415 lines
16 KiB
Python
415 lines
16 KiB
Python
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
from .attentions import init_attn
|
||
|
from .common_layers import Linear, Prenet
|
||
|
|
||
|
|
||
|
# pylint: disable=no-value-for-parameter
|
||
|
# pylint: disable=unexpected-keyword-arg
|
||
|
class ConvBNBlock(nn.Module):
|
||
|
r"""Convolutions with Batch Normalization and non-linear activation.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): number of input channels.
|
||
|
out_channels (int): number of output channels.
|
||
|
kernel_size (int): convolution kernel size.
|
||
|
activation (str): 'relu', 'tanh', None (linear).
|
||
|
|
||
|
Shapes:
|
||
|
- input: (B, C_in, T)
|
||
|
- output: (B, C_out, T)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, in_channels, out_channels, kernel_size, activation=None):
|
||
|
super().__init__()
|
||
|
assert (kernel_size - 1) % 2 == 0
|
||
|
padding = (kernel_size - 1) // 2
|
||
|
self.convolution1d = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding)
|
||
|
self.batch_normalization = nn.BatchNorm1d(out_channels, momentum=0.1, eps=1e-5)
|
||
|
self.dropout = nn.Dropout(p=0.5)
|
||
|
if activation == "relu":
|
||
|
self.activation = nn.ReLU()
|
||
|
elif activation == "tanh":
|
||
|
self.activation = nn.Tanh()
|
||
|
else:
|
||
|
self.activation = nn.Identity()
|
||
|
|
||
|
def forward(self, x):
|
||
|
o = self.convolution1d(x)
|
||
|
o = self.batch_normalization(o)
|
||
|
o = self.activation(o)
|
||
|
o = self.dropout(o)
|
||
|
return o
|
||
|
|
||
|
|
||
|
class Postnet(nn.Module):
|
||
|
r"""Tacotron2 Postnet
|
||
|
|
||
|
Args:
|
||
|
in_out_channels (int): number of output channels.
|
||
|
|
||
|
Shapes:
|
||
|
- input: (B, C_in, T)
|
||
|
- output: (B, C_in, T)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, in_out_channels, num_convs=5):
|
||
|
super().__init__()
|
||
|
self.convolutions = nn.ModuleList()
|
||
|
self.convolutions.append(ConvBNBlock(in_out_channels, 512, kernel_size=5, activation="tanh"))
|
||
|
for _ in range(1, num_convs - 1):
|
||
|
self.convolutions.append(ConvBNBlock(512, 512, kernel_size=5, activation="tanh"))
|
||
|
self.convolutions.append(ConvBNBlock(512, in_out_channels, kernel_size=5, activation=None))
|
||
|
|
||
|
def forward(self, x):
|
||
|
o = x
|
||
|
for layer in self.convolutions:
|
||
|
o = layer(o)
|
||
|
return o
|
||
|
|
||
|
|
||
|
class Encoder(nn.Module):
|
||
|
r"""Tacotron2 Encoder
|
||
|
|
||
|
Args:
|
||
|
in_out_channels (int): number of input and output channels.
