487 lines
19 KiB
Python
487 lines
19 KiB
Python
|
import torch
|
||
|
from scipy.stats import betabinom
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
from TTS.tts.layers.tacotron.common_layers import Linear
|
||
|
|
||
|
|
||
|
class LocationLayer(nn.Module):
|
||
|
"""Layers for Location Sensitive Attention
|
||
|
|
||
|
Args:
|
||
|
attention_dim (int): number of channels in the input tensor.
|
||
|
attention_n_filters (int, optional): number of filters in convolution. Defaults to 32.
|
||
|
attention_kernel_size (int, optional): kernel size of convolution filter. Defaults to 31.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, attention_dim, attention_n_filters=32, attention_kernel_size=31):
|
||
|
super().__init__()
|
||
|
self.location_conv1d = nn.Conv1d(
|
||
|
in_channels=2,
|
||
|
out_channels=attention_n_filters,
|
||
|
kernel_size=attention_kernel_size,
|
||
|
stride=1,
|
||
|
padding=(attention_kernel_size - 1) // 2,
|
||
|
bias=False,
|
||
|
)
|
||
|
self.location_dense = Linear(attention_n_filters, attention_dim, bias=False, init_gain="tanh")
|
||
|
|
||
|
def forward(self, attention_cat):
|
||
|
"""
|
||
|
Shapes:
|
||
|
attention_cat: [B, 2, C]
|
||
|
"""
|
||
|
processed_attention = self.location_conv1d(attention_cat)
|
||
|
processed_attention = self.location_dense(processed_attention.transpose(1, 2))
|
||
|
return processed_attention
|
||
|
|
||
|
|
||
|
class GravesAttention(nn.Module):
|
||
|
"""Graves Attention as is ref1 with updates from ref2.
|
||
|
ref1: https://arxiv.org/abs/1910.10288
|
||
|
ref2: https://arxiv.org/pdf/1906.01083.pdf
|
||
|
|
||
|
Args:
|
||
|
query_dim (int): number of channels in query tensor.
|
||
|
K (int): number of Gaussian heads to be used for computing attention.
|
||
|
"""
|
||
|
|
||
|
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi))
|
||
|
|
||
|
def __init__(self, query_dim, K):
|
||
|
super().__init__()
|
||
|
self._mask_value = 1e-8
|
||
|
self.K = K
|
||
|
# self.attention_alignment = 0.05
|
||
|
self.eps = 1e-5
|
||
|
self.J = None
|
||
|
self.N_a = nn.Sequential(
|
||
|
nn.Linear(query_dim, query_dim, bias=True), nn.ReLU(), nn.Linear(query_dim, 3 * K, bias=True)
|
||
|
)
|
||
|
self.attention_weights = None
|
||
|
self.mu_prev = None
|
||
|
self.init_layers()
|
||
|
|
||
|
def init_layers(self):
|
||
|
torch.nn.init.constant_(self.N_a[2].bias[(2 * self.K) : (3 * self.K)], 1.0) # bias mean
|
||
|
torch.nn.init.constant_(self.N_a[2].bias[self.K : (2 * self.K)], 10) # bias std
|
||
|
|
||
|
def init_states(self, inputs):
|
||
|
if self.J is None or inputs.shape[1] + 1 > self.J.shape[-1]:
|
||
|
self.J = torch.arange(0, inputs.shape[1] + 2.0).to(inputs.device) + 0.5
|
||
|
self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device)
|
||
|
self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
|
||
|
|
||
|
# pylint: disable=R0201
|
||
|
# pylint: disable=unused-argument
|
||
|
def preprocess_inputs(self, inputs):
|
||
|
return None
|
||
|
|
||
|
def forward(self, query, inputs, processed_inputs, mask):
|
||
|
"""
|
||
|
Shapes:
|
||
|
query: [B, C_attention_rnn]
|
||
|
inputs: [B, T_in, C_encoder]
|
||
|
processed_inputs: place_holder
|
||
|
mask: [B, T_in]
|
||
|
"""
|
||
|
gbk_t = self.N_a(query)
|
||
|
gbk_t = gbk_t.view(gbk_t.size(0), -1, self.K)
|
||
|
|
||
|
