ai-content-maker/.venv/Lib/site-packages/huggingface_hub/hf_api.py

8628 lines
359 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import inspect
import json
import re
import struct
import warnings
from concurrent.futures import Future, ThreadPoolExecutor
from dataclasses import asdict, dataclass, field
from datetime import datetime
from functools import wraps
from itertools import islice
from pathlib import Path
from typing import (
Any,
BinaryIO,
Callable,
Dict,
Iterable,
Iterator,
List,
Literal,
Optional,
Tuple,
TypeVar,
Union,
overload,
)
from urllib.parse import quote
import requests
from requests.exceptions import HTTPError
from tqdm.auto import tqdm as base_tqdm
from tqdm.contrib.concurrent import thread_map
from ._commit_api import (
CommitOperation,
CommitOperationAdd,
CommitOperationCopy,
CommitOperationDelete,
_fetch_files_to_copy,
_fetch_upload_modes,
_prepare_commit_payload,
_upload_lfs_files,
_warn_on_overwriting_operations,
)
from ._inference_endpoints import InferenceEndpoint, InferenceEndpointType
from ._multi_commits import (
MULTI_COMMIT_PR_CLOSE_COMMENT_FAILURE_BAD_REQUEST_TEMPLATE,
MULTI_COMMIT_PR_CLOSE_COMMENT_FAILURE_NO_CHANGES_TEMPLATE,
MULTI_COMMIT_PR_CLOSING_COMMENT_TEMPLATE,
MULTI_COMMIT_PR_COMPLETION_COMMENT_TEMPLATE,
MultiCommitException,
MultiCommitStep,
MultiCommitStrategy,
multi_commit_create_pull_request,
multi_commit_generate_comment,
multi_commit_parse_pr_description,
plan_multi_commits,
)
from ._space_api import SpaceHardware, SpaceRuntime, SpaceStorage, SpaceVariable
from .community import (
Discussion,
DiscussionComment,
DiscussionStatusChange,
DiscussionTitleChange,
DiscussionWithDetails,
deserialize_event,
)
from .constants import (
DEFAULT_ETAG_TIMEOUT,
DEFAULT_REQUEST_TIMEOUT,
DEFAULT_REVISION,
DISCUSSION_STATUS,
DISCUSSION_TYPES,
ENDPOINT,
INFERENCE_ENDPOINTS_ENDPOINT,
REGEX_COMMIT_OID,
REPO_TYPE_MODEL,
REPO_TYPES,
REPO_TYPES_MAPPING,
REPO_TYPES_URL_PREFIXES,
SAFETENSORS_INDEX_FILE,
SAFETENSORS_MAX_HEADER_LENGTH,
SAFETENSORS_SINGLE_FILE,
SPACES_SDK_TYPES,
DiscussionStatusFilter,
DiscussionTypeFilter,
)
from .file_download import HfFileMetadata, get_hf_file_metadata, hf_hub_url
from .repocard_data import DatasetCardData, ModelCardData, SpaceCardData
from .utils import ( # noqa: F401 # imported for backward compatibility
IGNORE_GIT_FOLDER_PATTERNS,
BadRequestError,
EntryNotFoundError,
GatedRepoError,
HfFolder,
HfHubHTTPError,
LocalTokenNotFoundError,
NotASafetensorsRepoError,
RepositoryNotFoundError,
RevisionNotFoundError,
SafetensorsFileMetadata,
SafetensorsParsingError,
SafetensorsRepoMetadata,
TensorInfo,
build_hf_headers,
experimental,
filter_repo_objects,
fix_hf_endpoint_in_url,
get_session,
hf_raise_for_status,
logging,
paginate,
parse_datetime,
validate_hf_hub_args,
)
from .utils import tqdm as hf_tqdm
from .utils._deprecation import _deprecate_arguments, _deprecate_method
from .utils._typing import CallableT
from .utils.endpoint_helpers import (
DatasetFilter,
ModelFilter,
_is_emission_within_treshold,
)
R = TypeVar("R") # Return type
CollectionItemType_T = Literal["model", "dataset", "space", "paper"]
USERNAME_PLACEHOLDER = "hf_user"
_REGEX_DISCUSSION_URL = re.compile(r".*/discussions/(\d+)$")
_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE = (
"\nNote: Creating a commit assumes that the repo already exists on the"
" Huggingface Hub. Please use `create_repo` if it's not the case."
)
logger = logging.get_logger(__name__)
def repo_type_and_id_from_hf_id(hf_id: str, hub_url: Optional[str] = None) -> Tuple[Optional[str], Optional[str], str]:
"""
Returns the repo type and ID from a huggingface.co URL linking to a
repository
Args:
hf_id (`str`):
An URL or ID of a repository on the HF hub. Accepted values are:
- https://huggingface.co/<repo_type>/<namespace>/<repo_id>
- https://huggingface.co/<namespace>/<repo_id>
- hf://<repo_type>/<namespace>/<repo_id>
- hf://<namespace>/<repo_id>
- <repo_type>/<namespace>/<repo_id>
- <namespace>/<repo_id>
- <repo_id>
hub_url (`str`, *optional*):
The URL of the HuggingFace Hub, defaults to https://huggingface.co
Returns:
A tuple with three items: repo_type (`str` or `None`), namespace (`str` or
`None`) and repo_id (`str`).
Raises:
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
If URL cannot be parsed.
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
If `repo_type` is unknown.
