345 lines
14 KiB
Python
345 lines
14 KiB
Python
|
from dataclasses import asdict, dataclass, field
|
||
|
from typing import Dict, List
|
||
|
|
||
|
from coqpit import Coqpit, check_argument
|
||
|
|
||
|
from TTS.config import BaseAudioConfig, BaseDatasetConfig, BaseTrainingConfig
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class GSTConfig(Coqpit):
|
||
|
"""Defines the Global Style Token Module
|
||
|
|
||
|
Args:
|
||
|
gst_style_input_wav (str):
|
||
|
Path to the wav file used to define the style of the output speech at inference. Defaults to None.
|
||
|
|
||
|
gst_style_input_weights (dict):
|
||
|
Defines the weights for each style token used at inference. Defaults to None.
|
||
|
|
||
|
gst_embedding_dim (int):
|
||
|
Defines the size of the GST embedding vector dimensions. Defaults to 256.
|
||
|
|
||
|
gst_num_heads (int):
|
||
|
Number of attention heads used by the multi-head attention. Defaults to 4.
|
||
|
|
||
|
gst_num_style_tokens (int):
|
||
|
Number of style token vectors. Defaults to 10.
|
||
|
"""
|
||
|
|
||
|
gst_style_input_wav: str = None
|
||
|
gst_style_input_weights: dict = None
|
||
|
gst_embedding_dim: int = 256
|
||
|
gst_use_speaker_embedding: bool = False
|
||
|
gst_num_heads: int = 4
|
||
|
gst_num_style_tokens: int = 10
|
||
|
|
||
|
def check_values(
|
||
|
self,
|
||
|
):
|
||
|
"""Check config fields"""
|
||
|
c = asdict(self)
|
||
|
super().check_values()
|
||
|
check_argument("gst_style_input_weights", c, restricted=False)
|
||
|
check_argument("gst_style_input_wav", c, restricted=False)
|
||
|
check_argument("gst_embedding_dim", c, restricted=True, min_val=0, max_val=1000)
|
||
|
check_argument("gst_use_speaker_embedding", c, restricted=False)
|
||
|
check_argument("gst_num_heads", c, restricted=True, min_val=2, max_val=10)
|
||
|
check_argument("gst_num_style_tokens", c, restricted=True, min_val=1, max_val=1000)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CapacitronVAEConfig(Coqpit):
|
||
|
"""Defines the capacitron VAE Module
|
||
|
Args:
|
||
|
capacitron_capacity (int):
|
||
|
Defines the variational capacity limit of the prosody embeddings. Defaults to 150.
|
||
|
capacitron_VAE_embedding_dim (int):
|
||
|
Defines the size of the Capacitron embedding vector dimension. Defaults to 128.
|
||
|
capacitron_use_text_summary_embeddings (bool):
|
||
|
If True, use a text summary embedding in Capacitron. Defaults to True.
|
||
|
capacitron_text_summary_embedding_dim (int):
|
||
|
Defines the size of the capacitron text embedding vector dimension. Defaults to 128.
|
||
|
capacitron_use_speaker_embedding (bool):
|
||
|
if True use speaker embeddings in Capacitron. Defaults to False.
|
||
|
capacitron_VAE_loss_alpha (float):
|
||
|
Weight for the VAE loss of the Tacotron model. If set less than or equal to zero, it disables the
|
||
|
corresponding loss function. Defaults to 0.25
|
||
|
capacitron_grad_clip (float):
|
||
|
Gradient clipping value for all gradients except beta. Defaults to 5.0
|
||
|
"""
|
||
|
|
||
|
capacitron_loss_alpha: int = 1
|
||
|
capacitron_capacity: int = 150
|
||
|
capacitron_VAE_embedding_dim: int = 128
|
||
|
capacitron_use_text_summary_embeddings: bool = True
|
||
|
capacitron_text_summary_embedding_dim: int = 128
|
||
|
capacitron_use_speaker_embedding: bool = False
|
||
|
capacitron_VAE_loss_alpha: float = 0.25
|
||
|
capacitron_grad_clip: float = 5.0
|
||
|
|
||
|
def check_values(
|
||
|
self,
|
||
|
):
|
||
|
"""Check config fields"""
|
||
|
c = asdict(self)
|
||
|
super().check_values()
|
||
|
check_argument("capacitron_capacity", c, restricted=True, min_val=10, max_val=500)
|
||
|
check_argument("capacitron_VAE_embedding_dim", c, restricted=True, min_val=16, max_val=1024)
|
||
|
check_argument("capacitron_use_speaker_embedding", c, restricted=False)
|
||
|
check_argument("capacitron_text_summary_embedding_dim", c, restricted=False, min_val=16, max_val=512)
|
||
|
check_argument("capacitron_VAE_loss_alpha", c, restricted=False)
|
||
|
check_argument("capacitron_grad_clip", c, restricted=False)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CharactersConfig(Coqpit):
|
||
|
"""Defines arguments for the `BaseCharacters` or `BaseVocabulary` and their subclasses.
