31 lines
975 B
Python
31 lines
975 B
Python
|
from torch import nn
|
||
|
|
||
|
|
||
|
class MDNBlock(nn.Module):
|
||
|
"""Mixture of Density Network implementation
|
||
|
https://arxiv.org/pdf/2003.01950.pdf
|
||
|
"""
|
||
|
|
||
|
def __init__(self, in_channels, out_channels):
|
||
|
super().__init__()
|
||
|
self.out_channels = out_channels
|
||
|
self.conv1 = nn.Conv1d(in_channels, in_channels, 1)
|
||
|
self.norm = nn.LayerNorm(in_channels)
|
||
|
self.relu = nn.ReLU()
|
||
|
self.dropout = nn.Dropout(0.1)
|
||
|
self.conv2 = nn.Conv1d(in_channels, out_channels, 1)
|
||
|
|
||
|
def forward(self, x):
|
||
|
o = self.conv1(x)
|
||
|
o = o.transpose(1, 2)
|
||
|
o = self.norm(o)
|
||
|
o = o.transpose(1, 2)
|
||
|
o = self.relu(o)
|
||
|
o = self.dropout(o)
|
||
|
mu_sigma = self.conv2(o)
|
||
|
# TODO: check this sigmoid
|
||
|
# mu = torch.sigmoid(mu_sigma[:, :self.out_channels//2, :])
|
||
|
mu = mu_sigma[:, : self.out_channels // 2, :]
|
||
|
log_sigma = mu_sigma[:, self.out_channels // 2 :, :]
|
||
|
return mu, log_sigma
|