142 lines
4.6 KiB
Python
142 lines
4.6 KiB
Python
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
from TTS.tts.layers.generic.normalization import ActNorm
|
||
|
from TTS.tts.layers.glow_tts.glow import CouplingBlock, InvConvNear
|
||
|
|
||
|
|
||
|
def squeeze(x, x_mask=None, num_sqz=2):
|
||
|
"""GlowTTS squeeze operation
|
||
|
Increase number of channels and reduce number of time steps
|
||
|
by the same factor.
|
||
|
|
||
|
Note:
|
||
|
each 's' is a n-dimensional vector.
|
||
|
``[s1,s2,s3,s4,s5,s6] --> [[s1, s3, s5], [s2, s4, s6]]``
|
||
|
"""
|
||
|
b, c, t = x.size()
|
||
|
|
||
|
t = (t // num_sqz) * num_sqz
|
||
|
x = x[:, :, :t]
|
||
|
x_sqz = x.view(b, c, t // num_sqz, num_sqz)
|
||
|
x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * num_sqz, t // num_sqz)
|
||
|
|
||
|
if x_mask is not None:
|
||
|
x_mask = x_mask[:, :, num_sqz - 1 :: num_sqz]
|
||
|
else:
|
||
|
x_mask = torch.ones(b, 1, t // num_sqz).to(device=x.device, dtype=x.dtype)
|
||
|
return x_sqz * x_mask, x_mask
|
||
|
|
||
|
|
||
|
def unsqueeze(x, x_mask=None, num_sqz=2):
|
||
|
"""GlowTTS unsqueeze operation (revert the squeeze)
|
||
|
|
||
|
Note:
|
||
|
each 's' is a n-dimensional vector.
|
||
|
``[[s1, s3, s5], [s2, s4, s6]] --> [[s1, s3, s5, s2, s4, s6]]``
|
||
|
"""
|
||
|
b, c, t = x.size()
|
||
|
|
||
|
x_unsqz = x.view(b, num_sqz, c // num_sqz, t)
|
||
|
x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // num_sqz, t * num_sqz)
|
||
|
|
||
|
if x_mask is not None:
|
||
|
x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, num_sqz).view(b, 1, t * num_sqz)
|
||
|
else:
|
||
|
x_mask = torch.ones(b, 1, t * num_sqz).to(device=x.device, dtype=x.dtype)
|
||
|
return x_unsqz * x_mask, x_mask
|
||
|
|
||
|
|
||
|
class Decoder(nn.Module):
|
||
|
"""Stack of Glow Decoder Modules.
|
||
|
|
||
|
::
|
||
|
|
||
|
Squeeze -> ActNorm -> InvertibleConv1x1 -> AffineCoupling -> Unsqueeze
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): channels of input tensor.
|
||
|
hidden_channels (int): hidden decoder channels.
|
||
|
kernel_size (int): Coupling block kernel size. (Wavenet filter kernel size.)
|
||
|
dilation_rate (int): rate to increase dilation by each layer in a decoder block.
|
||
|
num_flow_blocks (int): number of decoder blocks.
|
||
|
num_coupling_layers (int): number coupling layers. (number of wavenet layers.)
|
||
|
dropout_p (float): wavenet dropout rate.
|
||
|
sigmoid_scale (bool): enable/disable sigmoid scaling in coupling layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
hidden_channels,
|
||
|
kernel_size,
|
||
|
dilation_rate,
|
||
|
num_flow_blocks,
|
||
|
num_coupling_layers,
|
||
|
dropout_p=0.0,
|
||
|
num_splits=4,
|
||
|
num_squeeze=2,
|
||
|
sigmoid_scale=False,
|
||
|
c_in_channels=0,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.in_channels = in_channels
|
||
|
self.hidden_channels = hidden_channels
|
||
|
self.kernel_size = kernel_size
|
||
|
self.dilation_rate = dilation_rate
|
||
|
self.num_flow_blocks = num_flow_blocks
|
||
|
self.num_coupling_layers = num_coupling_layers
|
||
|
self.dropout_p = dropout_p
|
||
|
self.num_splits = num_splits
|
||
|
self.num_squeeze = num_squeeze
|
||
|
self.sigmoid_scale = sigmoid_scale
|
||
|
self.c_in_channels = c_in_channels
|
||
|
|
||
|
self.flows = nn.ModuleList()
|
||
|
for _ in range(num_flow_blocks):
|
||
|
self.flows.append(ActNorm(channels=in_channels * num_squeeze))
|
||
|
self.flows.append(InvConvNear(channels=in_channels * num_squeeze, num_splits=num_splits))
|
||
|
self.flows.append(
|
||
|
CouplingBlock(
|
||
|
in_channels * num_squeeze,
|
||
|
hidden_channels,
|
||
|
kernel_size=kernel_size,
|
||
|
dilation_rate=dilation_rate,
|
||
|
num_layers=num_coupling_layers,
|
||
|
c_in_channels=c_in_channels,
|
||
|
dropout_p=dropout_p,
|
||
|
sigmoid_scale=sigmoid_scale,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
def forward(self, x, x_mask, g=None, reverse=False):
|
||
|
"""
|
||
|
Shapes:
|
||
|
- x: :math:`[B, C, T]`
|
||
|
- x_mask: :math:`[B, 1 ,T]`
|
||
|
- g: :math:`[B, C]`
|
||
|
"""
|
||
|
if not reverse:
|
||
|
flows = self.flows
|
||
|
logdet_tot = 0
|
||
|
else:
|
||
|
flows = reversed(self.flows)
|
||
|
logdet_tot = None
|
||
|
|
||
|
if self.num_squeeze > 1:
|
||
|
x, x_mask = squeeze(x, x_mask, self.num_squeeze)
|
||
|
for f in flows:
|
||
|
if not reverse:
|
||
|
x, logdet = f(x, x_mask, g=g, reverse=reverse)
|
||
|
logdet_tot += logdet
|
||
|
else:
|
||
|
x, logdet = f(x, x_mask, g=g, reverse=reverse)
|
||
|
if self.num_squeeze > 1:
|
||
|
x, x_mask = unsqueeze(x, x_mask, self.num_squeeze)
|
||
|
return x, logdet_tot
|
||
|
|
||
|
def store_inverse(self):
|
||
|
for f in self.flows:
|
||
|
f.store_inverse()
|