|
||
|
|
||
|
Shapes:
|
||
|
- input: (B, C_in, T)
|
||
|
- output: (B, C_in, T)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, in_out_channels=512):
|
||
|
super().__init__()
|
||
|
self.convolutions = nn.ModuleList()
|
||
|
for _ in range(3):
|
||
|
self.convolutions.append(ConvBNBlock(in_out_channels, in_out_channels, 5, "relu"))
|
||
|
self.lstm = nn.LSTM(
|
||
|
in_out_channels, int(in_out_channels / 2), num_layers=1, batch_first=True, bias=True, bidirectional=True
|
||
|
)
|
||
|
self.rnn_state = None
|
||
|
|
||
|
def forward(self, x, input_lengths):
|
||
|
o = x
|
||
|
for layer in self.convolutions:
|
||
|
o = layer(o)
|
||
|
o = o.transpose(1, 2)
|
||
|
o = nn.utils.rnn.pack_padded_sequence(o, input_lengths.cpu(), batch_first=True)
|
||
|
self.lstm.flatten_parameters()
|
||
|
o, _ = self.lstm(o)
|
||
|
o, _ = nn.utils.rnn.pad_packed_sequence(o, batch_first=True)
|
||
|
return o
|
||
|
|
||
|
def inference(self, x):
|
||
|
o = x
|
||
|
for layer in self.convolutions:
|
||
|
o = layer(o)
|
||
|
o = o.transpose(1, 2)
|
||
|
# self.lstm.flatten_parameters()
|
||
|
o, _ = self.lstm(o)
|
||
|
return o
|
||
|
|
||
|
|
||
|
# adapted from https://github.com/NVIDIA/tacotron2/
|
||
|
class Decoder(nn.Module):
|
||
|
"""Tacotron2 decoder. We don't use Zoneout but Dropout between RNN layers.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): number of input channels.
|
||
|
frame_channels (int): number of feature frame channels.
|
||
|
r (int): number of outputs per time step (reduction rate).
|
||
|
memory_size (int): size of the past window. if <= 0 memory_size = r
|
||
|
attn_type (string): type of attention used in decoder.
|
||
|
attn_win (bool): if true, define an attention window centered to maximum
|
||
|
attention response. It provides more robust attention alignment especially
|
||
|
at interence time.
|
||
|
attn_norm (string): attention normalization function. 'sigmoid' or 'softmax'.
|
||
|
prenet_type (string): 'original' or 'bn'.
|
||
|
prenet_dropout (float): prenet dropout rate.
|
||
|
forward_attn (bool): if true, use forward attention method. https://arxiv.org/abs/1807.06736
|
||
|
trans_agent (bool): if true, use transition agent. https://arxiv.org/abs/1807.06736
|
||
|
forward_attn_mask (bool): if true, mask attention values smaller than a threshold.
|
||
|
location_attn (bool): if true, use location sensitive attention.
|
||
|
attn_K (int): number of attention heads for GravesAttention.
|
||
|
separate_stopnet (bool): if true, detach stopnet input to prevent gradient flow.
|
||
|
max_decoder_steps (int): Maximum number of steps allowed for the decoder. Defaults to 10000.
|
||
|
"""
|
||
|
|
||
|
# Pylint gets confused by PyTorch conventions here
|
||
|
# pylint: disable=attribute-defined-outside-init
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
frame_channels,
|
||
|
r,
|
||
|
attn_type,
|
||
|
attn_win,
|
||
|
attn_norm,
|
||
|
prenet_type,
|
||
|
prenet_dropout,
|
||
|
forward_attn,
|
||
|
trans_agent,
|
||
|
forward_attn_mask,
|
||
|
location_attn,
|
||
|
attn_K,
|
||
|
separate_stopnet,
|
||
|
max_decoder_steps,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.frame_channels = frame_channels
|
||
|
self.r_init = r
|
||
|
self.r = r
|
||
|
self.encoder_embedding_dim = in_channels
|
||
|
self.separate_stopnet = separate_stopnet
|
||
|
self.max_decoder_steps = max_decoder_steps
|
||
|
self.stop_threshold = 0.5
|
||
|
|
||
|
