179 lines
7.5 KiB
Python
179 lines
7.5 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" YOLOS model configuration"""
|
||
|
|
||
|
from collections import OrderedDict
|
||
|
from typing import Mapping
|
||
|
|
||
|
from packaging import version
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...onnx import OnnxConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class YolosConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`YolosModel`]. It is used to instantiate a YOLOS
|
||
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||
|
defaults will yield a similar configuration to that of the YOLOS
|
||
|
[hustvl/yolos-base](https://huggingface.co/hustvl/yolos-base) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
image_size (`List[int]`, *optional*, defaults to `[512, 864]`):
|
||
|
The size (resolution) of each image.
|
||
|
patch_size (`int`, *optional*, defaults to 16):
|
||
|
The size (resolution) of each patch.
|
||
|
num_channels (`int`, *optional*, defaults to 3):
|
||
|
The number of input channels.
|
||
|
qkv_bias (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to add a bias to the queries, keys and values.
|
||
|
num_detection_tokens (`int`, *optional*, defaults to 100):
|
||
|
The number of detection tokens.
|
||
|
use_mid_position_embeddings (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to use the mid-layer position encodings.
|
||
|
auxiliary_loss (`bool`, *optional*, defaults to `False`):
|
||
|
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
|
||
|
class_cost (`float`, *optional*, defaults to 1):
|
||
|
Relative weight of the classification error in the Hungarian matching cost.
|
||
|
bbox_cost (`float`, *optional*, defaults to 5):
|
||
|
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
|
||
|
giou_cost (`float`, *optional*, defaults to 2):
|
||
|
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
|
||
|
bbox_loss_coefficient (`float`, *optional*, defaults to 5):
|
||
|
Relative weight of the L1 bounding box loss in the object detection loss.
|
||
|
giou_loss_coefficient (`float`, *optional*, defaults to 2):
|
||
|
Relative weight of the generalized IoU loss in the object detection loss.
|
||
|
eos_coefficient (`float`, *optional*, defaults to 0.1):
|
||
|
Relative classification weight of the 'no-object' class in the object detection loss.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import YolosConfig, YolosModel
|
||
|
|
||
|
>>> # Initializing a YOLOS hustvl/yolos-base style configuration
|
||
|
>>> configuration = YolosConfig()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the hustvl/yolos-base style configuration
|
||
|
>>> model = YolosModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "yolos"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size=768,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
intermediate_size=3072,
|
||
|
hidden_act="gelu",
|
||
|
hidden_dropout_prob=0.0,
|
||
|
attention_probs_dropout_prob=0.0,
|
||
|
initializer_range=0.02,
|
||
|
layer_norm_eps=1e-12,
|
||
|
image_size=[512, 864],
|
||
|
patch_size=16,
|
||
|
num_channels=3,
|
||
|
qkv_bias=True,
|
||
|
num_detection_tokens=100,
|
||
|
use_mid_position_embeddings=True,
|
||
|
auxiliary_loss=False,
|
||
|
class_cost=1,
|
||
|
bbox_cost=5,
|
||
|
giou_cost=2,
|
||
|
bbox_loss_coefficient=5,
|
||
|
giou_loss_coefficient=2,
|
||
|
eos_coefficient=0.1,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.hidden_act = hidden_act
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.initializer_range = initializer_range
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.image_size = image_size
|
||
|
self.patch_size = patch_size
|
||
|
self.num_channels = num_channels
|
||
|
self.qkv_bias = qkv_bias
|
||
|
self.num_detection_tokens = num_detection_tokens
|
||
|
self.use_mid_position_embeddings = use_mid_position_embeddings
|
||
|
self.auxiliary_loss = auxiliary_loss
|
||
|
# Hungarian matcher
|
||
|
self.class_cost = class_cost
|
||
|
self.bbox_cost = bbox_cost
|
||
|
self.giou_cost = giou_cost
|
||
|
# Loss coefficients
|
||
|
self.bbox_loss_coefficient = bbox_loss_coefficient
|
||
|
self.giou_loss_coefficient = giou_loss_coefficient
|
||
|
self.eos_coefficient = eos_coefficient
|
||
|
|
||
|
|
||
|
class YolosOnnxConfig(OnnxConfig):
|
||
|
torch_onnx_minimum_version = version.parse("1.11")
|
||
|
|
||
|
@property
|
||
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
||
|
return OrderedDict(
|
||
|
[
|
||
|
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def atol_for_validation(self) -> float:
|
||
|
return 1e-4
|
||
|
|
||
|
@property
|
||
|
def default_onnx_opset(self) -> int:
|
||
|
return 12
|