201 lines
7.7 KiB
Python
201 lines
7.7 KiB
Python
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import importlib
|
||
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||
|
|
||
|
from packaging import version
|
||
|
|
||
|
from .base import HfQuantizer
|
||
|
from .quantizers_utils import get_module_from_name
|
||
|
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from ..modeling_utils import PreTrainedModel
|
||
|
|
||
|
from ..utils import is_accelerate_available, is_quanto_available, is_torch_available, logging
|
||
|
from ..utils.quantization_config import QuantoConfig
|
||
|
|
||
|
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class QuantoHfQuantizer(HfQuantizer):
|
||
|
"""
|
||
|
Quantizer for the quanto library
|
||
|
"""
|
||
|
|
||
|
required_packages = ["quanto", "accelerate"]
|
||
|
requires_parameters_quantization = True
|
||
|
requires_calibration = False
|
||
|
|
||
|
def __init__(self, quantization_config: QuantoConfig, **kwargs):
|
||
|
super().__init__(quantization_config, **kwargs)
|
||
|
self.post_init()
|
||
|
|
||
|
def post_init(self):
|
||
|
r"""
|
||
|
Safety checker
|
||
|
"""
|
||
|
if self.quantization_config.activations is not None and not self.pre_quantized:
|
||
|
raise ValueError(
|
||
|
"We don't support quantizing the activations with transformers library."
|
||
|
"Use quanto library for more complex use cases such as activations quantization, calibration and quantization aware training."
|
||
|
)
|
||
|
|
||
|
def validate_environment(self, *args, **kwargs):
|
||
|
if not is_quanto_available():
|
||
|
raise ImportError("Loading a quanto quantized model requires quanto library (`pip install quanto`)")
|
||
|
if not is_accelerate_available():
|
||
|
raise ImportError(
|
||
|
"Loading a quanto quantized model requires accelerate library (`pip install accelerate`)"
|
||
|
)
|
||
|
|
||
|
def update_device_map(self, device_map):
|
||
|
if device_map is None:
|
||
|
device_map = {"": "cpu"}
|
||
|
logger.info(
|
||
|
"The device_map was not initialized. "
|
||
|
"Setting device_map to {'':'cpu'}. "
|
||
|
"If you want to use the model for inference, please set device_map ='auto'"
|
||
|
)
|
||
|
return device_map
|
||
|
|
||
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
|
||
|
if torch_dtype is None:
|
||
|
logger.info("You did not specify `torch_dtype` in `from_pretrained`. Setting it to `torch.float32`.")
|
||
|
torch_dtype = torch.float32
|
||
|
return torch_dtype
|
||
|
|
||
|
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
|
||
|
import quanto
|
||
|
|
||
|
not_missing_keys = []
|
||
|
for name, module in model.named_modules():
|
||
|
if isinstance(module, quanto.QModuleMixin):
|
||
|
for missing in missing_keys:
|
||
|
if (
|
||
|
(name in missing or name in f"{prefix}.{missing}")
|
||
|
and not missing.endswith(".weight")
|
||
|
and not missing.endswith(".bias")
|
||
|
):
|
||
|
not_missing_keys.append(missing)
|
||
|
return [k for k in missing_keys if k not in not_missing_keys]
|
||
|
|
||
|
def check_quantized_param(
|
||
|
self,
|
||
|
model: "PreTrainedModel",
|
||
|
param_value: "torch.Tensor",
|
||
|
param_name: str,
|
||
|
state_dict: Dict[str, Any],
|
||
|
**kwargs,
|
||
|
) -> bool:
|
||
|
"""
|
||
|
Check if a parameter needs to be quantized.
|
||
|
"""
|
||
|
import quanto
|
||
|
|
||
|
device_map = kwargs.get("device_map", None)
|
||
|
param_device = kwargs.get("param_device", None)
|
||
|
# we don't quantize the model if the module is going to be offloaded to the cpu
|
||
|
if device_map is not None and param_device is not None:
|
||
|
device_map_values = set(device_map.values())
|
||
|
if param_device == "cpu" and len(device_map_values) > 1:
|
||
|
if not (device_map_values == {"cpu"} or device_map_values == {"cpu", "disk"}):
|
||
|
return False
|
||
|
|
||
|
module, tensor_name = get_module_from_name(model, param_name)
|
||
|
# We only quantize the weights and the bias is not quantized.
|
||
|
if isinstance(module, quanto.QModuleMixin) and "weight" in tensor_name:
|
||
|
# if the weights are quantized, don't need to recreate it again with `create_quantized_param`
|
||
|
return not module.frozen
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
|
||
|
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
|
||
|
return max_memory
|
||
|
|
||
|
def create_quantized_param(
|
||
|
self,
|
||
|
model: "PreTrainedModel",
|
||
|
param_value: "torch.Tensor",
|
||
|
param_name: str,
|
||
|
target_device: "torch.device",
|
||
|
*args,
|
||
|
**kwargs,
|
||
|
):
|
||
|
"""
|
||
|
Create the quantized parameter by calling .freeze() after setting it to the module.
|
||
|
"""
|
||
|
from accelerate.utils import set_module_tensor_to_device
|
||
|
|
||
|
set_module_tensor_to_device(model, param_name, target_device, param_value)
|
||
|
module, _ = get_module_from_name(model, param_name)
|
||
|
module.freeze()
|
||
|
module.weight.requires_grad = False
|
||
|
|
||
|
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
|
||
|
if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.27.0"):
|
||
|
from accelerate.utils import CustomDtype
|
||
|
|
||
|
mapping = {
|
||
|
"int8": torch.int8,
|
||
|
"float8": CustomDtype.FP8,
|
||
|
"int4": CustomDtype.INT4,
|
||
|
"int2": CustomDtype.INT2,
|
||
|
}
|
||
|
target_dtype = mapping[self.quantization_config.weights]
|
||
|
return target_dtype
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"You are using `device_map='auto'` on a quanto quantized model. To automatically compute"
|
||
|
" the appropriate device map, you should upgrade your `accelerate` library,"
|
||
|
"`pip install --upgrade accelerate` or install it from source."
|
||
|
)
|
||
|
|
||
|
def _process_model_before_weight_loading(
|
||
|
self, model: "PreTrainedModel", keep_in_fp32_modules: List[str] = [], **kwargs
|
||
|
):
|
||
|
from ..integrations import get_keys_to_not_convert, replace_with_quanto_layers
|
||
|
|
||
|
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
|
||
|
if self.quantization_config.modules_to_not_convert is None:
|
||
|
self.modules_to_not_convert = get_keys_to_not_convert(model)
|
||
|
else:
|
||
|
self.modules_to_not_convert = self.quantization_config.modules_to_not_convert
|
||
|
|
||
|
if not isinstance(self.modules_to_not_convert, list):
|
||
|
self.modules_to_not_convert = [self.modules_to_not_convert]
|
||
|
|
||
|
self.modules_to_not_convert.extend(keep_in_fp32_modules)
|
||
|
|
||
|
model, _ = replace_with_quanto_layers(
|
||
|
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
|
||
|
)
|
||
|
model.config.quantization_config = self.quantization_config
|
||
|
|
||
|
def _process_model_after_weight_loading(self, model):
|
||
|
return model
|
||
|
|
||
|
@property
|
||
|
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
|
||
|
return False
|
||
|
|
||
|
@property
|
||
|
def is_serializable(self):
|
||
|
return False
|