180 lines
4.6 KiB
Python
180 lines
4.6 KiB
Python
|
import dis
|
||
|
import inspect
|
||
|
from typing import Sequence, Union
|
||
|
|
||
|
import torch
|
||
|
|
||
|
import functorch._C
|
||
|
from functorch._C import dim as _C
|
||
|
from .tree_map import tree_flatten, tree_map
|
||
|
from .wrap_type import wrap_type
|
||
|
|
||
|
_C._patch_tensor_class()
|
||
|
dims, DimList, dimlists = _C.dims, _C.DimList, _C.dimlists
|
||
|
|
||
|
|
||
|
class DimensionMismatchError(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class DimensionBindError(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
from . import op_properties
|
||
|
|
||
|
# use dict to avoid writing C++ bindings for set
|
||
|
pointwise = dict.fromkeys(op_properties.pointwise, True)
|
||
|
|
||
|
use_c = True
|
||
|
if not use_c:
|
||
|
from . import reference
|
||
|
|
||
|
|
||
|
class _Tensor:
|
||
|
# fast path around slow wrapping/unwrapping logic for simply queries used
|
||
|
# by the implementation...
|
||
|
|
||
|
@property
|
||
|
def dims(self):
|
||
|
return tuple(d for d in self._levels if isinstance(d, Dim))
|
||
|
|
||
|
def dim(self):
|
||
|
return self.ndim
|
||
|
|
||
|
if use_c:
|
||
|
__torch_function__ = classmethod(_C.__torch_function__)
|
||
|
expand = _C._instancemethod(_C.expand)
|
||
|
else:
|
||
|
__torch_function__ = reference.__torch_function__
|
||
|
expand = reference.expand
|
||
|
|
||
|
index = _C._instancemethod(_C.index)
|
||
|
|
||
|
def __repr__(self):
|
||
|
tensor, levels, ndim = self._tensor, self._levels, self.ndim
|
||
|
return f"{tensor}\nwith dims={tuple(l + ndim if isinstance(l, int) else l for l in levels)} sizes={tuple(tensor.size())}"
|
||
|
|
||
|
|
||
|
TensorLike = (_Tensor, torch.Tensor)
|
||
|
|
||
|
|
||
|
class Dim(_C.Dim, _Tensor):
|
||
|
# note that _C.Dim comes before tensor because we want the Dim API for things like size to take precendence.
|
||
|
# Tensor defines format, but we want to print Dims with special formatting
|
||
|
__format__ = object.__format__
|
||
|
|
||
|
|
||
|
class Tensor(_Tensor, _C.Tensor):
|
||
|
if not use_c:
|
||
|
from_batched = staticmethod(_C.Tensor_from_batched)
|
||
|
from_positional = staticmethod(_C.Tensor_from_positional)
|
||
|
sum = _C._instancemethod(_C.Tensor_sum)
|
||
|
|
||
|
|
||
|
def cat(tensors, dim, new_dim):
|
||
|
n = dims()
|
||
|
return stack(tensors, n, dim).index([n, dim], new_dim)
|
||
|
|
||
|
|
||
|
if use_c:
|
||
|
_wrap = _C._wrap
|
||
|
|
||
|
def _def(name, *args, **kwargs):
|
||
|
orig = getattr(torch.Tensor, name)
|
||
|
setattr(_Tensor, name, _C._instancemethod(_wrap(orig, *args, **kwargs)))
|
||
|
|
||
|
t__getitem__ = _C._instancemethod(_C.__getitem__)
|
||
|
stack = _C.stack
|
||
|
split = _C._instancemethod(_C.split)
|
||
|
else:
|
||
|
_wrap, _def = reference._wrap, reference._def
|
||
|
t__getitem__ = reference.t__getitem__
|
||
|
stack = reference.stack