# attention model parameters
|
||
|
# each B x K
|
||
|
g_t = gbk_t[:, 0, :]
|
||
|
b_t = gbk_t[:, 1, :]
|
||
|
k_t = gbk_t[:, 2, :]
|
||
|
|
||
|
# dropout to decorrelate attention heads
|
||
|
g_t = torch.nn.functional.dropout(g_t, p=0.5, training=self.training)
|
||
|
|
||
|
# attention GMM parameters
|
||
|
sig_t = torch.nn.functional.softplus(b_t) + self.eps
|
||
|
|
||
|
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
|
||
|
g_t = torch.softmax(g_t, dim=-1) + self.eps
|
||
|
|
||
|
j = self.J[: inputs.size(1) + 1]
|
||
|
|
||
|
# attention weights
|
||
|
phi_t = g_t.unsqueeze(-1) * (1 / (1 + torch.sigmoid((mu_t.unsqueeze(-1) - j) / sig_t.unsqueeze(-1))))
|
||
|
|
||
|
# discritize attention weights
|
||
|
alpha_t = torch.sum(phi_t, 1)
|
||
|
alpha_t = alpha_t[:, 1:] - alpha_t[:, :-1]
|
||
|
alpha_t[alpha_t == 0] = 1e-8
|
||
|
|
||
|
# apply masking
|
||
|
if mask is not None:
|
||
|
alpha_t.data.masked_fill_(~mask, self._mask_value)
|
||
|
|
||
|
context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
|
||
|
self.attention_weights = alpha_t
|
||
|
self.mu_prev = mu_t
|
||
|
return context
|
||
|
|
||
|
|
||
|
class OriginalAttention(nn.Module):
|
||
|
"""Bahdanau Attention with various optional modifications.
|
||
|
- Location sensitive attnetion: https://arxiv.org/abs/1712.05884
|
||
|
- Forward Attention: https://arxiv.org/abs/1807.06736 + state masking at inference
|
||
|
- Using sigmoid instead of softmax normalization
|
||
|
- Attention windowing at inference time
|
||
|
|
||
|
Note:
|
||
|
Location Sensitive Attention extends the additive attention mechanism
|
||
|
to use cumulative attention weights from previous decoder time steps with the current time step features.
|
||
|
|
||
|
Forward attention computes most probable monotonic alignment. The modified attention probabilities at each
|
||
|
timestep are computed recursively by the forward algorithm.
|
||
|
|
||
|
Transition agent in the forward attention explicitly gates the attention mechanism whether to move forward or
|
||
|
stay at each decoder timestep.
|
||
|
|
||
|
Attention windowing is a inductive prior that prevents the model from attending to previous and future timesteps
|
||
|
beyond a certain window.
|
||
|
|
||
|
Args:
|
||
|
query_dim (int): number of channels in the query tensor.
|
||
|
embedding_dim (int): number of channels in the vakue tensor. In general, the value tensor is the output of the encoder layer.
|
||
|
attention_dim (int): number of channels of the inner attention layers.
|
||
|
location_attention (bool): enable/disable location sensitive attention.
|
||
|
attention_location_n_filters (int): number of location attention filters.
|
||
|
attention_location_kernel_size (int): filter size of location attention convolution layer.
|
||
|
windowing (int): window size for attention windowing. if it is 5, for computing the attention, it only considers the time steps [(t-5), ..., (t+5)] of the input.
|
||
|
norm (str): normalization method applied to the attention weights. 'softmax' or 'sigmoid'
|
||
|
forward_attn (bool): enable/disable forward attention.
|
||
|
trans_agent (bool): enable/disable transition agent in the forward attention.
|
||
|
forward_attn_mask (int): enable/disable an explicit masking in forward attention. It is useful to set at especially inference time.
