95 lines
3.8 KiB
Python
95 lines
3.8 KiB
Python
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import importlib
|
||
|
from typing import TYPE_CHECKING, Optional
|
||
|
|
||
|
from packaging import version
|
||
|
|
||
|
from .base import HfQuantizer
|
||
|
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from ..modeling_utils import PreTrainedModel
|
||
|
|
||
|
from ..utils import is_auto_gptq_available, is_optimum_available, is_torch_available, logging
|
||
|
from ..utils.quantization_config import GPTQConfig, QuantizationConfigMixin
|
||
|
|
||
|
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class GptqHfQuantizer(HfQuantizer):
|
||
|
"""
|
||
|
Quantizer of the GPTQ method - for GPTQ the quantizer support calibration of the model through
|
||
|
`auto_gptq` package. Quantization is done under the hood for users if they load a non-prequantized model.
|
||
|
"""
|
||
|
|
||
|
requires_calibration = False
|
||
|
required_packages = ["optimum", "auto_gptq"]
|
||
|
optimum_quantizer = None
|
||
|
|
||
|
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
|
||
|
super().__init__(quantization_config, **kwargs)
|
||
|
from optimum.gptq import GPTQQuantizer
|
||
|
|
||
|
self.optimum_quantizer = GPTQQuantizer.from_dict(self.quantization_config.to_dict_optimum())
|
||
|
|
||
|
def validate_environment(self, *args, **kwargs):
|
||
|
gptq_supports_cpu = version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2")
|
||
|
if not gptq_supports_cpu and not torch.cuda.is_available():
|
||
|
raise RuntimeError("GPU is required to quantize or run quantize model.")
|
||
|
elif not (is_optimum_available() and is_auto_gptq_available()):
|
||
|
raise ImportError(
|
||
|
"Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)"
|
||
|
)
|
||
|
elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"):
|
||
|
raise ImportError(
|
||
|
"You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`"
|
||
|
)
|
||
|
|
||
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
|
||
|
if torch_dtype is None:
|
||
|
torch_dtype = torch.float16
|
||
|
elif torch_dtype != torch.float16:
|
||
|
logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.")
|
||
|
return torch_dtype
|
||
|
|
||
|
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs):
|
||
|
if model.__class__.main_input_name != "input_ids":
|
||
|
raise RuntimeError("We can only quantize pure text model.")
|
||
|
|
||
|
if self.pre_quantized:
|
||
|
model = self.optimum_quantizer.convert_model(model)
|
||
|
|
||
|
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
|
||
|
if self.pre_quantized:
|
||
|
model = self.optimum_quantizer.post_init_model(model)
|
||
|
else:
|
||
|
if self.quantization_config.tokenizer is None:
|
||
|
self.quantization_config.tokenizer = model.name_or_path
|
||
|
|
||
|
self.optimum_quantizer.quantize_model(model, self.quantization_config.tokenizer)
|
||
|
model.config.quantization_config = GPTQConfig.from_dict(self.optimum_quantizer.to_dict())
|
||
|
|
||
|
@property
|
||
|
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
|
||
|
return True
|
||
|
|
||
|
@property
|
||
|
def is_serializable(self):
|
||
|
return True
|