# model dimensions
|
||
|
self.query_dim = 1024
|
||
|
self.decoder_rnn_dim = 1024
|
||
|
self.prenet_dim = 256
|
||
|
self.attn_dim = 128
|
||
|
self.p_attention_dropout = 0.1
|
||
|
self.p_decoder_dropout = 0.1
|
||
|
|
||
|
# memory -> |Prenet| -> processed_memory
|
||
|
prenet_dim = self.frame_channels
|
||
|
self.prenet = Prenet(
|
||
|
prenet_dim, prenet_type, prenet_dropout, out_features=[self.prenet_dim, self.prenet_dim], bias=False
|
||
|
)
|
||
|
|
||
|
self.attention_rnn = nn.LSTMCell(self.prenet_dim + in_channels, self.query_dim, bias=True)
|
||
|
|
||
|
self.attention = init_attn(
|
||
|
attn_type=attn_type,
|
||
|
query_dim=self.query_dim,
|
||
|
embedding_dim=in_channels,
|
||
|
attention_dim=128,
|
||
|
location_attention=location_attn,
|
||
|
attention_location_n_filters=32,
|
||
|
attention_location_kernel_size=31,
|
||
|
windowing=attn_win,
|
||
|
norm=attn_norm,
|
||
|
forward_attn=forward_attn,
|
||
|
trans_agent=trans_agent,
|
||
|
forward_attn_mask=forward_attn_mask,
|
||
|
attn_K=attn_K,
|
||
|
)
|
||
|
|
||
|
self.decoder_rnn = nn.LSTMCell(self.query_dim + in_channels, self.decoder_rnn_dim, bias=True)
|
||
|
|
||
|
self.linear_projection = Linear(self.decoder_rnn_dim + in_channels, self.frame_channels * self.r_init)
|
||
|
|
||
|
self.stopnet = nn.Sequential(
|
||
|
nn.Dropout(0.1),
|
||
|
Linear(self.decoder_rnn_dim + self.frame_channels * self.r_init, 1, bias=True, init_gain="sigmoid"),
|
||
|
)
|
||
|
self.memory_truncated = None
|
||
|
|
||
|
def set_r(self, new_r):
|
||
|
self.r = new_r
|
||
|
|
||
|
def get_go_frame(self, inputs):
|
||
|
B = inputs.size(0)
|
||
|
memory = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels * self.r)
|
||
|
return memory
|
||
|
|
||
|
def _init_states(self, inputs, mask, keep_states=False):
|
||
|
B = inputs.size(0)
|
||
|
# T = inputs.size(1)
|
||
|
if not keep_states:
|
||
|
self.query = torch.zeros(1, device=inputs.device).repeat(B, self.query_dim)
|
||
|
self.attention_rnn_cell_state = torch.zeros(1, device=inputs.device).repeat(B, self.query_dim)
|
||
|
self.decoder_hidden = torch.zeros(1, device=inputs.device).repeat(B, self.decoder_rnn_dim)
|
||
|
self.decoder_cell = torch.zeros(1, device=inputs.device).repeat(B, self.decoder_rnn_dim)
|
||
|
self.context = torch.zeros(1, device=inputs.device).repeat(B, self.encoder_embedding_dim)
|
||
|
self.inputs = inputs
|
||
|
self.processed_inputs = self.attention.preprocess_inputs(inputs)
|
||
|
self.mask = mask
|
||
|
|
||
|
def _reshape_memory(self, memory):
|
||
|
"""
|
||
|
Reshape the spectrograms for given 'r'
|
||
|
"""
|
||
|
# Grouping multiple frames if necessary
|
||
|
if memory.size(-1) == self.frame_channels:
|
||
|
memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1)
|
||
|
# Time first (T_decoder, B, frame_channels)
|
||
|
memory = memory.transpose(0, 1)
|
||
|
return memory
|
||
|
|
||
|
def _parse_outputs(self, outputs, stop_tokens, alignments):
|
||
|
alignments = torch.stack(alignments).transpose(0, 1)
|
||
|
stop_tokens = torch.stack(stop_tokens).transpose(0, 1)
|
||
|
outputs = torch.stack(outputs).transpose(0, 1).contiguous()
|
||
|
outputs = outputs.view(outputs.size(0), -1, self.frame_channels)
|
||
|
outputs = outputs.transpose(1, 2)
|
||
|
return outputs, stop_tokens, alignments
|
||
|
|
||
|
def _update_memory(self, memory):
|
||
|
if len(memory.shape) == 2:
|
||
|
return memory[:, self.frame_channels * (self.r - 1) :]
|
||
|
