171 lines
7.5 KiB
Python
171 lines
7.5 KiB
Python
|
from dataclasses import dataclass, field
|
||
|
from typing import List
|
||
|
|
||
|
from TTS.tts.configs.shared_configs import BaseTTSConfig
|
||
|
from TTS.tts.models.delightful_tts import DelightfulTtsArgs, DelightfulTtsAudioConfig, VocoderConfig
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DelightfulTTSConfig(BaseTTSConfig):
|
||
|
"""
|
||
|
Configuration class for the DelightfulTTS model.
|
||
|
|
||
|
Attributes:
|
||
|
model (str): Name of the model ("delightful_tts").
|
||
|
audio (DelightfulTtsAudioConfig): Configuration for audio settings.
|
||
|
model_args (DelightfulTtsArgs): Configuration for model arguments.
|
||
|
use_attn_priors (bool): Whether to use attention priors.
|
||
|
vocoder (VocoderConfig): Configuration for the vocoder.
|
||
|
init_discriminator (bool): Whether to initialize the discriminator.
|
||
|
steps_to_start_discriminator (int): Number of steps to start the discriminator.
|
||
|
grad_clip (List[float]): Gradient clipping values.
|
||
|
lr_gen (float): Learning rate for the gan generator.
|
||
|
lr_disc (float): Learning rate for the gan discriminator.
|
||
|
lr_scheduler_gen (str): Name of the learning rate scheduler for the generator.
|
||
|
lr_scheduler_gen_params (dict): Parameters for the learning rate scheduler for the generator.
|
||
|
lr_scheduler_disc (str): Name of the learning rate scheduler for the discriminator.
|
||
|
lr_scheduler_disc_params (dict): Parameters for the learning rate scheduler for the discriminator.
|
||
|
scheduler_after_epoch (bool): Whether to schedule after each epoch.
|
||
|
optimizer (str): Name of the optimizer.
|
||
|
optimizer_params (dict): Parameters for the optimizer.
|
||
|
ssim_loss_alpha (float): Alpha value for the SSIM loss.
|
||
|
mel_loss_alpha (float): Alpha value for the mel loss.
|
||
|
aligner_loss_alpha (float): Alpha value for the aligner loss.
|
||
|
pitch_loss_alpha (float): Alpha value for the pitch loss.
|
||
|
energy_loss_alpha (float): Alpha value for the energy loss.
|
||
|
u_prosody_loss_alpha (float): Alpha value for the utterance prosody loss.
|
||
|
p_prosody_loss_alpha (float): Alpha value for the phoneme prosody loss.
|
||
|
dur_loss_alpha (float): Alpha value for the duration loss.
|
||
|
char_dur_loss_alpha (float): Alpha value for the character duration loss.
|
||
|
binary_align_loss_alpha (float): Alpha value for the binary alignment loss.
|
||
|
binary_loss_warmup_epochs (int): Number of warm-up epochs for the binary loss.
|
||
|
disc_loss_alpha (float): Alpha value for the discriminator loss.
|
||
|
gen_loss_alpha (float): Alpha value for the generator loss.
|
||
|
feat_loss_alpha (float): Alpha value for the feature loss.
|
||
|
vocoder_mel_loss_alpha (float): Alpha value for the vocoder mel loss.
|
||
|
multi_scale_stft_loss_alpha (float): Alpha value for the multi-scale STFT loss.
|
||
|
multi_scale_stft_loss_params (dict): Parameters for the multi-scale STFT loss.
|
||
|
return_wav (bool): Whether to return audio waveforms.
|
||
|
use_weighted_sampler (bool): Whether to use a weighted sampler.
|
||
|
weighted_sampler_attrs (dict): Attributes for the weighted sampler.
|
||
|
weighted_sampler_multipliers (dict): Multipliers for the weighted sampler.
|
||
|
r (int): Value for the `r` override.
|
||
|
compute_f0 (bool): Whether to compute F0 values.
|
||
|
f0_cache_path (str): Path to the F0 cache.
|
||
|
attn_prior_cache_path (str): Path to the attention prior cache.
|
||
|
num_speakers (int): Number of speakers.
|
||
|
use_speaker_embedding (bool): Whether to use speaker embedding.
|
||
|
speakers_file (str): Path to the speaker file.
|
||
|
speaker_embedding_channels (int): Number of channels for the speaker embedding.
|
||
|
language_ids_file (str): Path to the language IDs file.