"""
input_hf_id = hf_id
hub_url = re.sub(r"https?://", "", hub_url if hub_url is not None else ENDPOINT)
is_hf_url = hub_url in hf_id and "@" not in hf_id
HFFS_PREFIX = "hf://"
if hf_id.startswith(HFFS_PREFIX): # Remove "hf://" prefix if exists
hf_id = hf_id[len(HFFS_PREFIX) :]
url_segments = hf_id.split("/")
is_hf_id = len(url_segments) <= 3
namespace: Optional[str]
if is_hf_url:
namespace, repo_id = url_segments[-2:]
if namespace == hub_url:
namespace = None
if len(url_segments) > 2 and hub_url not in url_segments[-3]:
repo_type = url_segments[-3]
elif namespace in REPO_TYPES_MAPPING:
# Mean canonical dataset or model
repo_type = REPO_TYPES_MAPPING[namespace]
namespace = None
else:
repo_type = None
elif is_hf_id:
if len(url_segments) == 3:
# Passed <repo_type>/<user>/<model_id> or <repo_type>/<org>/<model_id>
repo_type, namespace, repo_id = url_segments[-3:]
elif len(url_segments) == 2:
if url_segments[0] in REPO_TYPES_MAPPING:
# Passed '<model_id>' or 'datasets/<dataset_id>' for a canonical model or dataset
repo_type = REPO_TYPES_MAPPING[url_segments[0]]
namespace = None
repo_id = hf_id.split("/")[-1]
else:
# Passed <user>/<model_id> or <org>/<model_id>
namespace, repo_id = hf_id.split("/")[-2:]
repo_type = None
else:
# Passed <model_id>
repo_id = url_segments[0]
namespace, repo_type = None, None
else:
raise ValueError(f"Unable to retrieve user and repo ID from the passed HF ID: {hf_id}")
# Check if repo type is known (mapping "spaces" => "space" + empty value => `None`)
if repo_type in REPO_TYPES_MAPPING:
repo_type = REPO_TYPES_MAPPING[repo_type]
if repo_type == "":
repo_type = None
if repo_type not in REPO_TYPES:
raise ValueError(f"Unknown `repo_type`: '{repo_type}' ('{input_hf_id}')")
return repo_type, namespace, repo_id
@dataclass
class LastCommitInfo(dict):
oid: str
title: str
date: datetime
def __post_init__(self): # hack to make LastCommitInfo backward compatible
self.update(asdict(self))
@dataclass
class BlobLfsInfo(dict):
size: int
sha256: str
pointer_size: int
def __post_init__(self): # hack to make BlobLfsInfo backward compatible
self.update(asdict(self))
@dataclass
class BlobSecurityInfo(dict):
safe: bool
av_scan: Optional[Dict]
pickle_import_scan: Optional[Dict]
def __post_init__(self): # hack to make BlogSecurityInfo backward compatible
self.update(asdict(self))
@dataclass
class TransformersInfo(dict):
auto_model: str
custom_class: Optional[str] = None
# possible `pipeline_tag` values: https://github.com/huggingface/huggingface.js/blob/3ee32554b8620644a6287e786b2a83bf5caf559c/packages/tasks/src/pipelines.ts#L72
pipeline_tag: Optional[str] = None
processor: Optional[str] = None
def __post_init__(self): # hack to make TransformersInfo backward compatible
self.update(asdict(self))
@dataclass
class SafeTensorsInfo(dict):
parameters: List[Dict[str, int]]
total: int
def __post_init__(self): # hack to make SafeTensorsInfo backward compatible
self.update(asdict(self))
@dataclass
class CommitInfo(str):
"""Data structure containing information about a newly created commit.
Returned by any method that creates a commit on the Hub: [`create_commit`], [`upload_file`], [`upload_folder`],
[`delete_file`], [`delete_folder`]. It inherits from `str` for backward compatibility but using methods specific
to `str` is deprecated.
Attributes:
commit_url (`str`):
Url where to find the commit.
commit_message (`str`):
The summary (first line) of the commit that has been created.
commit_description (`str`):
Description of the commit that has been created. Can be empty.
oid (`str`):
Commit hash id. Example: `"91c54ad1727ee830252e457677f467be0bfd8a57"`.
pr_url (`str`, *optional*):
Url to the PR that has been created, if any. Populated when `create_pr=True`
is passed.
pr_revision (`str`, *optional*):
Revision of the PR that has been created, if any. Populated when
`create_pr=True` is passed. Example: `"refs/pr/1"`.
pr_num (`int`, *optional*):
Number of the PR discussion that has been created, if any. Populated when
`create_pr=True` is passed. Can be passed as `discussion_num` in
[`get_discussion_details`]. Example: `1`.
_url (`str`, *optional*):
Legacy url for `str` compatibility. Can be the url to the uploaded file on the Hub (if returned by
[`upload_file`]), to the uploaded folder on the Hub (if returned by [`upload_folder`]) or to the commit on
the Hub (if returned by [`create_commit`]). Defaults to `commit_url`. It is deprecated to use this
attribute. Please use `commit_url` instead.
"""
commit_url: str
commit_message: str
commit_description: str
oid: str
pr_url: Optional[str] = None
# Computed from `pr_url` in `__post_init__`
pr_revision: Optional[str] = field(init=False)
pr_num: Optional[str] = field(init=False)
# legacy url for `str` compatibility (ex: url to uploaded file, url to uploaded folder, url to PR, etc.)
_url: str = field(repr=False, default=None) # type: ignore # defaults to `commit_url`
def __new__(cls, *args, commit_url: str, _url: Optional[str] = None, **kwargs):
return str.__new__(cls, _url or commit_url)
def __post_init__(self):
"""Populate pr-related fields after initialization.
See https://docs.python.org/3.10/library/dataclasses.html#post-init-processing.
"""
if self.pr_url is not None:
self.pr_revision = _parse_revision_from_pr_url(self.pr_url)
self.pr_num = int(self.pr_revision.split("/")[-1])
else:
self.pr_revision = None
self.pr_num = None
@dataclass
class AccessRequest:
"""Data structure containing information about a user access request.
Attributes:
username (`str`):
Username of the user who requested access.
fullname (`str`):
Fullname of the user who requested access.
email (`str`):
Email of the user who requested access.
timestamp (`datetime`):
Timestamp of the request.
status (`Literal["pending", "accepted", "rejected"]`):
Status of the request. Can be one of `["pending", "accepted", "rejected"]`.
fields (`Dict[str, Any]`, *optional*):
Additional fields filled by the user in the gate form.
"""
username: str
fullname: str
email: str
timestamp: datetime
status: Literal["pending", "accepted", "rejected"]
# Additional fields filled by the user in the gate form
fields: Optional[Dict[str, Any]] = None
class RepoUrl(str):
"""Subclass of `str` describing a repo URL on the Hub.
`RepoUrl` is returned by `HfApi.create_repo`. It inherits from `str` for backward
compatibility. At initialization, the URL is parsed to populate properties:
- endpoint (`str`)
- namespace (`Optional[str]`)
- repo_name (`str`)
- repo_id (`str`)
- repo_type (`Literal["model", "dataset", "space"]`)
- url (`str`)
Args:
url (`Any`):
String value of the repo url.
endpoint (`str`, *optional*):
Endpoint of the Hub. Defaults to <https://huggingface.co>.
Example:
```py
>>> RepoUrl('https://huggingface.co/gpt2')
RepoUrl('https://huggingface.co/gpt2', endpoint='https://huggingface.co', repo_type='model', repo_id='gpt2')
>>> RepoUrl('https://hub-ci.huggingface.co/datasets/dummy_user/dummy_dataset', endpoint='https://hub-ci.huggingface.co')
RepoUrl('https://hub-ci.huggingface.co/datasets/dummy_user/dummy_dataset', endpoint='https://hub-ci.huggingface.co', repo_type='dataset', repo_id='dummy_user/dummy_dataset')
>>> RepoUrl('hf://datasets/my-user/my-dataset')
RepoUrl('hf://datasets/my-user/my-dataset', endpoint='https://huggingface.co', repo_type='dataset', repo_id='user/dataset')
>>> HfApi.create_repo("dummy_model")
RepoUrl('https://huggingface.co/Wauplin/dummy_model', endpoint='https://huggingface.co', repo_type='model', repo_id='Wauplin/dummy_model')
```
Raises:
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
If URL cannot be parsed.
