101 lines
2.6 KiB
Python
101 lines
2.6 KiB
Python
|
import blingfire
|
||
|
import nltk
|
||
|
import pysbd
|
||
|
import spacy
|
||
|
import stanza
|
||
|
|
||
|
from syntok.tokenizer import Tokenizer
|
||
|
import syntok.segmenter as syntok_segmenter
|
||
|
|
||
|
from pathlib import Path
|
||
|
|
||
|
pysbd_segmenter = pysbd.Segmenter(language="en", clean=False, char_span=False)
|
||
|
|
||
|
nlp = spacy.blank('en')
|
||
|
nlp.add_pipe(nlp.create_pipe("sentencizer"))
|
||
|
nlp_dep = spacy.load('en_core_web_sm', disable=["ner"])
|
||
|
#stanza.download('en')
|
||
|
stanza_nlp = stanza.Pipeline(lang='en', processors='tokenize')
|
||
|
|
||
|
syntok_tokenizer = Tokenizer()
|
||
|
|
||
|
def blingfire_tokenize(text):
|
||
|
return blingfire.text_to_sentences(text).split('\n')
|
||
|
|
||
|
def nltk_tokenize(text):
|
||
|
return nltk.sent_tokenize(text)
|
||
|
|
||
|
def pysbd_tokenize(text):
|
||
|
segments = pysbd_segmenter.segment(text)
|
||
|
return [s.strip() for s in segments]
|
||
|
|
||
|
def spacy_tokenize(text):
|
||
|
return [sent.text.strip("\n") for sent in nlp(text).sents]
|
||
|
|
||
|
def spacy_dep_tokenize(text):
|
||
|
return [sent.text.strip("\n") for sent in nlp_dep(text).sents]
|
||
|
|
||
|
def stanza_tokenize(text):
|
||
|
return [e.text for e in stanza_nlp(text).sentences]
|
||
|
|
||
|
def make_sentences(segmented_tokens):
|
||
|
for sentence in segmented_tokens:
|
||
|
yield "".join(str(token) for token in sentence).strip()
|
||
|
|
||
|
def syntok_tokenize(text):
|
||
|
tokens = syntok_tokenizer.split(text)
|
||
|
result = syntok_segmenter.split(iter(tokens))
|
||
|
segments = [sent for sent in make_sentences(result)]
|
||
|
return segments
|
||
|
|
||
|
def load_genia_corpus(genia_raw_dir):
|
||
|
txtfiles = Path(genia_raw_dir).glob("**/*.txt")
|
||
|
txtfiles = list(txtfiles)
|
||
|
all_docs = []
|
||
|
for ind, txtfile in enumerate(txtfiles, start=1):
|
||
|
with open(txtfile) as f:
|
||
|
geniatext = f.read().strip()
|
||
|
expected = geniatext.split('\n')
|
||
|
all_docs.append((geniatext, expected))
|
||
|
|
||
|
return all_docs
|
||
|
|
||
|
def benchmark(docs, tokenize_func):
|
||
|
|
||
|
correct = 0
|
||
|
for (text, expected) in docs:
|
||
|
segments = tokenize_func(text)
|
||
|
if segments == expected:
|
||
|
correct +=1
|
||
|
return correct
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import argparse
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument(
|
||
|
'--genia',
|
||
|
help="Path to the directory containing genia data."
|
||
|
)
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
libraries = (
|
||
|
blingfire_tokenize,
|
||
|
nltk_tokenize,
|
||
|
pysbd_tokenize,
|
||
|
spacy_tokenize,
|
||
|
spacy_dep_tokenize,
|
||
|
stanza_tokenize,
|
||
|
syntok_tokenize
|
||
|
)
|
||
|
|
||
|
docs = load_genia_corpus(args.genia)
|
||
|
total = len(docs)
|
||
|
for tokenize_func in libraries:
|
||
|
correct = benchmark(docs, tokenize_func)
|
||
|
percent_score = correct/total * 100
|
||
|
print()
|
||
|
print(tokenize_func.__name__)
|
||
|
print('GENIA abstract acc: {:0.2f}%'.format(percent_score))
|