101 lines
3.7 KiB
Python
101 lines
3.7 KiB
Python
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# This source code is licensed under the license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
"""Various utilities."""
|
||
|
|
||
|
from hashlib import sha256
|
||
|
from pathlib import Path
|
||
|
import typing as tp
|
||
|
|
||
|
import torch
|
||
|
import torchaudio
|
||
|
|
||
|
|
||
|
def _linear_overlap_add(frames: tp.List[torch.Tensor], stride: int):
|
||
|
# Generic overlap add, with linear fade-in/fade-out, supporting complex scenario
|
||
|
# e.g., more than 2 frames per position.
|
||
|
# The core idea is to use a weight function that is a triangle,
|
||
|
# with a maximum value at the middle of the segment.
|
||
|
# We use this weighting when summing the frames, and divide by the sum of weights
|
||
|
# for each positions at the end. Thus:
|
||
|
# - if a frame is the only one to cover a position, the weighting is a no-op.
|
||
|
# - if 2 frames cover a position:
|
||
|
# ... ...
|
||
|
# / \/ \
|
||
|
# / /\ \
|
||
|
# S T , i.e. S offset of second frame starts, T end of first frame.
|
||
|
# Then the weight function for each one is: (t - S), (T - t), with `t` a given offset.
|
||
|
# After the final normalization, the weight of the second frame at position `t` is
|
||
|
# (t - S) / (t - S + (T - t)) = (t - S) / (T - S), which is exactly what we want.
|
||
|
#
|
||
|
# - if more than 2 frames overlap at a given point, we hope that by induction
|
||
|
# something sensible happens.
|
||
|
assert len(frames)
|
||
|
device = frames[0].device
|
||
|
dtype = frames[0].dtype
|
||
|
shape = frames[0].shape[:-1]
|
||
|
total_size = stride * (len(frames) - 1) + frames[-1].shape[-1]
|
||
|
|
||
|
frame_length = frames[0].shape[-1]
|
||
|
t = torch.linspace(0, 1, frame_length + 2, device=device, dtype=dtype)[1: -1]
|
||
|
weight = 0.5 - (t - 0.5).abs()
|
||
|
|
||
|
sum_weight = torch.zeros(total_size, device=device, dtype=dtype)
|
||
|
out = torch.zeros(*shape, total_size, device=device, dtype=dtype)
|
||
|
offset: int = 0
|
||
|
|
||
|
for frame in frames:
|
||
|
frame_length = frame.shape[-1]
|
||
|
out[..., offset:offset + frame_length] += weight[:frame_length] * frame
|
||
|
sum_weight[offset:offset + frame_length] += weight[:frame_length]
|
||
|
offset += stride
|
||
|
assert sum_weight.min() > 0
|
||
|
return out / sum_weight
|
||
|
|
||
|
|
||
|
def _get_checkpoint_url(root_url: str, checkpoint: str):
|
||
|
if not root_url.endswith('/'):
|
||
|
root_url += '/'
|
||
|
return root_url + checkpoint
|
||
|
|
||
|
|
||
|
def _check_checksum(path: Path, checksum: str):
|
||
|
sha = sha256()
|
||
|
with open(path, 'rb') as file:
|
||
|
while True:
|
||
|
buf = file.read(2**20)
|
||
|
if not buf:
|
||
|
break
|
||
|
sha.update(buf)
|
||
|
actual_checksum = sha.hexdigest()[:len(checksum)]
|
||
|
if actual_checksum != checksum:
|
||
|
raise RuntimeError(f'Invalid checksum for file {path}, '
|
||
|
f'expected {checksum} but got {actual_checksum}')
|
||
|
|
||
|
|
||
|
def convert_audio(wav: torch.Tensor, sr: int, target_sr: int, target_channels: int):
|
||
|
assert wav.shape[0] in [1, 2], "Audio must be mono or stereo."
|
||
|
if target_channels == 1:
|
||
|
wav = wav.mean(0, keepdim=True)
|
||
|
elif target_channels == 2:
|
||
|
*shape, _, length = wav.shape
|
||
|
wav = wav.expand(*shape, target_channels, length)
|
||
|
elif wav.shape[0] == 1:
|
||
|
wav = wav.expand(target_channels, -1)
|
||
|
wav = torchaudio.transforms.Resample(sr, target_sr)(wav)
|
||
|
return wav
|
||
|
|
||
|
|
||
|
def save_audio(wav: torch.Tensor, path: tp.Union[Path, str],
|
||
|
sample_rate: int, rescale: bool = False):
|
||
|
limit = 0.99
|
||
|
mx = wav.abs().max()
|
||
|
if rescale:
|
||
|
wav = wav * min(limit / mx, 1)
|
||
|
else:
|
||
|
wav = wav.clamp(-limit, limit)
|
||
|
torchaudio.save(path, wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|