177 lines
6.7 KiB
Python
177 lines
6.7 KiB
Python
|
from dataclasses import dataclass, field
|
||
|
from typing import List
|
||
|
|
||
|
from TTS.tts.configs.shared_configs import BaseTTSConfig
|
||
|
from TTS.tts.models.vits import VitsArgs, VitsAudioConfig
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class VitsConfig(BaseTTSConfig):
|
||
|
"""Defines parameters for VITS End2End TTS model.
|
||
|
|
||
|
Args:
|
||
|
model (str):
|
||
|
Model name. Do not change unless you know what you are doing.
|
||
|
|
||
|
model_args (VitsArgs):
|
||
|
Model architecture arguments. Defaults to `VitsArgs()`.
|
||
|
|
||
|
audio (VitsAudioConfig):
|
||
|
Audio processing configuration. Defaults to `VitsAudioConfig()`.
|
||
|
|
||
|
grad_clip (List):
|
||
|
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`.
|
||
|
|
||
|
lr_gen (float):
|
||
|
Initial learning rate for the generator. Defaults to 0.0002.
|
||
|
|
||
|
lr_disc (float):
|
||
|
Initial learning rate for the discriminator. Defaults to 0.0002.
|
||
|
|
||
|
lr_scheduler_gen (str):
|
||
|
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to
|
||
|
`ExponentialLR`.
|
||
|
|
||
|
lr_scheduler_gen_params (dict):
|
||
|
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
|
||
|
|
||
|
lr_scheduler_disc (str):
|
||
|
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to
|
||
|
`ExponentialLR`.
|
||
|
|
||
|
lr_scheduler_disc_params (dict):
|
||
|
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
|
||
|
|
||
|
scheduler_after_epoch (bool):
|
||
|
If true, step the schedulers after each epoch else after each step. Defaults to `False`.
|
||
|
|
||
|
optimizer (str):
|
||
|
Name of the optimizer to use with both the generator and the discriminator networks. One of the
|
||
|
`torch.optim.*`. Defaults to `AdamW`.
|
||
|
|
||
|
kl_loss_alpha (float):
|
||
|
Loss weight for KL loss. Defaults to 1.0.
|
||
|
|
||
|
disc_loss_alpha (float):
|
||
|
Loss weight for the discriminator loss. Defaults to 1.0.
|
||
|
|
||
|
gen_loss_alpha (float):
|
||
|
Loss weight for the generator loss. Defaults to 1.0.
|
||
|
|
||
|
feat_loss_alpha (float):
|
||
|
Loss weight for the feature matching loss. Defaults to 1.0.
|
||
|
|
||
|
mel_loss_alpha (float):
|
||
|
Loss weight for the mel loss. Defaults to 45.0.
|
||
|
|
||
|
return_wav (bool):
|
||
|
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
|
||
|
|
||
|
compute_linear_spec (bool):
|
||
|
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
|
||
|
|
||
|
use_weighted_sampler (bool):
|
||
|
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.
|
||
|
|
||
|
weighted_sampler_attrs (dict):
|
||
|
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
|
||
|
by overweighting `root_path` by 2.0. Defaults to `{}`.
|
||
|
|
||
|
weighted_sampler_multipliers (dict):
|
||
|
Weight each unique value of a key returned by the formatter for weighted sampling.
|
||
|
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
|
||
|
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.
|
||
|
|
||
|
r (int):
|
||
|
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
|
||
|
|
||
|
add_blank (bool):
|
||
|
If true, a blank token is added in between every character. Defaults to `True`.
|
||
|
|
||
|
test_sentences (List[List]):
|
||
|
List of sentences with speaker and language information to be used for testing.
|
||
|
|
||
|
language_ids_file (str):
|
||
|
Path to the language ids file.
|
||
|
|
||
|
use_language_embedding (bool):
|
||
|
If true, language embedding is used. Defaults to `False`.
|
||
|
|
||
|
Note:
|
||
|
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> from TTS.tts.configs.vits_config import VitsConfig
|
||
|
>>> config = VitsConfig()
|
||
|
"""
|
||
|
|
||
|
model: str = "vits"
|
||
|
# model specific params
|
||
|
model_args: VitsArgs = field(default_factory=VitsArgs)
|
||
|
audio: VitsAudioConfig = field(default_factory=VitsAudioConfig)
|
||
|
|
||
|
# optimizer
|
||
|
grad_clip: List[float] = field(default_factory=lambda: [1000, 1000])
|
||
|
lr_gen: float = 0.0002
|
||
|
lr_disc: float = 0.0002
|
||
|
lr_scheduler_gen: str = "ExponentialLR"
|
||
|
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
|
||
|
lr_scheduler_disc: str = "ExponentialLR"
|
||
|
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
|
||
|
scheduler_after_epoch: bool = True
|
||
|
optimizer: str = "AdamW"
|
||
|
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01})
|
||
|
|
||
|
# loss params
|
||
|
kl_loss_alpha: float = 1.0
|
||
|
disc_loss_alpha: float = 1.0
|
||
|
gen_loss_alpha: float = 1.0
|
||
|
feat_loss_alpha: float = 1.0
|
||
|
mel_loss_alpha: float = 45.0
|
||
|
dur_loss_alpha: float = 1.0
|
||
|
speaker_encoder_loss_alpha: float = 1.0
|
||
|
|
||
|
# data loader params
|
||
|
return_wav: bool = True
|
||
|
compute_linear_spec: bool = True
|
||
|
|
||
|
# sampler params
|
||
|
use_weighted_sampler: bool = False # TODO: move it to the base config
|
||
|
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
|
||
|
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
|
||
|
|
||
|
# overrides
|
||
|
r: int = 1 # DO NOT CHANGE
|
||
|
add_blank: bool = True
|
||
|
|
||
|
# testing
|
||
|
test_sentences: List[List] = field(
|
||
|
default_factory=lambda: [
|
||
|
["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."],
|
||
|
["Be a voice, not an echo."],
|
||
|
["I'm sorry Dave. I'm afraid I can't do that."],
|
||
|
["This cake is great. It's so delicious and moist."],
|
||
|
["Prior to November 22, 1963."],
|
||
|
]
|
||
|
)
|
||
|
|
||
|
# multi-speaker settings
|
||
|
# use speaker embedding layer
|
||
|
num_speakers: int = 0
|
||
|
use_speaker_embedding: bool = False
|
||
|
speakers_file: str = None
|
||
|
speaker_embedding_channels: int = 256
|
||
|
language_ids_file: str = None
|
||
|
use_language_embedding: bool = False
|
||
|
|
||
|
# use d-vectors
|
||
|
use_d_vector_file: bool = False
|
||
|
d_vector_file: List[str] = None
|
||
|
d_vector_dim: int = None
|
||
|
|
||
|
def __post_init__(self):
|
||
|
for key, val in self.model_args.items():
|
||
|
if hasattr(self, key):
|
||
|
self[key] = val
|