|
||
|
"""
|
||
|
|
||
|
model: str = "delightful_tts"
|
||
|
|
||
|
# model specific params
|
||
|
audio: DelightfulTtsAudioConfig = field(default_factory=DelightfulTtsAudioConfig)
|
||
|
model_args: DelightfulTtsArgs = field(default_factory=DelightfulTtsArgs)
|
||
|
use_attn_priors: bool = True
|
||
|
|
||
|
# vocoder
|
||
|
vocoder: VocoderConfig = field(default_factory=VocoderConfig)
|
||
|
init_discriminator: bool = True
|
||
|
|
||
|
# optimizer
|
||
|
steps_to_start_discriminator: int = 200000
|
||
|
grad_clip: List[float] = field(default_factory=lambda: [1000, 1000])
|
||
|
lr_gen: float = 0.0002
|
||
|
lr_disc: float = 0.0002
|
||
|
lr_scheduler_gen: str = "ExponentialLR"
|
||
|
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
|
||
|
lr_scheduler_disc: str = "ExponentialLR"
|
||
|
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
|
||
|
scheduler_after_epoch: bool = True
|
||
|
optimizer: str = "AdamW"
|
||
|
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01})
|
||
|
|
||
|
# acoustic model loss params
|
||
|
ssim_loss_alpha: float = 1.0
|
||
|
mel_loss_alpha: float = 1.0
|
||
|
aligner_loss_alpha: float = 1.0
|
||
|
pitch_loss_alpha: float = 1.0
|
||
|
energy_loss_alpha: float = 1.0
|
||
|
u_prosody_loss_alpha: float = 0.5
|
||
|
p_prosody_loss_alpha: float = 0.5
|
||
|
dur_loss_alpha: float = 1.0
|
||
|
char_dur_loss_alpha: float = 0.01
|
||
|
binary_align_loss_alpha: float = 0.1
|
||
|
binary_loss_warmup_epochs: int = 10
|
||
|
|
||
|
# vocoder loss params
|
||
|
disc_loss_alpha: float = 1.0
|
||
|
gen_loss_alpha: float = 1.0
|
||
|
feat_loss_alpha: float = 1.0
|
||
|
vocoder_mel_loss_alpha: float = 10.0
|
||
|
multi_scale_stft_loss_alpha: float = 2.5
|
||
|
multi_scale_stft_loss_params: dict = field(
|
||
|
default_factory=lambda: {
|
||
|
"n_ffts": [1024, 2048, 512],
|
||
|
"hop_lengths": [120, 240, 50],
|
||
|
"win_lengths": [600, 1200, 240],
|
||
|
}
|
||
|
)
|
||
|
|
||
|
# data loader params
|
||
|
return_wav: bool = True
|
||
|
use_weighted_sampler: bool = False
|
||
|
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
|
||
|
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
|
||
|
|
||
|
# overrides
|
||
|
r: int = 1
|
||
|
|
||
|
# dataset configs
|
||
|
compute_f0: bool = True
|
||
|
f0_cache_path: str = None
|
||
|
attn_prior_cache_path: str = None
|
||
|
|
||
|
# multi-speaker settings
|
||
|
# use speaker embedding layer
|
||
|
num_speakers: int = 0
|
||
|
use_speaker_embedding: bool = False
|
||
|
speakers_file: str = None
|
||
|
speaker_embedding_channels: int = 256
|
||
|
language_ids_file: str = None
|
||
|
use_language_embedding: bool = False
|
||
|
|
||
|
# use d-vectors
|
||
|
use_d_vector_file: bool = False
|
||
|
d_vector_file: str = None
|
||
|
d_vector_dim: int = None
|
||
|
|
||
|
# testing
|
||
|
test_sentences: List[List[str]] = field(
|
||
|
default_factory=lambda: [
|
||
|
["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."],
|
||
|
["Be a voice, not an echo."],
|
||
|
["I'm sorry Dave. I'm afraid I can't do that."],
|
||
|
["This cake is great. It's so delicious and moist."],
|
||
|
["Prior to November 22, 1963."],
|
||
|
]
|
||
|
)
|
||
|
|
||
|
def __post_init__(self):
|
||
|
# Pass multi-speaker parameters to the model args as `model.init_multispeaker()` looks for it there.
|
||
|
if self.num_speakers > 0:
|
||
|
self.model_args.num_speakers = self.num_speakers
|
||
|
|
||
|
# speaker embedding settings
|
||
|
if self.use_speaker_embedding:
|
||
|
self.model_args.use_speaker_embedding = True
|
||
|
if self.speakers_file:
|
||
|
self.model_args.speakers_file = self.speakers_file
|
||
|
|
||
|
# d-vector settings
|
||
|
if self.use_d_vector_file:
|
||
|
self.model_args.use_d_vector_file = True
|
||
|
if self.d_vector_dim is not None and self.d_vector_dim > 0:
|
||
|
self.model_args.d_vector_dim = self.d_vector_dim
|
||
|
if self.d_vector_file:
|
||
|
self.model_args.d_vector_file = self.d_vector_file
|