198 lines
7.4 KiB
Python
198 lines
7.4 KiB
Python
|
import argparse
|
||
|
import os
|
||
|
from argparse import RawTextHelpFormatter
|
||
|
|
||
|
import torch
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from TTS.config import load_config
|
||
|
from TTS.config.shared_configs import BaseDatasetConfig
|
||
|
from TTS.tts.datasets import load_tts_samples
|
||
|
from TTS.tts.utils.managers import save_file
|
||
|
from TTS.tts.utils.speakers import SpeakerManager
|
||
|
|
||
|
|
||
|
def compute_embeddings(
|
||
|
model_path,
|
||
|
config_path,
|
||
|
output_path,
|
||
|
old_speakers_file=None,
|
||
|
old_append=False,
|
||
|
config_dataset_path=None,
|
||
|
formatter_name=None,
|
||
|
dataset_name=None,
|
||
|
dataset_path=None,
|
||
|
meta_file_train=None,
|
||
|
meta_file_val=None,
|
||
|
disable_cuda=False,
|
||
|
no_eval=False,
|
||
|
):
|
||
|
use_cuda = torch.cuda.is_available() and not disable_cuda
|
||
|
|
||
|
if config_dataset_path is not None:
|
||
|
c_dataset = load_config(config_dataset_path)
|
||
|
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not no_eval)
|
||
|
else:
|
||
|
c_dataset = BaseDatasetConfig()
|
||
|
c_dataset.formatter = formatter_name
|
||
|
c_dataset.dataset_name = dataset_name
|
||
|
c_dataset.path = dataset_path
|
||
|
if meta_file_train is not None:
|
||
|
c_dataset.meta_file_train = meta_file_train
|
||
|
if meta_file_val is not None:
|
||
|
c_dataset.meta_file_val = meta_file_val
|
||
|
meta_data_train, meta_data_eval = load_tts_samples(c_dataset, eval_split=not no_eval)
|
||
|
|
||
|
if meta_data_eval is None:
|
||
|
samples = meta_data_train
|
||
|
else:
|
||
|
samples = meta_data_train + meta_data_eval
|
||
|
|
||
|
encoder_manager = SpeakerManager(
|
||
|
encoder_model_path=model_path,
|
||
|
encoder_config_path=config_path,
|
||
|
d_vectors_file_path=old_speakers_file,
|
||
|
use_cuda=use_cuda,
|
||
|
)
|
||
|
|
||
|
class_name_key = encoder_manager.encoder_config.class_name_key
|
||
|
|
||
|
# compute speaker embeddings
|
||
|
if old_speakers_file is not None and old_append:
|
||
|
speaker_mapping = encoder_manager.embeddings
|
||
|
else:
|
||
|
speaker_mapping = {}
|
||
|
|
||
|
for fields in tqdm(samples):
|
||
|
class_name = fields[class_name_key]
|
||
|
audio_file = fields["audio_file"]
|
||
|
embedding_key = fields["audio_unique_name"]
