self,
|
||
|
token_ids: List[int],
|
||
|
skip_special_tokens: bool = False,
|
||
|
clean_up_tokenization_spaces: bool = None,
|
||
|
**kwargs,
|
||
|
) -> str:
|
||
|
"""
|
||
|
special _decode function is needed for Wav2Vec2Tokenizer because added tokens should be treated exactly the
|
||
|
same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on
|
||
|
the whole token list and not individually on added tokens
|
||
|
"""
|
||
|
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
|
||
|
|
||
|
result = []
|
||
|
for token in filtered_tokens:
|
||
|
if skip_special_tokens and (
|
||
|
token in self.all_special_ids or (token != self.pad_token and token in self.all_special_tokens)
|
||
|
):
|
||
|
continue
|
||
|
result.append(token)
|
||
|
|
||
|
text = self.convert_tokens_to_string(result)
|
||
|
|
||
|
clean_up_tokenization_spaces = (
|
||
|
clean_up_tokenization_spaces
|
||
|
if clean_up_tokenization_spaces is not None
|
||
|
else self.clean_up_tokenization_spaces
|
||
|
)
|
||
|
if clean_up_tokenization_spaces:
|
||
|
clean_text = self.clean_up_tokenization(text)
|
||
|
return clean_text
|
||
|
else:
|
||
|
return text
|
||
|
|
||
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||
|
if not os.path.isdir(save_directory):
|
||
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||
|
return
|
||
|
vocab_file = os.path.join(
|
||
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||
|
)
|
||
|
|
||
|
with open(vocab_file, "w", encoding="utf-8") as f:
|
||
|
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
||
|
|
||
|
return (vocab_file,)
|