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
If `repo_type` is unknown.
"""
def __new__(cls, url: Any, endpoint: Optional[str] = None):
url = fix_hf_endpoint_in_url(url, endpoint=endpoint)
return super(RepoUrl, cls).__new__(cls, url)
def __init__(self, url: Any, endpoint: Optional[str] = None) -> None:
super().__init__()
# Parse URL
self.endpoint = endpoint or ENDPOINT
repo_type, namespace, repo_name = repo_type_and_id_from_hf_id(self, hub_url=self.endpoint)
# Populate fields
self.namespace = namespace
self.repo_name = repo_name
self.repo_id = repo_name if namespace is None else f"{namespace}/{repo_name}"
self.repo_type = repo_type or REPO_TYPE_MODEL
self.url = str(self) # just in case it's needed
def __repr__(self) -> str:
return f"RepoUrl('{self}', endpoint='{self.endpoint}', repo_type='{self.repo_type}', repo_id='{self.repo_id}')"
@dataclass
class RepoSibling:
"""
Contains basic information about a repo file inside a repo on the Hub.
<Tip>
All attributes of this class are optional except `rfilename`. This is because only the file names are returned when
listing repositories on the Hub (with [`list_models`], [`list_datasets`] or [`list_spaces`]). If you need more
information like file size, blob id or lfs details, you must request them specifically from one repo at a time
(using [`model_info`], [`dataset_info`] or [`space_info`]) as it adds more constraints on the backend server to
retrieve these.
</Tip>
Attributes:
rfilename (str):
file name, relative to the repo root.
size (`int`, *optional*):
The file's size, in bytes. This attribute is defined when `files_metadata` argument of [`repo_info`] is set
to `True`. It's `None` otherwise.
blob_id (`str`, *optional*):
The file's git OID. This attribute is defined when `files_metadata` argument of [`repo_info`] is set to
`True`. It's `None` otherwise.
lfs (`BlobLfsInfo`, *optional*):
The file's LFS metadata. This attribute is defined when`files_metadata` argument of [`repo_info`] is set to
`True` and the file is stored with Git LFS. It's `None` otherwise.
"""
rfilename: str
size: Optional[int] = None
blob_id: Optional[str] = None
lfs: Optional[BlobLfsInfo] = None
@dataclass
class RepoFile:
"""
Contains information about a file on the Hub.
Attributes:
path (str):
file path relative to the repo root.
size (`int`):
The file's size, in bytes.
blob_id (`str`):
The file's git OID.
lfs (`BlobLfsInfo`):
The file's LFS metadata.
last_commit (`LastCommitInfo`, *optional*):
The file's last commit metadata. Only defined if [`list_files_info`], [`list_repo_tree`] and [`get_paths_info`]
are called with `expand=True`.
security (`BlobSecurityInfo`, *optional*):
The file's security scan metadata. Only defined if [`list_files_info`], [`list_repo_tree`] and [`get_paths_info`]
are called with `expand=True`.
"""
path: str
size: int
blob_id: str
lfs: Optional[BlobLfsInfo] = None
last_commit: Optional[LastCommitInfo] = None
security: Optional[BlobSecurityInfo] = None
def __init__(self, **kwargs):
self.path = kwargs.pop("path")
self.size = kwargs.pop("size")
self.blob_id = kwargs.pop("oid")
lfs = kwargs.pop("lfs", None)
if lfs is not None:
lfs = BlobLfsInfo(size=lfs["size"], sha256=lfs["oid"], pointer_size=lfs["pointerSize"])
self.lfs = lfs
last_commit = kwargs.pop("lastCommit", None) or kwargs.pop("last_commit", None)
if last_commit is not None:
last_commit = LastCommitInfo(
oid=last_commit["id"], title=last_commit["title"], date=parse_datetime(last_commit["date"])
)
self.last_commit = last_commit
security = kwargs.pop("security", None)
if security is not None:
security = BlobSecurityInfo(
safe=security["safe"], av_scan=security["avScan"], pickle_import_scan=security["pickleImportScan"]
)
self.security = security
# backwards compatibility
self.rfilename = self.path
self.lastCommit = self.last_commit
@dataclass
class RepoFolder:
"""
Contains information about a folder on the Hub.
Attributes:
path (str):
folder path relative to the repo root.
tree_id (`str`):
The folder's git OID.
last_commit (`LastCommitInfo`, *optional*):
The folder's last commit metadata. Only defined if [`list_repo_tree`] and [`get_paths_info`]
are called with `expand=True`.
"""
path: str
tree_id: str
last_commit: Optional[LastCommitInfo] = None
def __init__(self, **kwargs):
self.path = kwargs.pop("path")
self.tree_id = kwargs.pop("oid")
last_commit = kwargs.pop("lastCommit", None) or kwargs.pop("last_commit", None)
if last_commit is not None:
last_commit = LastCommitInfo(
oid=last_commit["id"], title=last_commit["title"], date=parse_datetime(last_commit["date"])
)
self.last_commit = last_commit
@dataclass
class ModelInfo:
"""
Contains information about a model on the Hub.
<Tip>
Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made.
In general, the more specific the query, the more information is returned. On the contrary, when listing models
using [`list_models`] only a subset of the attributes are returned.
</Tip>
Attributes:
id (`str`):
ID of model.
author (`str`, *optional*):
Author of the model.
sha (`str`, *optional*):
Repo SHA at this particular revision.
created_at (`datetime`, *optional*):
Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`,
corresponding to the date when we began to store creation dates.
last_modified (`datetime`, *optional*):
Date of last commit to the repo.
private (`bool`):
Is the repo private.
disabled (`bool`, *optional*):
Is the repo disabled.
gated (`Literal["auto", "manual", False]`, *optional*):
Is the repo gated.
If so, whether there is manual or automatic approval.
downloads (`int`):
Number of downloads of the model.
likes (`int`):
Number of likes of the model.
library_name (`str`, *optional*):
Library associated with the model.
tags (`List[str]`):
List of tags of the model. Compared to `card_data.tags`, contains extra tags computed by the Hub
(e.g. supported libraries, model's arXiv).
pipeline_tag (`str`, *optional*):
Pipeline tag associated with the model.
mask_token (`str`, *optional*):
Mask token used by the model.
widget_data (`Any`, *optional*):
Widget data associated with the model.
model_index (`Dict`, *optional*):
Model index for evaluation.
config (`Dict`, *optional*):
Model configuration.
transformers_info (`TransformersInfo`, *optional*):
Transformers-specific info (auto class, processor, etc.) associated with the model.
card_data (`ModelCardData`, *optional*):
Model Card Metadata as a [`huggingface_hub.repocard_data.ModelCardData`] object.
siblings (`List[RepoSibling]`):
List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the model.
spaces (`List[str]`, *optional*):
List of spaces using the model.
safetensors (`SafeTensorsInfo`, *optional*):
Model's safetensors information.