return memory[:, :, self.frame_channels * (self.r - 1) :]
|
||
|
|
||
|
def decode(self, memory):
|
||
|
"""
|
||
|
shapes:
|
||
|
- memory: B x r * self.frame_channels
|
||
|
"""
|
||
|
# self.context: B x D_en
|
||
|
# query_input: B x D_en + (r * self.frame_channels)
|
||
|
query_input = torch.cat((memory, self.context), -1)
|
||
|
# self.query and self.attention_rnn_cell_state : B x D_attn_rnn
|
||
|
self.query, self.attention_rnn_cell_state = self.attention_rnn(
|
||
|
query_input, (self.query, self.attention_rnn_cell_state)
|
||
|
)
|
||
|
self.query = F.dropout(self.query, self.p_attention_dropout, self.training)
|
||
|
self.attention_rnn_cell_state = F.dropout(
|
||
|
self.attention_rnn_cell_state, self.p_attention_dropout, self.training
|
||
|
)
|
||
|
# B x D_en
|
||
|
self.context = self.attention(self.query, self.inputs, self.processed_inputs, self.mask)
|
||
|
# B x (D_en + D_attn_rnn)
|
||
|
decoder_rnn_input = torch.cat((self.query, self.context), -1)
|
||
|
# self.decoder_hidden and self.decoder_cell: B x D_decoder_rnn
|
||
|
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
|
||
|
decoder_rnn_input, (self.decoder_hidden, self.decoder_cell)
|
||
|
)
|
||
|
self.decoder_hidden = F.dropout(self.decoder_hidden, self.p_decoder_dropout, self.training)
|
||
|
# B x (D_decoder_rnn + D_en)
|
||
|
decoder_hidden_context = torch.cat((self.decoder_hidden, self.context), dim=1)
|
||
|
# B x (self.r * self.frame_channels)
|
||
|
decoder_output = self.linear_projection(decoder_hidden_context)
|
||
|
# B x (D_decoder_rnn + (self.r * self.frame_channels))
|
||
|
stopnet_input = torch.cat((self.decoder_hidden, decoder_output), dim=1)
|
||
|
if self.separate_stopnet:
|
||
|
stop_token = self.stopnet(stopnet_input.detach())
|
||
|
else:
|
||
|
stop_token = self.stopnet(stopnet_input)
|
||
|
# select outputs for the reduction rate self.r
|
||
|
decoder_output = decoder_output[:, : self.r * self.frame_channels]
|
||
|
return decoder_output, self.attention.attention_weights, stop_token
|
||
|
|
||
|
def forward(self, inputs, memories, mask):
|
||
|
r"""Train Decoder with teacher forcing.
|
||
|
Args:
|
||
|
inputs: Encoder outputs.
|
||
|
memories: Feature frames for teacher-forcing.
|
||
|
mask: Attention mask for sequence padding.
|
||
|
|
||
|
Shapes:
|
||
|
- inputs: (B, T, D_out_enc)
|
||
|
- memory: (B, T_mel, D_mel)
|
||
|
- outputs: (B, T_mel, D_mel)
|
||
|
- alignments: (B, T_in, T_out)
|
||
|
- stop_tokens: (B, T_out)
|
||
|
"""
|
||
|
memory = self.get_go_frame(inputs).unsqueeze(0)
|
||
|
memories = self._reshape_memory(memories)
|
||
|
memories = torch.cat((memory, memories), dim=0)
|
||
|
memories = self._update_memory(memories)
|
||
|
memories = self.prenet(memories)
|
||
|
|
||
|
self._init_states(inputs, mask=mask)
|
||
|
self.attention.init_states(inputs)
|
||
|
|
||
|
outputs, stop_tokens, alignments = [], [], []
|
||
|
while len(outputs) < memories.size(0) - 1:
|
||
|
memory = memories[len(outputs)]
|
||
|
decoder_output, attention_weights, stop_token = self.decode(memory)
|
||
|
outputs += [decoder_output.squeeze(1)]
|
||
|
stop_tokens += [stop_token.squeeze(1)]
|
||
|
alignments += [attention_weights]
|
||
|
|
||
|
outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments)
|
||
|
return outputs, alignments, stop_tokens
|
||
|
|
||
|
def inference(self, inputs):
|
||
|
r"""Decoder inference without teacher forcing and use
|
||
|
Stopnet to stop decoder.