|
||
|
|
||
|
Args:
|
||
|
characters_class (str):
|
||
|
Defines the class of the characters used. If None, we pick ```Phonemes``` or ```Graphemes``` based on
|
||
|
the configuration. Defaults to None.
|
||
|
|
||
|
vocab_dict (dict):
|
||
|
Defines the vocabulary dictionary used to encode the characters. Defaults to None.
|
||
|
|
||
|
pad (str):
|
||
|
characters in place of empty padding. Defaults to None.
|
||
|
|
||
|
eos (str):
|
||
|
characters showing the end of a sentence. Defaults to None.
|
||
|
|
||
|
bos (str):
|
||
|
characters showing the beginning of a sentence. Defaults to None.
|
||
|
|
||
|
blank (str):
|
||
|
Optional character used between characters by some models for better prosody. Defaults to `_blank`.
|
||
|
|
||
|
characters (str):
|
||
|
character set used by the model. Characters not in this list are ignored when converting input text to
|
||
|
a list of sequence IDs. Defaults to None.
|
||
|
|
||
|
punctuations (str):
|
||
|
characters considered as punctuation as parsing the input sentence. Defaults to None.
|
||
|
|
||
|
phonemes (str):
|
||
|
characters considered as parsing phonemes. This is only for backwards compat. Use `characters` for new
|
||
|
models. Defaults to None.
|
||
|
|
||
|
is_unique (bool):
|
||
|
remove any duplicate characters in the character lists. It is a bandaid for compatibility with the old
|
||
|
models trained with character lists with duplicates. Defaults to True.
|
||
|
|
||
|
is_sorted (bool):
|
||
|
Sort the characters in alphabetical order. Defaults to True.
|
||
|
"""
|
||
|
|
||
|
characters_class: str = None
|
||
|
|
||
|
# using BaseVocabulary
|
||
|
vocab_dict: Dict = None
|
||
|
|
||
|
# using on BaseCharacters
|
||
|
pad: str = None
|
||
|
eos: str = None
|
||
|
bos: str = None
|
||
|
blank: str = None
|
||
|
characters: str = None
|
||
|
punctuations: str = None
|
||
|
phonemes: str = None
|
||
|
is_unique: bool = True # for backwards compatibility of models trained with char sets with duplicates
|
||
|
is_sorted: bool = True
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BaseTTSConfig(BaseTrainingConfig):
|
||
|
"""Shared parameters among all the tts models.
|
||
|
|
||
|
Args:
|
||
|
|
||
|
audio (BaseAudioConfig):
|
||
|
Audio processor config object instance.
|
||
|
|
||
|
use_phonemes (bool):
|
||
|
enable / disable phoneme use.
|
||
|
|
||
|
phonemizer (str):
|
||
|
Name of the phonemizer to use. If set None, the phonemizer will be selected by `phoneme_language`.
|
||
|
Defaults to None.
|
||
|
|
||
|
phoneme_language (str):
|
||
|
Language code for the phonemizer. You can check the list of supported languages by running
|
||
|
`python TTS/tts/utils/text/phonemizers/__init__.py`. Defaults to None.