"""
id: str
author: Optional[str]
sha: Optional[str]
created_at: Optional[datetime]
last_modified: Optional[datetime]
private: bool
gated: Optional[Literal["auto", "manual", False]]
disabled: Optional[bool]
downloads: int
likes: int
library_name: Optional[str]
tags: List[str]
pipeline_tag: Optional[str]
mask_token: Optional[str]
card_data: Optional[ModelCardData]
widget_data: Optional[Any]
model_index: Optional[Dict]
config: Optional[Dict]
transformers_info: Optional[TransformersInfo]
siblings: Optional[List[RepoSibling]]
spaces: Optional[List[str]]
safetensors: Optional[SafeTensorsInfo]
def __init__(self, **kwargs):
self.id = kwargs.pop("id")
self.author = kwargs.pop("author", None)
self.sha = kwargs.pop("sha", None)
last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None)
self.last_modified = parse_datetime(last_modified) if last_modified else None
created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None)
self.created_at = parse_datetime(created_at) if created_at else None
self.private = kwargs.pop("private")
self.gated = kwargs.pop("gated", None)
self.disabled = kwargs.pop("disabled", None)
self.downloads = kwargs.pop("downloads")
self.likes = kwargs.pop("likes")
self.library_name = kwargs.pop("library_name", None)
self.tags = kwargs.pop("tags")
self.pipeline_tag = kwargs.pop("pipeline_tag", None)
self.mask_token = kwargs.pop("mask_token", None)
card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None)
self.card_data = (
ModelCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data
)
self.widget_data = kwargs.pop("widgetData", None)
self.model_index = kwargs.pop("model-index", None) or kwargs.pop("model_index", None)
self.config = kwargs.pop("config", None)
transformers_info = kwargs.pop("transformersInfo", None) or kwargs.pop("transformers_info", None)
self.transformers_info = TransformersInfo(**transformers_info) if transformers_info else None
siblings = kwargs.pop("siblings", None)
self.siblings = (
[
RepoSibling(
rfilename=sibling["rfilename"],
size=sibling.get("size"),
blob_id=sibling.get("blobId"),
lfs=(
BlobLfsInfo(
size=sibling["lfs"]["size"],
sha256=sibling["lfs"]["sha256"],
pointer_size=sibling["lfs"]["pointerSize"],
)
if sibling.get("lfs")
else None
),
)
for sibling in siblings
]
if siblings
else None
)
self.spaces = kwargs.pop("spaces", None)
safetensors = kwargs.pop("safetensors", None)
self.safetensors = SafeTensorsInfo(**safetensors) if safetensors else None
# backwards compatibility
self.lastModified = self.last_modified
self.cardData = self.card_data
self.transformersInfo = self.transformers_info
self.__dict__.update(**kwargs)
@dataclass
class DatasetInfo:
"""
Contains information about a dataset on the Hub.
<Tip>
Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made.
In general, the more specific the query, the more information is returned. On the contrary, when listing datasets
using [`list_datasets`] only a subset of the attributes are returned.
</Tip>
Attributes:
id (`str`):
ID of dataset.
author (`str`):
Author of the dataset.
sha (`str`):
Repo SHA at this particular revision.
created_at (`datetime`, *optional*):
Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`,
corresponding to the date when we began to store creation dates.
last_modified (`datetime`, *optional*):
Date of last commit to the repo.
private (`bool`):
Is the repo private.
disabled (`bool`, *optional*):
Is the repo disabled.
gated (`Literal["auto", "manual", False]`, *optional*):
Is the repo gated.
If so, whether there is manual or automatic approval.
downloads (`int`):
Number of downloads of the dataset.
likes (`int`):
Number of likes of the dataset.
tags (`List[str]`):
List of tags of the dataset.
card_data (`DatasetCardData`, *optional*):
Model Card Metadata as a [`huggingface_hub.repocard_data.DatasetCardData`] object.
siblings (`List[RepoSibling]`):
List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the dataset.
"""
id: str
author: Optional[str]
sha: Optional[str]
created_at: Optional[datetime]
last_modified: Optional[datetime]
private: bool
gated: Optional[Literal["auto", "manual", False]]
disabled: Optional[bool]
downloads: int
likes: int
paperswithcode_id: Optional[str]
tags: List[str]
card_data: Optional[DatasetCardData]
siblings: Optional[List[RepoSibling]]
def __init__(self, **kwargs):
self.id = kwargs.pop("id")
self.author = kwargs.pop("author", None)
self.sha = kwargs.pop("sha", None)
created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None)
self.created_at = parse_datetime(created_at) if created_at else None
last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None)
self.last_modified = parse_datetime(last_modified) if last_modified else None
self.private = kwargs.pop("private")
self.gated = kwargs.pop("gated", None)
self.disabled = kwargs.pop("disabled", None)
self.downloads = kwargs.pop("downloads")
self.likes = kwargs.pop("likes")
self.paperswithcode_id = kwargs.pop("paperswithcode_id", None)
self.tags = kwargs.pop("tags")
card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None)
self.card_data = (
DatasetCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data
)
siblings = kwargs.pop("siblings", None)
self.siblings = (
[
RepoSibling(
rfilename=sibling["rfilename"],
size=sibling.get("size"),
blob_id=sibling.get("blobId"),
lfs=(
BlobLfsInfo(
size=sibling["lfs"]["size"],
sha256=sibling["lfs"]["sha256"],
pointer_size=sibling["lfs"]["pointerSize"],
)
if sibling.get("lfs")
else None
),
)
for sibling in siblings
]
if siblings
else None
)
# backwards compatibility
self.lastModified = self.last_modified
self.cardData = self.card_data
self.__dict__.update(**kwargs)
@dataclass
class SpaceInfo:
"""
Contains information about a Space on the Hub.
<Tip>
Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made.
In general, the more specific the query, the more information is returned. On the contrary, when listing spaces
using [`list_spaces`] only a subset of the attributes are returned.
</Tip>
Attributes:
id (`str`):
ID of the Space.
author (`str`, *optional*):
Author of the Space.
sha (`str`, *optional*):
Repo SHA at this particular revision.
created_at (`datetime`, *optional*):
Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`,
corresponding to the date when we began to store creation dates.
last_modified (`datetime`, *optional*):
Date of last commit to the repo.
private (`bool`):
Is the repo private.
gated (`Literal["auto", "manual", False]`, *optional*):
Is the repo gated.