|
||
|
|
||
|
# Only update the speaker name when the embedding is already in the old file.
|
||
|
if embedding_key in speaker_mapping:
|
||
|
speaker_mapping[embedding_key]["name"] = class_name
|
||
|
continue
|
||
|
|
||
|
if old_speakers_file is not None and embedding_key in encoder_manager.clip_ids:
|
||
|
# get the embedding from the old file
|
||
|
embedd = encoder_manager.get_embedding_by_clip(embedding_key)
|
||
|
else:
|
||
|
# extract the embedding
|
||
|
embedd = encoder_manager.compute_embedding_from_clip(audio_file)
|
||
|
|
||
|
# create speaker_mapping if target dataset is defined
|
||
|
speaker_mapping[embedding_key] = {}
|
||
|
speaker_mapping[embedding_key]["name"] = class_name
|
||
|
speaker_mapping[embedding_key]["embedding"] = embedd
|
||
|
|
||
|
if speaker_mapping:
|
||
|
# save speaker_mapping if target dataset is defined
|
||
|
if os.path.isdir(output_path):
|
||
|
mapping_file_path = os.path.join(output_path, "speakers.pth")
|
||
|
else:
|
||
|
mapping_file_path = output_path
|
||
|
|
||
|
if os.path.dirname(mapping_file_path) != "":
|
||
|
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)
|
||
|
|
||
|
save_file(speaker_mapping, mapping_file_path)
|
||
|
print("Speaker embeddings saved at:", mapping_file_path)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description="""Compute embedding vectors for each audio file in a dataset and store them keyed by `{dataset_name}#{file_path}` in a .pth file\n\n"""
|
||
|
"""
|
||
|
Example runs:
|
||
|
python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --config_dataset_path dataset_config.json
|
||
|
|
||
|
python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --formatter_name coqui --dataset_path /path/to/vctk/dataset --dataset_name my_vctk --meta_file_train /path/to/vctk/metafile_train.csv --meta_file_val /path/to/vctk/metafile_eval.csv
|
||
|
""",
|
||
|
formatter_class=RawTextHelpFormatter,
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--model_path",
|
||
|
type=str,
|
||
|
help="Path to model checkpoint file. It defaults to the released speaker encoder.",
|
||
|
default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--config_path",
|
||
|
type=str,
|
||
|
help="Path to model config file. It defaults to the released speaker encoder config.",
|
||
|
default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--config_dataset_path",
|
||
|
type=str,
|
||
|
help="Path to dataset config file. You either need to provide this or `formatter_name`, `dataset_name` and `dataset_path` arguments.",
|
||
|
default=None,
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--output_path",
|
||
|
type=str,
|
||
|
help="Path for output `pth` or `json` file.",
|
||
|
default="speakers.pth",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--old_file",
|
||
|
type=str,
|
||
|
help="The old existing embedding file, from which the embeddings will be directly loaded for already computed audio clips.",
|
||
|
default=None,
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--old_append",
|
||
|
help="Append new audio clip embeddings to the old embedding file, generate a new non-duplicated merged embedding file. Default False",
|
||
|
default=False,
|
||
|
action="store_true",
|
||
|
)
|
||
|
parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False)
|
||
|
parser.add_argument("--no_eval", help="Do not compute eval?. Default False", default=False, action="store_true")
|
||
|
parser.add_argument(
|
||
|
"--formatter_name",
|
||
|
type=str,
|
||
|
help="Name of the formatter to use. You either need to provide this or `config_dataset_path`",
|
||
|
default=None,
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--dataset_name",
|
||
|
type=str,
|
||
|
help="Name of the dataset to use. You either need to provide this or `config_dataset_path`",
|
||
|
default=None,
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--dataset_path",
|
||
|
type=str,
|
||
|
help="Path to the dataset. You either need to provide this or `config_dataset_path`",
|
||
|
default=None,
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--meta_file_train",
|
||
|
type=str,
|
||
|
help="Path to the train meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`",
|
||
|
default=None,
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--meta_file_val",
|
||
|
type=str,
|
||
|
help="Path to the evaluation meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`",
|
||
|
default=None,
|
||
|
)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
compute_embeddings(
|
||
|
args.model_path,
|
||
|
args.config_path,
|
||
|
args.output_path,
|
||
|
old_speakers_file=args.old_file,
|
||
|
old_append=args.old_append,
|
||
|
config_dataset_path=args.config_dataset_path,
|
||
|
formatter_name=args.formatter_name,
|
||
|
dataset_name=args.dataset_name,
|
||
|
dataset_path=args.dataset_path,
|
||
|
meta_file_train=args.meta_file_train,
|
||
|
meta_file_val=args.meta_file_val,
|
||
|
disable_cuda=args.disable_cuda,
|
||
|
no_eval=args.no_eval,
|
||
|
)
|