|
||
|
"""
|
||
|
|
||
|
# Pylint gets confused by PyTorch conventions here
|
||
|
# pylint: disable=attribute-defined-outside-init
|
||
|
def __init__(
|
||
|
self,
|
||
|
query_dim,
|
||
|
embedding_dim,
|
||
|
attention_dim,
|
||
|
location_attention,
|
||
|
attention_location_n_filters,
|
||
|
attention_location_kernel_size,
|
||
|
windowing,
|
||
|
norm,
|
||
|
forward_attn,
|
||
|
trans_agent,
|
||
|
forward_attn_mask,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.query_layer = Linear(query_dim, attention_dim, bias=False, init_gain="tanh")
|
||
|
self.inputs_layer = Linear(embedding_dim, attention_dim, bias=False, init_gain="tanh")
|
||
|
self.v = Linear(attention_dim, 1, bias=True)
|
||
|
if trans_agent:
|
||
|
self.ta = nn.Linear(query_dim + embedding_dim, 1, bias=True)
|
||
|
if location_attention:
|
||
|
self.location_layer = LocationLayer(
|
||
|
attention_dim,
|
||
|
attention_location_n_filters,
|
||
|
attention_location_kernel_size,
|
||
|
)
|
||
|
self._mask_value = -float("inf")
|
||
|
self.windowing = windowing
|
||
|
self.win_idx = None
|
||
|
self.norm = norm
|
||
|
self.forward_attn = forward_attn
|
||
|
self.trans_agent = trans_agent
|
||
|
self.forward_attn_mask = forward_attn_mask
|
||
|
self.location_attention = location_attention
|
||
|
|
||
|
def init_win_idx(self):
|
||
|
self.win_idx = -1
|
||
|
self.win_back = 2
|
||
|
self.win_front = 6
|
||
|
|
||
|
def init_forward_attn(self, inputs):
|
||
|
B = inputs.shape[0]
|
||
|
T = inputs.shape[1]
|
||
|
self.alpha = torch.cat([torch.ones([B, 1]), torch.zeros([B, T])[:, :-1] + 1e-7], dim=1).to(inputs.device)
|
||
|
self.u = (0.5 * torch.ones([B, 1])).to(inputs.device)
|
||
|
|
||
|
def init_location_attention(self, inputs):
|
||
|
B = inputs.size(0)
|
||
|
T = inputs.size(1)
|
||
|
self.attention_weights_cum = torch.zeros([B, T], device=inputs.device)
|
||
|
|
||
|
def init_states(self, inputs):
|
||
|
B = inputs.size(0)
|
||
|
T = inputs.size(1)
|
||
|
self.attention_weights = torch.zeros([B, T], device=inputs.device)
|
||
|
if self.location_attention:
|
||
|
self.init_location_attention(inputs)
|
||
|
if self.forward_attn:
|
||
|
self.init_forward_attn(inputs)
|
||
|
if self.windowing:
|
||
|
self.init_win_idx()
|
||
|
|
||
|
def preprocess_inputs(self, inputs):
|
||
|
return self.inputs_layer(inputs)
|
||
|
|
||
|
def update_location_attention(self, alignments):
|
||
|
self.attention_weights_cum += alignments
|
||
|
|
||
|
def get_location_attention(self, query, processed_inputs):
|
||
|
attention_cat = torch.cat((self.attention_weights.unsqueeze(1), self.attention_weights_cum.unsqueeze(1)), dim=1)
|
||
|
processed_query = self.query_layer(query.unsqueeze(1))
|
||
|
processed_attention_weights = self.location_layer(attention_cat)
|
||
|
energies = self.v(torch.tanh(processed_query + processed_attention_weights + processed_inputs))
|
||
|
energies = energies.squeeze(-1)
|
||
|
return energies, processed_query
|
||
|
|
||
|
def get_attention(self, query, processed_inputs):
|
||
|
processed_query = self.query_layer(query.unsqueeze(1))
|
||
|
energies = self.v(torch.tanh(processed_query + processed_inputs))
|
||
|
energies = energies.squeeze(-1)
|
||
|
return energies, processed_query
|
||
|
|
||
|
def apply_windowing(self, attention, inputs):
|
||
|
back_win = self.win_idx - self.win_back
|
||
|
front_win = self.win_idx + self.win_front
|
||
|
if back_win > 0:
|
||
|
attention[:, :back_win] = -float("inf")
|
||
|
if front_win < inputs.shape[1]:
|
||
|
attention[:, front_win:] = -float("inf")