If so, whether there is manual or automatic approval.
disabled (`bool`, *optional*):
Is the Space disabled.
host (`str`, *optional*):
Host URL of the Space.
subdomain (`str`, *optional*):
Subdomain of the Space.
likes (`int`):
Number of likes of the Space.
tags (`List[str]`):
List of tags of the Space.
siblings (`List[RepoSibling]`):
List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the Space.
card_data (`SpaceCardData`, *optional*):
Space Card Metadata as a [`huggingface_hub.repocard_data.SpaceCardData`] object.
runtime (`SpaceRuntime`, *optional*):
Space runtime information as a [`huggingface_hub.hf_api.SpaceRuntime`] object.
sdk (`str`, *optional*):
SDK used by the Space.
models (`List[str]`, *optional*):
List of models used by the Space.
datasets (`List[str]`, *optional*):
List of datasets used by the Space.
"""
id: str
author: Optional[str]
sha: Optional[str]
created_at: Optional[datetime]
last_modified: Optional[datetime]
private: bool
gated: Optional[Literal["auto", "manual", False]]
disabled: Optional[bool]
host: Optional[str]
subdomain: Optional[str]
likes: int
sdk: Optional[str]
tags: List[str]
siblings: Optional[List[RepoSibling]]
card_data: Optional[SpaceCardData]
runtime: Optional[SpaceRuntime]
models: Optional[List[str]]
datasets: Optional[List[str]]
def __init__(self, **kwargs):
self.id = kwargs.pop("id")
self.author = kwargs.pop("author", None)
self.sha = kwargs.pop("sha", None)
created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None)
self.created_at = parse_datetime(created_at) if created_at else None
last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None)
self.last_modified = parse_datetime(last_modified) if last_modified else None
self.private = kwargs.pop("private")
self.gated = kwargs.pop("gated", None)
self.disabled = kwargs.pop("disabled", None)
self.host = kwargs.pop("host", None)
self.subdomain = kwargs.pop("subdomain", None)
self.likes = kwargs.pop("likes")
self.sdk = kwargs.pop("sdk", None)
self.tags = kwargs.pop("tags")
card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None)
self.card_data = (
SpaceCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data
)
siblings = kwargs.pop("siblings", None)
self.siblings = (
[
RepoSibling(
rfilename=sibling["rfilename"],
size=sibling.get("size"),
blob_id=sibling.get("blobId"),
lfs=(
BlobLfsInfo(
size=sibling["lfs"]["size"],
sha256=sibling["lfs"]["sha256"],
pointer_size=sibling["lfs"]["pointerSize"],
)
if sibling.get("lfs")
else None
),
)
for sibling in siblings
]
if siblings
else None
)
runtime = kwargs.pop("runtime", None)
self.runtime = SpaceRuntime(runtime) if runtime else None
self.models = kwargs.pop("models", None)
self.datasets = kwargs.pop("datasets", None)
# backwards compatibility
self.lastModified = self.last_modified
self.cardData = self.card_data
self.__dict__.update(**kwargs)
@dataclass
class MetricInfo:
"""
Contains information about a metric on the Hub.
Attributes:
id (`str`):
ID of the metric. E.g. `"accuracy"`.
space_id (`str`):
ID of the space associated with the metric. E.g. `"Accuracy"`.
description (`str`):
Description of the metric.
"""
id: str
space_id: str
description: Optional[str]
def __init__(self, **kwargs):
self.id = kwargs.pop("id")
self.space_id = kwargs.pop("spaceId")
self.description = kwargs.pop("description", None)
# backwards compatibility
self.spaceId = self.space_id
self.__dict__.update(**kwargs)
@dataclass
class CollectionItem:
"""
Contains information about an item of a Collection (model, dataset, Space or paper).
Attributes:
item_object_id (`str`):
Unique ID of the item in the collection.
item_id (`str`):
ID of the underlying object on the Hub. Can be either a repo_id or a paper id
e.g. `"jbilcke-hf/ai-comic-factory"`, `"2307.09288"`.
item_type (`str`):
Type of the underlying object. Can be one of `"model"`, `"dataset"`, `"space"` or `"paper"`.
position (`int`):
Position of the item in the collection.
note (`str`, *optional*):
Note associated with the item, as plain text.
"""
item_object_id: str # id in database
item_id: str # repo_id or paper id
item_type: str
position: int
note: Optional[str] = None
def __init__(
self, _id: str, id: str, type: CollectionItemType_T, position: int, note: Optional[Dict] = None, **kwargs
) -> None:
self.item_object_id: str = _id # id in database
self.item_id: str = id # repo_id or paper id
self.item_type: CollectionItemType_T = type
self.position: int = position
self.note: str = note["text"] if note is not None else None
@dataclass
class Collection:
"""
Contains information about a Collection on the Hub.
Attributes:
slug (`str`):
Slug of the collection. E.g. `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`.
title (`str`):
Title of the collection. E.g. `"Recent models"`.
owner (`str`):
Owner of the collection. E.g. `"TheBloke"`.
items (`List[CollectionItem]`):
List of items in the collection.
last_updated (`datetime`):
Date of the last update of the collection.
position (`int`):
Position of the collection in the list of collections of the owner.
private (`bool`):
Whether the collection is private or not.
theme (`str`):
Theme of the collection. E.g. `"green"`.
upvotes (`int`):
Number of upvotes of the collection.
description (`str`, *optional*):
Description of the collection, as plain text.
url (`str`):
(property) URL of the collection on the Hub.
"""
slug: str
title: str
owner: str
items: List[CollectionItem]
last_updated: datetime
position: int
private: bool
theme: str
upvotes: int
description: Optional[str] = None
def __init__(self, **kwargs) -> None:
self.slug = kwargs.pop("slug")
self.title = kwargs.pop("title")
self.owner = kwargs.pop("owner")
self.items = [CollectionItem(**item) for item in kwargs.pop("items")]
self.last_updated = parse_datetime(kwargs.pop("lastUpdated"))
self.position = kwargs.pop("position")
self.private = kwargs.pop("private")
self.theme = kwargs.pop("theme")
self.upvotes = kwargs.pop("upvotes")
self.description = kwargs.pop("description", None)
endpoint = kwargs.pop("endpoint", None)
if endpoint is None:
endpoint = ENDPOINT
self._url = f"{endpoint}/collections/{self.slug}"
@property
def url(self) -> str:
"""Returns the URL of the collection on the Hub."""
return self._url
@dataclass
class GitRefInfo:
"""
Contains information about a git reference for a repo on the Hub.
Attributes:
name (`str`):
Name of the reference (e.g. tag name or branch name).
ref (`str`):
Full git ref on the Hub (e.g. `"refs/heads/main"` or `"refs/tags/v1.0"`).
target_commit (`str`):
OID of the target commit for the ref (e.g. `"e7da7f221d5bf496a48136c0cd264e630fe9fcc8"`)
"""
name: str
ref: str
target_commit: str
@dataclass
class GitRefs:
"""
Contains information about all git references for a repo on the Hub.
Object is returned by [`list_repo_refs`].
