185 lines
9.0 KiB
Python
185 lines
9.0 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 The Meta AI Team Authors and The HuggingFace Inc. team.
|
||
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" X-MOD configuration"""
|
||
|
from collections import OrderedDict
|
||
|
from typing import Mapping
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...onnx import OnnxConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class XmodConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`XmodModel`]. It is used to instantiate an X-MOD
|
||
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||
|
defaults will yield a similar configuration to that of the
|
||
|
[facebook/xmod-base](https://huggingface.co/facebook/xmod-base) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 30522):
|
||
|
Vocabulary size of the X-MOD model. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed when calling [`XmodModel`].
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
||
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 512):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
type_vocab_size (`int`, *optional*, defaults to 2):
|
||
|
The vocabulary size of the `token_type_ids` passed when calling [`XmodModel`].
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
||
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
||
|
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
||
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
||
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
||
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
||
|
is_decoder (`bool`, *optional*, defaults to `False`):
|
||
|
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||
|
relevant if `config.is_decoder=True`.
|
||
|
classifier_dropout (`float`, *optional*):
|
||
|
The dropout ratio for the classification head.
|
||
|
pre_norm (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to apply layer normalization before each block.
|
||
|
adapter_reduction_factor (`int` or `float`, *optional*, defaults to 2):
|
||
|
The factor by which the dimensionality of the adapter is reduced relative to `hidden_size`.
|
||
|
adapter_layer_norm (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to apply a new layer normalization before the adapter modules (shared across all adapters).
|
||
|
adapter_reuse_layer_norm (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to reuse the second layer normalization and apply it before the adapter modules as well.
|
||
|
ln_before_adapter (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to apply the layer normalization before the residual connection around the adapter module.
|
||
|
languages (`Iterable[str]`, *optional*, defaults to `["en_XX"]`):
|
||
|
An iterable of language codes for which adapter modules should be initialized.
|
||
|
default_language (`str`, *optional*):
|
||
|
Language code of a default language. It will be assumed that the input is in this language if no language
|
||
|
codes are explicitly passed to the forward method.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import XmodConfig, XmodModel
|
||
|
|
||
|
>>> # Initializing an X-MOD facebook/xmod-base style configuration
|
||
|
>>> configuration = XmodConfig()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the facebook/xmod-base style configuration
|
||
|
>>> model = XmodModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "xmod"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=30522,
|
||
|
hidden_size=768,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
intermediate_size=3072,
|
||
|
hidden_act="gelu",
|
||
|
hidden_dropout_prob=0.1,
|
||
|
attention_probs_dropout_prob=0.1,
|
||
|
max_position_embeddings=512,
|
||
|
type_vocab_size=2,
|
||
|
initializer_range=0.02,
|
||
|
layer_norm_eps=1e-12,
|
||
|
pad_token_id=1,
|
||
|
bos_token_id=0,
|
||
|
eos_token_id=2,
|
||
|
position_embedding_type="absolute",
|
||
|
use_cache=True,
|
||
|
classifier_dropout=None,
|
||
|
pre_norm=False,
|
||
|
adapter_reduction_factor=2,
|
||
|
adapter_layer_norm=False,
|
||
|
adapter_reuse_layer_norm=True,
|
||
|
ln_before_adapter=True,
|
||
|
languages=("en_XX",),
|
||
|
default_language=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
||
|
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.type_vocab_size = type_vocab_size
|
||
|
self.initializer_range = initializer_range
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.position_embedding_type = position_embedding_type
|
||
|
self.use_cache = use_cache
|
||
|
self.classifier_dropout = classifier_dropout
|
||
|
self.pre_norm = pre_norm
|
||
|
self.adapter_reduction_factor = adapter_reduction_factor
|
||
|
self.adapter_layer_norm = adapter_layer_norm
|
||
|
self.adapter_reuse_layer_norm = adapter_reuse_layer_norm
|
||
|
self.ln_before_adapter = ln_before_adapter
|
||
|
self.languages = list(languages)
|
||
|
self.default_language = default_language
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->Xmod
|
||
|
class XmodOnnxConfig(OnnxConfig):
|
||
|
@property
|
||
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
||
|
if self.task == "multiple-choice":
|
||
|
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
||
|
else:
|
||
|
dynamic_axis = {0: "batch", 1: "sequence"}
|
||
|
return OrderedDict(
|
||
|
[
|
||
|
("input_ids", dynamic_axis),
|
||
|
("attention_mask", dynamic_axis),
|
||
|
]
|
||
|
)
|