|
||
|
Args:
|
||
|
inputs: Encoder outputs.
|
||
|
|
||
|
Shapes:
|
||
|
- inputs: (B, T, D_out_enc)
|
||
|
- outputs: (B, T_mel, D_mel)
|
||
|
- alignments: (B, T_in, T_out)
|
||
|
- stop_tokens: (B, T_out)
|
||
|
"""
|
||
|
memory = self.get_go_frame(inputs)
|
||
|
memory = self._update_memory(memory)
|
||
|
|
||
|
self._init_states(inputs, mask=None)
|
||
|
self.attention.init_states(inputs)
|
||
|
|
||
|
outputs, stop_tokens, alignments, t = [], [], [], 0
|
||
|
while True:
|
||
|
memory = self.prenet(memory)
|
||
|
decoder_output, alignment, stop_token = self.decode(memory)
|
||
|
stop_token = torch.sigmoid(stop_token.data)
|
||
|
outputs += [decoder_output.squeeze(1)]
|
||
|
stop_tokens += [stop_token]
|
||
|
alignments += [alignment]
|
||
|
|
||
|
if stop_token > self.stop_threshold and t > inputs.shape[0] // 2:
|
||
|
break
|
||
|
if len(outputs) == self.max_decoder_steps:
|
||
|
print(f" > Decoder stopped with `max_decoder_steps` {self.max_decoder_steps}")
|
||
|
break
|
||
|
|
||
|
memory = self._update_memory(decoder_output)
|
||
|
t += 1
|
||
|
|
||
|
outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments)
|
||
|
|
||
|
return outputs, alignments, stop_tokens
|
||
|
|
||
|
def inference_truncated(self, inputs):
|
||
|
"""
|
||
|
Preserve decoder states for continuous inference
|
||
|
"""
|
||
|
if self.memory_truncated is None:
|
||
|
self.memory_truncated = self.get_go_frame(inputs)
|
||
|
self._init_states(inputs, mask=None, keep_states=False)
|
||
|
else:
|
||
|
self._init_states(inputs, mask=None, keep_states=True)
|
||
|
|
||
|
self.attention.init_states(inputs)
|
||
|
outputs, stop_tokens, alignments, t = [], [], [], 0
|
||
|
while True:
|
||
|
memory = self.prenet(self.memory_truncated)
|
||
|
decoder_output, alignment, stop_token = self.decode(memory)
|
||
|
stop_token = torch.sigmoid(stop_token.data)
|
||
|
outputs += [decoder_output.squeeze(1)]
|
||
|
stop_tokens += [stop_token]
|
||
|
alignments += [alignment]
|
||
|
|
||
|
if stop_token > 0.7:
|
||
|
break
|
||
|
if len(outputs) == self.max_decoder_steps:
|
||
|
print(" | > Decoder stopped with 'max_decoder_steps")
|
||
|
break
|
||
|
|
||
|
self.memory_truncated = decoder_output
|
||
|
t += 1
|
||
|
|
||
|
outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments)
|
||
|
|
||
|
return outputs, alignments, stop_tokens
|
||
|
|
||
|
def inference_step(self, inputs, t, memory=None):
|
||
|
"""
|
||
|
For debug purposes
|
||
|
"""
|
||
|
if t == 0:
|
||
|
memory = self.get_go_frame(inputs)
|
||
|
self._init_states(inputs, mask=None)
|
||
|
|
||
|
memory = self.prenet(memory)
|
||
|
decoder_output, stop_token, alignment = self.decode(memory)
|
||
|
stop_token = torch.sigmoid(stop_token.data)
|
||
|
memory = decoder_output
|
||
|
return decoder_output, stop_token, alignment
|