Attributes:
branches (`List[GitRefInfo]`):
A list of [`GitRefInfo`] containing information about branches on the repo.
converts (`List[GitRefInfo]`):
A list of [`GitRefInfo`] containing information about "convert" refs on the repo.
Converts are refs used (internally) to push preprocessed data in Dataset repos.
tags (`List[GitRefInfo]`):
A list of [`GitRefInfo`] containing information about tags on the repo.
pull_requests (`List[GitRefInfo]`, *optional*):
A list of [`GitRefInfo`] containing information about pull requests on the repo.
Only returned if `include_prs=True` is set.
"""
branches: List[GitRefInfo]
converts: List[GitRefInfo]
tags: List[GitRefInfo]
pull_requests: Optional[List[GitRefInfo]] = None
@dataclass
class GitCommitInfo:
"""
Contains information about a git commit for a repo on the Hub. Check out [`list_repo_commits`] for more details.
Attributes:
commit_id (`str`):
OID of the commit (e.g. `"e7da7f221d5bf496a48136c0cd264e630fe9fcc8"`)
authors (`List[str]`):
List of authors of the commit.
created_at (`datetime`):
Datetime when the commit was created.
title (`str`):
Title of the commit. This is a free-text value entered by the authors.
message (`str`):
Description of the commit. This is a free-text value entered by the authors.
formatted_title (`str`):
Title of the commit formatted as HTML. Only returned if `formatted=True` is set.
formatted_message (`str`):
Description of the commit formatted as HTML. Only returned if `formatted=True` is set.
"""
commit_id: str
authors: List[str]
created_at: datetime
title: str
message: str
formatted_title: Optional[str]
formatted_message: Optional[str]
@dataclass
class UserLikes:
"""
Contains information about a user likes on the Hub.
Attributes:
user (`str`):
Name of the user for which we fetched the likes.
total (`int`):
Total number of likes.
datasets (`List[str]`):
List of datasets liked by the user (as repo_ids).
models (`List[str]`):
List of models liked by the user (as repo_ids).
spaces (`List[str]`):
List of spaces liked by the user (as repo_ids).
"""
# Metadata
user: str
total: int
# User likes
datasets: List[str]
models: List[str]
spaces: List[str]
@dataclass
class User:
"""
Contains information about a user on the Hub.
Attributes:
avatar_url (`str`):
URL of the user's avatar.
username (`str`):
Name of the user on the Hub (unique).
fullname (`str`):
User's full name.
"""
# Metadata
avatar_url: str
username: str
fullname: str
def future_compatible(fn: CallableT) -> CallableT:
"""Wrap a method of `HfApi` to handle `run_as_future=True`.
A method flagged as "future_compatible" will be called in a thread if `run_as_future=True` and return a
`concurrent.futures.Future` instance. Otherwise, it will be called normally and return the result.
"""
sig = inspect.signature(fn)
args_params = list(sig.parameters)[1:] # remove "self" from list
@wraps(fn)
def _inner(self, *args, **kwargs):
# Get `run_as_future` value if provided (default to False)
if "run_as_future" in kwargs:
run_as_future = kwargs["run_as_future"]
kwargs["run_as_future"] = False # avoid recursion error
else:
run_as_future = False
for param, value in zip(args_params, args):
if param == "run_as_future":
run_as_future = value
break
# Call the function in a thread if `run_as_future=True`
if run_as_future:
return self.run_as_future(fn, self, *args, **kwargs)
# Otherwise, call the function normally
return fn(self, *args, **kwargs)
_inner.is_future_compatible = True # type: ignore
return _inner # type: ignore
class HfApi:
def __init__(
self,
endpoint: Optional[str] = None,
token: Union[str, bool, None] = None,
library_name: Optional[str] = None,
library_version: Optional[str] = None,
user_agent: Union[Dict, str, None] = None,
headers: Optional[Dict[str, str]] = None,
) -> None:
"""Create a HF client to interact with the Hub via HTTP.
The client is initialized with some high-level settings used in all requests
made to the Hub (HF endpoint, authentication, user agents...). Using the `HfApi`
client is preferred but not mandatory as all of its public methods are exposed
directly at the root of `huggingface_hub`.
Args:
token (`str` or `bool`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Pass `token=False` if you don't want to send your token to the server.
library_name (`str`, *optional*):
The name of the library that is making the HTTP request. Will be added to
the user-agent header. Example: `"transformers"`.
library_version (`str`, *optional*):
The version of the library that is making the HTTP request. Will be added
to the user-agent header. Example: `"4.24.0"`.
user_agent (`str`, `dict`, *optional*):
The user agent info in the form of a dictionary or a single string. It will
be completed with information about the installed packages.
headers (`dict`, *optional*):
Additional headers to be sent with each request. Example: `{"X-My-Header": "value"}`.
Headers passed here are taking precedence over the default headers.
"""
self.endpoint = endpoint if endpoint is not None else ENDPOINT
self.token = token
self.library_name = library_name
self.library_version = library_version
self.user_agent = user_agent
self.headers = headers
self._thread_pool: Optional[ThreadPoolExecutor] = None
def run_as_future(self, fn: Callable[..., R], *args, **kwargs) -> Future[R]:
"""
Run a method in the background and return a Future instance.
The main goal is to run methods without blocking the main thread (e.g. to push data during a training).
Background jobs are queued to preserve order but are not ran in parallel. If you need to speed-up your scripts
by parallelizing lots of call to the API, you must setup and use your own [ThreadPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor).
Note: Most-used methods like [`upload_file`], [`upload_folder`] and [`create_commit`] have a `run_as_future: bool`
argument to directly call them in the background. This is equivalent to calling `api.run_as_future(...)` on them
but less verbose.
Args:
fn (`Callable`):
The method to run in the background.
*args, **kwargs:
Arguments with which the method will be called.
Return:
`Future`: a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects) instance to
get the result of the task.
Example:
```py
>>> from huggingface_hub import HfApi
>>> api = HfApi()
>>> future = api.run_as_future(api.whoami) # instant
>>> future.done()
False
>>> future.result() # wait until complete and return result
(...)
>>> future.done()
True
```
"""
if self._thread_pool is None:
self._thread_pool = ThreadPoolExecutor(max_workers=1)
self._thread_pool
return self._thread_pool.submit(fn, *args, **kwargs)
@validate_hf_hub_args
def whoami(self, token: Optional[str] = None) -> Dict:
"""
Call HF API to know "whoami".
Args:
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if
not provided.
"""
r = get_session().get(
f"{self.endpoint}/api/whoami-v2",
headers=self._build_hf_headers(
# If `token` is provided and not `None`, it will be used by default.
# Otherwise, the token must be retrieved from cache or env variable.
token=(token or self.token or True),
),
)
try:
hf_raise_for_status(r)
except HTTPError as e:
raise HTTPError(
"Invalid user token. If you didn't pass a user token, make sure you "
"are properly logged in by executing `huggingface-cli login`, and "
"if you did pass a user token, double-check it's correct.",
request=e.request,
response=e.response,
) from e
return r.json()
def get_token_permission(self, token: Optional[str] = None) -> Literal["read", "write", None]:
"""
Check if a given `token` is valid and return its permissions.