|
||
|
# this is a trick to solve a special problem.
|
||
|
# but it does not hurt.
|
||
|
if self.win_idx == -1:
|
||
|
attention[:, 0] = attention.max()
|
||
|
# Update the window
|
||
|
self.win_idx = torch.argmax(attention, 1).long()[0].item()
|
||
|
return attention
|
||
|
|
||
|
def apply_forward_attention(self, alignment):
|
||
|
# forward attention
|
||
|
fwd_shifted_alpha = F.pad(self.alpha[:, :-1].clone().to(alignment.device), (1, 0, 0, 0))
|
||
|
# compute transition potentials
|
||
|
alpha = ((1 - self.u) * self.alpha + self.u * fwd_shifted_alpha + 1e-8) * alignment
|
||
|
# force incremental alignment
|
||
|
if not self.training and self.forward_attn_mask:
|
||
|
_, n = fwd_shifted_alpha.max(1)
|
||
|
val, _ = alpha.max(1)
|
||
|
for b in range(alignment.shape[0]):
|
||
|
alpha[b, n[b] + 3 :] = 0
|
||
|
alpha[b, : (n[b] - 1)] = 0 # ignore all previous states to prevent repetition.
|
||
|
alpha[b, (n[b] - 2)] = 0.01 * val[b] # smoothing factor for the prev step
|
||
|
# renormalize attention weights
|
||
|
alpha = alpha / alpha.sum(dim=1, keepdim=True)
|
||
|
return alpha
|
||
|
|
||
|
def forward(self, query, inputs, processed_inputs, mask):
|
||
|
"""
|
||
|
shapes:
|
||
|
query: [B, C_attn_rnn]
|
||
|
inputs: [B, T_en, D_en]
|
||
|
processed_inputs: [B, T_en, D_attn]
|
||
|
mask: [B, T_en]
|
||
|
"""
|
||
|
if self.location_attention:
|
||
|
attention, _ = self.get_location_attention(query, processed_inputs)
|
||
|
else:
|
||
|
attention, _ = self.get_attention(query, processed_inputs)
|
||
|
# apply masking
|
||
|
if mask is not None:
|
||
|
attention.data.masked_fill_(~mask, self._mask_value)
|
||
|
# apply windowing - only in eval mode
|
||
|
if not self.training and self.windowing:
|
||
|
attention = self.apply_windowing(attention, inputs)
|
||
|
|
||
|
# normalize attention values
|
||
|
if self.norm == "softmax":
|
||
|
alignment = torch.softmax(attention, dim=-1)
|
||
|
elif self.norm == "sigmoid":
|
||
|
alignment = torch.sigmoid(attention) / torch.sigmoid(attention).sum(dim=1, keepdim=True)
|
||
|
else:
|
||
|
raise ValueError("Unknown value for attention norm type")
|
||
|
|
||
|
if self.location_attention:
|
||
|
self.update_location_attention(alignment)
|
||
|
|
||
|
# apply forward attention if enabled
|
||
|
if self.forward_attn:
|
||
|
alignment = self.apply_forward_attention(alignment)
|
||
|
self.alpha = alignment
|
||
|
|
||
|
context = torch.bmm(alignment.unsqueeze(1), inputs)
|
||
|
context = context.squeeze(1)
|
||
|
self.attention_weights = alignment
|
||
|
|
||
|
# compute transition agent
|
||
|
if self.forward_attn and self.trans_agent:
|
||
|
ta_input = torch.cat([context, query.squeeze(1)], dim=-1)
|
||
|
self.u = torch.sigmoid(self.ta(ta_input))
|
||
|
return context
|
||
|
|
||
|
|
||
|
class MonotonicDynamicConvolutionAttention(nn.Module):
|
||
|
"""Dynamic convolution attention from
|
||
|
https://arxiv.org/pdf/1910.10288.pdf
|
||
|
|
||
|
|
||
|
query -> linear -> tanh -> linear ->|
|
||
|
| mask values
|
||
|
v | |
|
||
|
atten_w(t-1) -|-> conv1d_dynamic -> linear -|-> tanh -> + -> softmax -> * -> * -> context
|
||
|
|-> conv1d_static -> linear -| |
|
||
|
|-> conv1d_prior -> log ----------------|
|
||
|
|
||
|
query: attention rnn output.