|
||
|
split = reference.split
|
||
|
|
||
|
# note: there is no python reference
|
||
|
t__setitem__ = _C._instancemethod(_C.__setitem__)
|
||
|
# this is patched in the C API because otherwise torch.Tensor will
|
||
|
# no longer be considered a sequence and things will break
|
||
|
# torch.Tensor.__getitem__ = t__getitem__
|
||
|
|
||
|
_Tensor.__getitem__ = t__getitem__
|
||
|
# torch.Tensor.__setitem__ = t__setitem__
|
||
|
_Tensor.__setitem__ = t__setitem__
|
||
|
|
||
|
torch.Tensor.split = split
|
||
|
_Tensor.split = split
|
||
|
torch.Tensor.expand = _C._instancemethod(_C.expand)
|
||
|
torch.Tensor.index = _C._instancemethod(_C.index)
|
||
|
wrap_type(use_c, _Tensor, torch.Tensor, _Tensor.__torch_function__)
|
||
|
del _Tensor.ndim
|
||
|
|
||
|
if use_c:
|
||
|
_Tensor.order = _C._instancemethod(_C.order)
|
||
|
else:
|
||
|
_Tensor.order = reference.positional
|
||
|
|
||
|
_def("mean")
|
||
|
_def("sum")
|
||
|
_def("all")
|
||
|
_def("amax")
|
||
|
_def("amin")
|
||
|
_def("aminmax")
|
||
|
_def("any")
|
||
|
_def("count_nonzero")
|
||
|
_def("logsumexp")
|
||
|
_def("nanmean")
|
||
|
_def("nansum")
|
||
|
_def("prod")
|
||
|
_def("std", keepdim_offset=2)
|
||
|
_def("var", keepdim_offset=2)
|
||
|
_def("max", single_dim=True)
|
||
|
_def("min", single_dim=True)
|
||
|
_def("argmax", single_dim=True)
|
||
|
_def("argmin", single_dim=True)
|
||
|
_def("kthvalue", single_dim=True)
|
||
|
_def("median", single_dim=True)
|
||
|
_def("nanmedian", single_dim=True)
|
||
|
_def("mode", single_dim=True)
|
||
|
_def("sort", reduce=False)
|
||
|
_def("argsort", reduce=False)
|
||
|
_def("unbind", single_dim=True)
|
||
|
_def("chunk", dim_offset=1, reduce=False)
|
||
|
_def("cummax", single_dim=True, reduce=False)
|
||
|
_def("cummin", single_dim=True, reduce=False)
|
||
|
_def("cumprod", single_dim=True, reduce=False)
|
||
|
_def("cumprod_", single_dim=True, reduce=False)
|
||
|
_def("cumsum", single_dim=True, reduce=False)
|
||
|
_def("cumsum_", single_dim=True, reduce=False)
|
||
|
_def("logcumsumexp", single_dim=True, reduce=False)
|
||
|
_def("renorm", dim_offset=1, single_dim=True, reduce=False)
|
||
|
_def("softmax", single_dim=True, reduce=False)
|
||
|
softmax = _wrap(torch.nn.functional.softmax, single_dim=True, reduce=False)
|
||
|
|
||
|
# stuff to handle in the future, because they require special
|
||
|
# binding logic for dims
|
||
|
# cross
|
||
|
# diag_embed
|
||
|
# diagonal
|
||
|
# diagonal_scatter
|
||
|
# diff
|
||
|
# nanquantile
|
||
|
# quantile
|
||
|
# roll
|
||
|
# rot90
|
||
|
# topk (new dimes on output)
|
||
|
# should these all be subsumed by inplace indexing?
|
||
|
# index_add_
|
||
|
# index_add
|
||
|
# index_copy
|
||
|
# index_copy_
|
||
|
# index_fill
|
||
|
# index_fill_
|
||
|
# index_select
|
||
|
# scatter
|
||
|
# scatter_
|
||
|
# scatter_add
|
||
|
# scatter_add_
|
||
|
# scatter_reduce
|