For more details about tokens, please refer to https://huggingface.co/docs/hub/security-tokens#what-are-user-access-tokens.
Args:
token (`str`, *optional*):
The token to check for validity. Defaults to the one saved locally.
Returns:
`Literal["read", "write", None]`: Permission granted by the token ("read" or "write"). Returns `None` if no
token passed or token is invalid.
"""
try:
return self.whoami(token=token)["auth"]["accessToken"]["role"]
except (LocalTokenNotFoundError, HTTPError):
return None
def get_model_tags(self) -> Dict:
"""
List all valid model tags as a nested namespace object
"""
path = f"{self.endpoint}/api/models-tags-by-type"
r = get_session().get(path)
hf_raise_for_status(r)
return r.json()
def get_dataset_tags(self) -> Dict:
"""
List all valid dataset tags as a nested namespace object.
"""
path = f"{self.endpoint}/api/datasets-tags-by-type"
r = get_session().get(path)
hf_raise_for_status(r)
return r.json()
@validate_hf_hub_args
def list_models(
self,
*,
filter: Union[ModelFilter, str, Iterable[str], None] = None,
author: Optional[str] = None,
library: Optional[Union[str, List[str]]] = None,
language: Optional[Union[str, List[str]]] = None,
model_name: Optional[str] = None,
task: Optional[Union[str, List[str]]] = None,
trained_dataset: Optional[Union[str, List[str]]] = None,
tags: Optional[Union[str, List[str]]] = None,
search: Optional[str] = None,
emissions_thresholds: Optional[Tuple[float, float]] = None,
sort: Union[Literal["last_modified"], str, None] = None,
direction: Optional[Literal[-1]] = None,
limit: Optional[int] = None,
full: Optional[bool] = None,
cardData: bool = False,
fetch_config: bool = False,
token: Optional[Union[bool, str]] = None,
pipeline_tag: Optional[str] = None,
) -> Iterable[ModelInfo]:
"""
List models hosted on the Huggingface Hub, given some filters.
Args:
filter ([`ModelFilter`] or `str` or `Iterable`, *optional*):
A string or [`ModelFilter`] which can be used to identify models
on the Hub.
author (`str`, *optional*):
A string which identify the author (user or organization) of the
returned models
library (`str` or `List`, *optional*):
A string or list of strings of foundational libraries models were
originally trained from, such as pytorch, tensorflow, or allennlp.
language (`str` or `List`, *optional*):
A string or list of strings of languages, both by name and country
code, such as "en" or "English"
model_name (`str`, *optional*):
A string that contain complete or partial names for models on the
Hub, such as "bert" or "bert-base-cased"
task (`str` or `List`, *optional*):
A string or list of strings of tasks models were designed for, such
as: "fill-mask" or "automatic-speech-recognition"
trained_dataset (`str` or `List`, *optional*):
A string tag or a list of string tags of the trained dataset for a
model on the Hub.
tags (`str` or `List`, *optional*):
A string tag or a list of tags to filter models on the Hub by, such
as `text-generation` or `spacy`.
search (`str`, *optional*):
A string that will be contained in the returned model ids.
emissions_thresholds (`Tuple`, *optional*):
A tuple of two ints or floats representing a minimum and maximum
carbon footprint to filter the resulting models with in grams.
sort (`Literal["last_modified"]` or `str`, *optional*):
The key with which to sort the resulting models. Possible values
are the properties of the [`huggingface_hub.hf_api.ModelInfo`] class.
direction (`Literal[-1]` or `int`, *optional*):
Direction in which to sort. The value `-1` sorts by descending
order while all other values sort by ascending order.
limit (`int`, *optional*):
The limit on the number of models fetched. Leaving this option
to `None` fetches all models.
full (`bool`, *optional*):
Whether to fetch all model data, including the `last_modified`,
the `sha`, the files and the `tags`. This is set to `True` by
default when using a filter.
cardData (`bool`, *optional*):
Whether to grab the metadata for the model as well. Can contain
useful information such as carbon emissions, metrics, and
datasets trained on.
fetch_config (`bool`, *optional*):
Whether to fetch the model configs as well. This is not included
in `full` due to its size.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
pipeline_tag (`str`, *optional*):
A string pipeline tag to filter models on the Hub by, such as `summarization`
Returns:
`Iterable[ModelInfo]`: an iterable of [`huggingface_hub.hf_api.ModelInfo`] objects.
Example usage with the `filter` argument:
```python
>>> from huggingface_hub import HfApi
>>> api = HfApi()
>>> # List all models
>>> api.list_models()
>>> # List only the text classification models
>>> api.list_models(filter="text-classification")
>>> # List only models from the AllenNLP library
>>> api.list_models(filter="allennlp")
```
Example usage with the `search` argument:
```python
>>> from huggingface_hub import HfApi
>>> api = HfApi()
>>> # List all models with "bert" in their name
>>> api.list_models(search="bert")
>>> # List all models with "bert" in their name made by google
>>> api.list_models(search="bert", author="google")
```
"""
if emissions_thresholds is not None and cardData is None:
raise ValueError("`emissions_thresholds` were passed without setting `cardData=True`.")