|
||
|
|
||
|
Note:
|
||
|
Dynamic convolution attention is an alternation of the location senstive attention with
|
||
|
dynamically computed convolution filters from the previous attention scores and a set of
|
||
|
constraints to keep the attention alignment diagonal.
|
||
|
DCA is sensitive to mixed precision training and might cause instable training.
|
||
|
|
||
|
Args:
|
||
|
query_dim (int): number of channels in the query tensor.
|
||
|
embedding_dim (int): number of channels in the value tensor.
|
||
|
static_filter_dim (int): number of channels in the convolution layer computing the static filters.
|
||
|
static_kernel_size (int): kernel size for the convolution layer computing the static filters.
|
||
|
dynamic_filter_dim (int): number of channels in the convolution layer computing the dynamic filters.
|
||
|
dynamic_kernel_size (int): kernel size for the convolution layer computing the dynamic filters.
|
||
|
prior_filter_len (int, optional): [description]. Defaults to 11 from the paper.
|
||
|
alpha (float, optional): [description]. Defaults to 0.1 from the paper.
|
||
|
beta (float, optional): [description]. Defaults to 0.9 from the paper.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
query_dim,
|
||
|
embedding_dim, # pylint: disable=unused-argument
|
||
|
attention_dim,
|
||
|
static_filter_dim,
|
||
|
static_kernel_size,
|
||
|
dynamic_filter_dim,
|
||
|
dynamic_kernel_size,
|
||
|
prior_filter_len=11,
|
||
|
alpha=0.1,
|
||
|
beta=0.9,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self._mask_value = 1e-8
|
||
|
self.dynamic_filter_dim = dynamic_filter_dim
|
||
|
self.dynamic_kernel_size = dynamic_kernel_size
|
||
|
self.prior_filter_len = prior_filter_len
|
||
|
self.attention_weights = None
|
||
|
# setup key and query layers
|
||
|
self.query_layer = nn.Linear(query_dim, attention_dim)
|
||
|
self.key_layer = nn.Linear(attention_dim, dynamic_filter_dim * dynamic_kernel_size, bias=False)
|
||
|
self.static_filter_conv = nn.Conv1d(
|
||
|
1,
|
||
|
static_filter_dim,
|
||
|
static_kernel_size,
|
||
|
padding=(static_kernel_size - 1) // 2,
|
||
|
bias=False,
|
||
|
)
|
||
|
self.static_filter_layer = nn.Linear(static_filter_dim, attention_dim, bias=False)
|
||
|
self.dynamic_filter_layer = nn.Linear(dynamic_filter_dim, attention_dim)
|
||
|
self.v = nn.Linear(attention_dim, 1, bias=False)
|
||
|
|
||
|
prior = betabinom.pmf(range(prior_filter_len), prior_filter_len - 1, alpha, beta)
|
||
|
self.register_buffer("prior", torch.FloatTensor(prior).flip(0))
|
||
|
|
||
|
# pylint: disable=unused-argument
|
||
|
def forward(self, query, inputs, processed_inputs, mask):
|
||
|
"""
|
||
|
query: [B, C_attn_rnn]
|
||
|
inputs: [B, T_en, D_en]
|
||
|
processed_inputs: place holder.