|
||
|
|
||
|
compute_input_seq_cache (bool):
|
||
|
enable / disable precomputation of the phoneme sequences. At the expense of some delay at the beginning of
|
||
|
the training, It allows faster data loader time and precise limitation with `max_seq_len` and
|
||
|
`min_seq_len`.
|
||
|
|
||
|
text_cleaner (str):
|
||
|
Name of the text cleaner used for cleaning and formatting transcripts.
|
||
|
|
||
|
enable_eos_bos_chars (bool):
|
||
|
enable / disable the use of eos and bos characters.
|
||
|
|
||
|
test_senteces_file (str):
|
||
|
Path to a txt file that has sentences used at test time. The file must have a sentence per line.
|
||
|
|
||
|
phoneme_cache_path (str):
|
||
|
Path to the output folder caching the computed phonemes for each sample.
|
||
|
|
||
|
characters (CharactersConfig):
|
||
|
Instance of a CharactersConfig class.
|
||
|
|
||
|
batch_group_size (int):
|
||
|
Size of the batch groups used for bucketing. By default, the dataloader orders samples by the sequence
|
||
|
length for a more efficient and stable training. If `batch_group_size > 1` then it performs bucketing to
|
||
|
prevent using the same batches for each epoch.
|
||
|
|
||
|
loss_masking (bool):
|
||
|
enable / disable masking loss values against padded segments of samples in a batch.
|
||
|
|
||
|
min_text_len (int):
|
||
|
Minimum length of input text to be used. All shorter samples will be ignored. Defaults to 0.
|
||
|
|
||
|
max_text_len (int):
|
||
|
Maximum length of input text to be used. All longer samples will be ignored. Defaults to float("inf").
|
||
|
|
||
|
min_audio_len (int):
|
||
|
Minimum length of input audio to be used. All shorter samples will be ignored. Defaults to 0.
|
||
|
|
||
|
max_audio_len (int):
|
||
|
Maximum length of input audio to be used. All longer samples will be ignored. The maximum length in the
|
||
|
dataset defines the VRAM used in the training. Hence, pay attention to this value if you encounter an
|
||
|
OOM error in training. Defaults to float("inf").
|
||
|
|
||
|
compute_f0 (int):
|
||
|
(Not in use yet).
|
||
|
|
||
|
compute_energy (int):
|
||
|
(Not in use yet).
|
||
|
|
||
|
compute_linear_spec (bool):
|
||
|
If True data loader computes and returns linear spectrograms alongside the other data.
|
||
|
|
||
|
precompute_num_workers (int):
|
||
|
Number of workers to precompute features. Defaults to 0.
|
||
|
|
||
|
use_noise_augment (bool):
|
||
|
Augment the input audio with random noise.
|
||
|
|
||
|
start_by_longest (bool):
|
||
|
If True, the data loader will start loading the longest batch first. It is useful for checking OOM issues.
|
||
|
Defaults to False.
|
||
|
|
||
|
shuffle (bool):
|
||
|
If True, the data loader will shuffle the dataset when there is not sampler defined. Defaults to True.
|
||
|
|
||
|
drop_last (bool):
|
||
|
If True, the data loader will drop the last batch if it is not complete. It helps to prevent
|
||
|
issues that emerge from the partial batch statistics. Defaults to True.
|
||
|
|
||
|
add_blank (bool):
|
||
|
Add blank characters between each other two characters. It improves performance for some models at expense
|
||
|
of slower run-time due to the longer input sequence.
|
||
|
|
||
|
datasets (List[BaseDatasetConfig]):
|
||
|
List of datasets used for training. If multiple datasets are provided, they are merged and used together
|
||
|
for training.
|
||
|
|
||
|
optimizer (str):
|
||
|
Optimizer used for the training. Set one from `torch.optim.Optimizer` or `TTS.utils.training`.
|
||
|
Defaults to ``.
|
||
|
|
||
|
optimizer_params (dict):
|
||
|
Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}`
|
||
|
|
||
|
lr_scheduler (str):
|
||
|
Learning rate scheduler for the training. Use one from `torch.optim.Scheduler` schedulers or
|
||
|
`TTS.utils.training`. Defaults to ``.
