142 lines
4.3 KiB
Python
142 lines
4.3 KiB
Python
|
# ported from: Originally ported from: https://github.com/neonbjb/tortoise-tts
|
||
|
|
||
|
import math
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
|
||
|
class GroupNorm32(nn.GroupNorm):
|
||
|
def forward(self, x):
|
||
|
return super().forward(x.float()).type(x.dtype)
|
||
|
|
||
|
|
||
|
def conv_nd(dims, *args, **kwargs):
|
||
|
if dims == 1:
|
||
|
return nn.Conv1d(*args, **kwargs)
|
||
|
elif dims == 2:
|
||
|
return nn.Conv2d(*args, **kwargs)
|
||
|
elif dims == 3:
|
||
|
return nn.Conv3d(*args, **kwargs)
|
||
|
raise ValueError(f"unsupported dimensions: {dims}")
|
||
|
|
||
|
|
||
|
def normalization(channels):
|
||
|
groups = 32
|
||
|
if channels <= 16:
|
||
|
groups = 8
|
||
|
elif channels <= 64:
|
||
|
groups = 16
|
||
|
while channels % groups != 0:
|
||
|
groups = int(groups / 2)
|
||
|
assert groups > 2
|
||
|
return GroupNorm32(groups, channels)
|
||
|
|
||
|
|
||
|
def zero_module(module):
|
||
|
for p in module.parameters():
|
||
|
p.detach().zero_()
|
||
|
return module
|
||
|
|
||
|
|
||
|
class QKVAttention(nn.Module):
|
||
|
def __init__(self, n_heads):
|
||
|
super().__init__()
|
||
|
self.n_heads = n_heads
|
||
|
|
||
|
def forward(self, qkv, mask=None, qk_bias=0):
|
||
|
"""
|
||
|
Apply QKV attention.
|
||
|
|
||
|
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
||
|
:return: an [N x (H * C) x T] tensor after attention.
|
||
|
"""
|
||
|
bs, width, length = qkv.shape
|
||
|
assert width % (3 * self.n_heads) == 0
|
||
|
ch = width // (3 * self.n_heads)
|
||
|
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
||
|
scale = 1 / math.sqrt(math.sqrt(ch))
|
||
|
weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards
|
||
|
weight = weight + qk_bias
|
||
|
if mask is not None:
|
||
|
mask = mask.repeat(self.n_heads, 1, 1)
|
||
|
weight[mask.logical_not()] = -torch.inf
|
||
|
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||
|
a = torch.einsum("bts,bcs->bct", weight, v)
|
||
|
|
||
|
return a.reshape(bs, -1, length)
|
||
|
|
||
|
|
||
|
class AttentionBlock(nn.Module):
|
||
|
"""An attention block that allows spatial positions to attend to each other."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
channels,
|
||
|
num_heads=1,
|
||
|
num_head_channels=-1,
|
||
|
out_channels=None,
|
||
|
do_activation=False,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.channels = channels
|
||
|
out_channels = channels if out_channels is None else out_channels
|
||
|
self.do_activation = do_activation
|
||
|
if num_head_channels == -1:
|
||
|
self.num_heads = num_heads
|
||
|
else:
|
||
|
assert (
|
||
|
channels % num_head_channels == 0
|
||
|
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
||
|
self.num_heads = channels // num_head_channels
|
||
|
self.norm = normalization(channels)
|
||
|
self.qkv = conv_nd(1, channels, out_channels * 3, 1)
|
||
|
self.attention = QKVAttention(self.num_heads)
|
||
|
|
||
|
self.x_proj = nn.Identity() if out_channels == channels else conv_nd(1, channels, out_channels, 1)
|
||
|
self.proj_out = zero_module(conv_nd(1, out_channels, out_channels, 1))
|
||
|
|
||
|
def forward(self, x, mask=None, qk_bias=0):
|
||
|
b, c, *spatial = x.shape
|
||
|
if mask is not None:
|
||
|
if len(mask.shape) == 2:
|
||
|
mask = mask.unsqueeze(0).repeat(x.shape[0], 1, 1)
|
||
|
if mask.shape[1] != x.shape[-1]:
|
||
|
mask = mask[:, : x.shape[-1], : x.shape[-1]]
|
||
|
|
||
|
x = x.reshape(b, c, -1)
|
||
|
x = self.norm(x)
|
||
|
if self.do_activation:
|
||
|
x = F.silu(x, inplace=True)
|
||
|
qkv = self.qkv(x)
|
||
|
h = self.attention(qkv, mask=mask, qk_bias=qk_bias)
|
||
|
h = self.proj_out(h)
|
||
|
xp = self.x_proj(x)
|
||
|
return (xp + h).reshape(b, xp.shape[1], *spatial)
|
||
|
|
||
|
|
||
|
class ConditioningEncoder(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
spec_dim,
|
||
|
embedding_dim,
|
||
|
attn_blocks=6,
|
||
|
num_attn_heads=4,
|
||
|
):
|
||
|
super().__init__()
|
||
|
attn = []
|
||
|
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
|
||
|
for a in range(attn_blocks):
|
||
|
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
|
||
|
self.attn = nn.Sequential(*attn)
|
||
|
self.dim = embedding_dim
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
x: (b, 80, s)
|
||
|
"""
|
||
|
h = self.init(x)
|
||
|
h = self.attn(h)
|
||
|
return h
|