|
||
|
mask: [B, T_en]
|
||
|
"""
|
||
|
# compute prior filters
|
||
|
prior_filter = F.conv1d(
|
||
|
F.pad(self.attention_weights.unsqueeze(1), (self.prior_filter_len - 1, 0)), self.prior.view(1, 1, -1)
|
||
|
)
|
||
|
prior_filter = torch.log(prior_filter.clamp_min_(1e-6)).squeeze(1)
|
||
|
G = self.key_layer(torch.tanh(self.query_layer(query)))
|
||
|
# compute dynamic filters
|
||
|
dynamic_filter = F.conv1d(
|
||
|
self.attention_weights.unsqueeze(0),
|
||
|
G.view(-1, 1, self.dynamic_kernel_size),
|
||
|
padding=(self.dynamic_kernel_size - 1) // 2,
|
||
|
groups=query.size(0),
|
||
|
)
|
||
|
dynamic_filter = dynamic_filter.view(query.size(0), self.dynamic_filter_dim, -1).transpose(1, 2)
|
||
|
# compute static filters
|
||
|
static_filter = self.static_filter_conv(self.attention_weights.unsqueeze(1)).transpose(1, 2)
|
||
|
alignment = (
|
||
|
self.v(
|
||
|
torch.tanh(self.static_filter_layer(static_filter) + self.dynamic_filter_layer(dynamic_filter))
|
||
|
).squeeze(-1)
|
||
|
+ prior_filter
|
||
|
)
|
||
|
# compute attention weights
|
||
|
attention_weights = F.softmax(alignment, dim=-1)
|
||
|
# apply masking
|
||
|
if mask is not None:
|
||
|
attention_weights.data.masked_fill_(~mask, self._mask_value)
|
||
|
self.attention_weights = attention_weights
|
||
|
# compute context
|
||
|
context = torch.bmm(attention_weights.unsqueeze(1), inputs).squeeze(1)
|
||
|
return context
|
||
|
|
||
|
def preprocess_inputs(self, inputs): # pylint: disable=no-self-use
|
||
|
return None
|
||
|
|
||
|
def init_states(self, inputs):
|
||
|
B = inputs.size(0)
|
||
|
T = inputs.size(1)
|
||
|
self.attention_weights = torch.zeros([B, T], device=inputs.device)
|
||
|
self.attention_weights[:, 0] = 1.0
|
||
|
|
||
|
|
||
|
def init_attn(
|
||
|
attn_type,
|
||
|
query_dim,
|
||
|
embedding_dim,
|
||
|
attention_dim,
|
||
|
location_attention,
|
||
|
attention_location_n_filters,
|
||
|
attention_location_kernel_size,
|
||
|
windowing,
|
||
|
norm,
|
||
|
forward_attn,
|
||
|
trans_agent,
|
||
|
forward_attn_mask,
|
||
|
attn_K,
|
||
|
):
|
||
|
if attn_type == "original":
|
||
|
return OriginalAttention(
|
||
|
query_dim,
|
||
|
embedding_dim,
|
||
|
attention_dim,
|
||
|
location_attention,
|
||
|
attention_location_n_filters,
|
||
|
attention_location_kernel_size,
|
||
|
windowing,
|
||
|
norm,
|
||
|
forward_attn,
|
||
|
trans_agent,
|
||
|
forward_attn_mask,
|
||
|
)
|
||
|
if attn_type == "graves":
|
||
|
return GravesAttention(query_dim, attn_K)
|
||
|
if attn_type == "dynamic_convolution":
|
||
|
return MonotonicDynamicConvolutionAttention(
|
||
|
query_dim,
|
||
|
embedding_dim,
|
||
|
attention_dim,
|
||
|
static_filter_dim=8,
|
||
|
static_kernel_size=21,
|
||
|
dynamic_filter_dim=8,
|
||
|
dynamic_kernel_size=21,
|
||
|
prior_filter_len=11,
|
||
|
alpha=0.1,
|
||
|
beta=0.9,
|
||
|
)
|
||
|
|
||
|
raise RuntimeError(f" [!] Given Attention Type '{attn_type}' is not exist.")
|