89 lines
3.1 KiB
Python
89 lines
3.1 KiB
Python
|
import argparse
|
||
|
from argparse import RawTextHelpFormatter
|
||
|
|
||
|
import torch
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from TTS.config import load_config
|
||
|
from TTS.tts.datasets import load_tts_samples
|
||
|
from TTS.tts.utils.speakers import SpeakerManager
|
||
|
|
||
|
|
||
|
def compute_encoder_accuracy(dataset_items, encoder_manager):
|
||
|
class_name_key = encoder_manager.encoder_config.class_name_key
|
||
|
map_classid_to_classname = getattr(encoder_manager.encoder_config, "map_classid_to_classname", None)
|
||
|
|
||
|
class_acc_dict = {}
|
||
|
|
||
|
# compute embeddings for all wav_files
|
||
|
for item in tqdm(dataset_items):
|
||
|
class_name = item[class_name_key]
|
||
|
wav_file = item["audio_file"]
|
||
|
|
||
|
# extract the embedding
|
||
|
embedd = encoder_manager.compute_embedding_from_clip(wav_file)
|
||
|
if encoder_manager.encoder_criterion is not None and map_classid_to_classname is not None:
|
||
|
embedding = torch.FloatTensor(embedd).unsqueeze(0)
|
||
|
if encoder_manager.use_cuda:
|
||
|
embedding = embedding.cuda()
|
||
|
|
||
|
class_id = encoder_manager.encoder_criterion.softmax.inference(embedding).item()
|
||
|
predicted_label = map_classid_to_classname[str(class_id)]
|
||
|
else:
|
||
|
predicted_label = None
|
||
|
|
||
|
if class_name is not None and predicted_label is not None:
|
||
|
is_equal = int(class_name == predicted_label)
|
||
|
if class_name not in class_acc_dict:
|
||
|
class_acc_dict[class_name] = [is_equal]
|
||
|
else:
|
||
|
class_acc_dict[class_name].append(is_equal)
|
||
|
else:
|
||
|
raise RuntimeError("Error: class_name or/and predicted_label are None")
|
||
|
|
||
|
acc_avg = 0
|
||
|
for key, values in class_acc_dict.items():
|
||
|
acc = sum(values) / len(values)
|
||
|
print("Class", key, "Accuracy:", acc)
|
||
|
acc_avg += acc
|
||
|
|
||
|
print("Average Accuracy:", acc_avg / len(class_acc_dict))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description="""Compute the accuracy of the encoder.\n\n"""
|
||
|
"""
|
||
|
Example runs:
|
||
|
python TTS/bin/eval_encoder.py emotion_encoder_model.pth emotion_encoder_config.json dataset_config.json
|
||
|
""",
|
||
|
formatter_class=RawTextHelpFormatter,
|
||
|
)
|
||
|
parser.add_argument("model_path", type=str, help="Path to model checkpoint file.")
|
||
|
parser.add_argument(
|
||
|
"config_path",
|
||
|
type=str,
|
||
|
help="Path to model config file.",
|
||
|
)
|
||
|
|
||
|
parser.add_argument(
|
||
|
"config_dataset_path",
|
||
|
type=str,
|
||
|
help="Path to dataset config file.",
|
||
|
)
|
||
|
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True)
|
||
|
parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
c_dataset = load_config(args.config_dataset_path)
|
||
|
|
||
|
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval)
|
||
|
items = meta_data_train + meta_data_eval
|
||
|
|
||
|
enc_manager = SpeakerManager(
|
||
|
encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda
|
||
|
)
|
||
|
|
||
|
compute_encoder_accuracy(items, enc_manager)
|