|
||
|
|
||
|
lr_scheduler_params (dict):
|
||
|
Parameters for the generator learning rate scheduler. Defaults to `{"warmup": 4000}`.
|
||
|
|
||
|
test_sentences (List[str]):
|
||
|
List of sentences to be used at testing. Defaults to '[]'
|
||
|
|
||
|
eval_split_max_size (int):
|
||
|
Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled).
|
||
|
|
||
|
eval_split_size (float):
|
||
|
If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set.
|
||
|
If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%).
|
||
|
|
||
|
use_speaker_weighted_sampler (bool):
|
||
|
Enable / Disable the batch balancer by speaker. Defaults to ```False```.
|
||
|
|
||
|
speaker_weighted_sampler_alpha (float):
|
||
|
Number that control the influence of the speaker sampler weights. Defaults to ```1.0```.
|
||
|
|
||
|
use_language_weighted_sampler (bool):
|
||
|
Enable / Disable the batch balancer by language. Defaults to ```False```.
|
||
|
|
||
|
language_weighted_sampler_alpha (float):
|
||
|
Number that control the influence of the language sampler weights. Defaults to ```1.0```.
|
||
|
|
||
|
use_length_weighted_sampler (bool):
|
||
|
Enable / Disable the batch balancer by audio length. If enabled the dataset will be divided
|
||
|
into 10 buckets considering the min and max audio of the dataset. The sampler weights will be
|
||
|
computed forcing to have the same quantity of data for each bucket in each training batch. Defaults to ```False```.
|
||
|
|
||
|
length_weighted_sampler_alpha (float):
|
||
|
Number that control the influence of the length sampler weights. Defaults to ```1.0```.
|
||
|
"""
|
||
|
|
||
|
audio: BaseAudioConfig = field(default_factory=BaseAudioConfig)
|
||
|
# phoneme settings
|
||
|
use_phonemes: bool = False
|
||
|
phonemizer: str = None
|
||
|
phoneme_language: str = None
|
||
|
compute_input_seq_cache: bool = False
|
||
|
text_cleaner: str = None
|
||
|
enable_eos_bos_chars: bool = False
|
||
|
test_sentences_file: str = ""
|
||
|
phoneme_cache_path: str = None
|
||
|
# vocabulary parameters
|
||
|
characters: CharactersConfig = None
|
||
|
add_blank: bool = False
|
||
|
# training params
|
||
|
batch_group_size: int = 0
|
||
|
loss_masking: bool = None
|
||
|
# dataloading
|
||
|
min_audio_len: int = 1
|
||
|
max_audio_len: int = float("inf")
|
||
|
min_text_len: int = 1
|
||
|
max_text_len: int = float("inf")
|
||
|
compute_f0: bool = False
|
||
|
compute_energy: bool = False
|
||
|
compute_linear_spec: bool = False
|
||
|
precompute_num_workers: int = 0
|
||
|
use_noise_augment: bool = False
|
||
|
start_by_longest: bool = False
|
||
|
shuffle: bool = False
|
||
|
drop_last: bool = False
|
||
|
# dataset
|
||
|
datasets: List[BaseDatasetConfig] = field(default_factory=lambda: [BaseDatasetConfig()])
|
||
|
# optimizer
|
||
|
optimizer: str = "radam"
|
||
|
optimizer_params: dict = None
|
||
|
# scheduler
|
||
|
lr_scheduler: str = None
|
||
|
lr_scheduler_params: dict = field(default_factory=lambda: {})
|
||
|
# testing
|
||
|
test_sentences: List[str] = field(default_factory=lambda: [])
|
||
|
# evaluation
|
||
|
eval_split_max_size: int = None
|
||
|
eval_split_size: float = 0.01
|
||
|
# weighted samplers
|
||
|
use_speaker_weighted_sampler: bool = False
|
||
|
speaker_weighted_sampler_alpha: float = 1.0
|
||
|
use_language_weighted_sampler: bool = False
|
||
|
language_weighted_sampler_alpha: float = 1.0
|
||
|
use_length_weighted_sampler: bool = False
|
||
|
length_weighted_sampler_alpha: float = 1.0
|