path = f"{self.endpoint}/api/models"
headers = self._build_hf_headers(token=token)
params = {}
filter_list = []
if filter is not None:
if isinstance(filter, ModelFilter):
params = self._unpack_model_filter(filter)
else:
params.update({"filter": filter})
params.update({"full": True})
# Build the filter list
if author:
params.update({"author": author})
if model_name:
params.update({"search": model_name})
if library:
filter_list.extend([library] if isinstance(library, str) else library)
if task:
filter_list.extend([task] if isinstance(task, str) else task)
if trained_dataset:
if not isinstance(trained_dataset, (list, tuple)):
trained_dataset = [trained_dataset]
for dataset in trained_dataset:
if not dataset.startswith("dataset:"):
dataset = f"dataset:{dataset}"
filter_list.append(dataset)
if language:
filter_list.extend([language] if isinstance(language, str) else language)
if tags:
filter_list.extend([tags] if isinstance(tags, str) else tags)
if search:
params.update({"search": search})
if sort is not None:
params.update({"sort": "lastModified" if sort == "last_modified" else sort})
if direction is not None:
params.update({"direction": direction})
if limit is not None:
params.update({"limit": limit})
if full is not None:
if full:
params.update({"full": True})
elif "full" in params:
del params["full"]
if fetch_config:
params.update({"config": True})
if cardData:
params.update({"cardData": True})
if pipeline_tag:
params.update({"pipeline_tag": pipeline_tag})
filter_value = params.get("filter", [])
if filter_value:
filter_list.extend([filter_value] if isinstance(filter_value, str) else list(filter_value))
params.update({"filter": filter_list})
# `items` is a generator
items = paginate(path, params=params, headers=headers)
if limit is not None:
items = islice(items, limit) # Do not iterate over all pages
for item in items:
if "siblings" not in item:
item["siblings"] = None
model_info = ModelInfo(**item)
if emissions_thresholds is None or _is_emission_within_treshold(model_info, *emissions_thresholds):
yield model_info
def _unpack_model_filter(self, model_filter: ModelFilter):
"""
Unpacks a [`ModelFilter`] into something readable for `list_models`
"""
model_str = ""
# Handling author
if model_filter.author:
model_str = f"{model_filter.author}/"
# Handling model_name
if model_filter.model_name:
model_str += model_filter.model_name
filter_list: List[str] = []
# Handling tasks
if model_filter.task:
filter_list.extend([model_filter.task] if isinstance(model_filter.task, str) else model_filter.task)
# Handling dataset
if model_filter.trained_dataset:
if not isinstance(model_filter.trained_dataset, (list, tuple)):
model_filter.trained_dataset = [model_filter.trained_dataset]
for dataset in model_filter.trained_dataset:
if "dataset:" not in dataset:
dataset = f"dataset:{dataset}"
filter_list.append(dataset)
# Handling library
if model_filter.library:
filter_list.extend(
[model_filter.library] if isinstance(model_filter.library, str) else model_filter.library
)
# Handling tags
if model_filter.tags:
filter_list.extend([model_filter.tags] if isinstance(model_filter.tags, str) else model_filter.tags)
query_dict: Dict[str, Any] = {}
if model_str:
query_dict["search"] = model_str
if isinstance(model_filter.language, list):
filter_list.extend(model_filter.language)
elif isinstance(model_filter.language, str):
filter_list.append(model_filter.language)
query_dict["filter"] = tuple(filter_list)
return query_dict
@validate_hf_hub_args
def list_datasets(
self,
*,
filter: Union[DatasetFilter, str, Iterable[str], None] = None,
author: Optional[str] = None,
benchmark: Optional[Union[str, List[str]]] = None,
dataset_name: Optional[str] = None,
language_creators: Optional[Union[str, List[str]]] = None,
language: Optional[Union[str, List[str]]] = None,
multilinguality: Optional[Union[str, List[str]]] = None,
size_categories: Optional[Union[str, List[str]]] = None,
task_categories: Optional[Union[str, List[str]]] = None,
task_ids: Optional[Union[str, List[str]]] = None,
search: Optional[str] = None,
sort: Optional[Union[Literal["last_modified"], str]] = None,
direction: Optional[Literal[-1]] = None,
limit: Optional[int] = None,
full: Optional[bool] = None,
token: Optional[str] = None,
) -> Iterable[DatasetInfo]:
"""
List datasets hosted on the Huggingface Hub, given some filters.
Args:
filter ([`DatasetFilter`] or `str` or `Iterable`, *optional*):
A string or [`DatasetFilter`] which can be used to identify
datasets on the hub.
author (`str`, *optional*):
A string which identify the author of the returned datasets.
benchmark (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by their official benchmark.
dataset_name (`str`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by its name, such as `SQAC` or `wikineural`
language_creators (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub with how the data was curated, such as `crowdsourced` or
`machine_generated`.
language (`str` or `List`, *optional*):
A string or list of strings representing a two-character language to
filter datasets by on the Hub.
multilinguality (`str` or `List`, *optional*):
A string or list of strings representing a filter for datasets that
contain multiple languages.
size_categories (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by the size of the dataset such as `100K<n<1M` or
`1M<n<10M`.
task_categories (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by the designed task, such as `audio_classification` or
`named_entity_recognition`.
task_ids (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by the specific task such as `speech_emotion_recognition` or
`paraphrase`.
search (`str`, *optional*):
A string that will be contained in the returned datasets.
sort (`Literal["last_modified"]` or `str`, *optional*):
The key with which to sort the resulting datasets. Possible
values are the properties of the [`huggingface_hub.hf_api.DatasetInfo`] class.
direction (`Literal[-1]` or `int`, *optional*):
Direction in which to sort. The value `-1` sorts by descending
order while all other values sort by ascending order.
limit (`int`, *optional*):
The limit on the number of datasets fetched. Leaving this option
to `None` fetches all datasets.
full (`bool`, *optional*):
Whether to fetch all dataset data, including the `last_modified`,
the `card_data` and the files. Can contain useful information such as the
PapersWithCode ID.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
Returns:
`Iterable[DatasetInfo]`: an iterable of [`huggingface_hub.hf_api.DatasetInfo`] objects.
Example usage with the `filter` argument:
```python
>>> from huggingface_hub import HfApi
>>> api = HfApi()
>>> # List all datasets
>>> api.list_datasets()
>>> # List only the text classification datasets
>>> api.list_datasets(filter="task_categories:text-classification")
>>> # List only the datasets in russian for language modeling
>>> api.list_datasets(
... filter=("language:ru", "task_ids:language-modeling")
... )
>>> api.list_datasets(filter=filt)
```
Example usage with the `search` argument:
```python
>>> from huggingface_hub import HfApi
>>> api = HfApi()
>>> # List all datasets with "text" in their name
>>> api.list_datasets(search="text")
>>> # List all datasets with "text" in their name made by google
>>> api.list_datasets(search="text", author="google")
```
"""
path = f"{self.endpoint}/api/datasets"
headers = self._build_hf_headers(token=token)
params = {}
filter_list = []
if filter is not None:
if isinstance(filter, DatasetFilter):
params = self._unpack_dataset_filter(filter)
else:
params.update({"filter": filter})
# Build the filter list
if author:
params.update({"author": author})
if dataset_name:
params.update({"search": dataset_name})
for attr in (
benchmark,
language_creators,
language,
multilinguality,
size_categories,
task_categories,
task_ids,
):
if attr:
if not isinstance(attr, (list, tuple)):
attr = [attr]
for data in attr:
if not data.startswith(f"{attr}:"):
data = f"{attr}:{data}"
filter_list.append(data)
if search:
params.update({"search": search})
if sort is not None:
params.update({"sort": "lastModified" if sort == "last_modified" else sort})
if direction is not None:
params.update({"direction": direction})
if limit is not None:
params.update({"limit": limit})
if full:
params.update({"full": True})
filter_value = params.get("filter", [])
if filter_value:
filter_list.extend([filter_value] if isinstance(filter_value, str) else list(filter_value))
params.update({"filter": filter_list})
items = paginate(path, params=params, headers=headers)
if limit is not None:
items = islice(items, limit) # Do not iterate over all pages
for item in items:
if "siblings" not in item:
item["siblings"] = None
yield DatasetInfo(**item)
def _unpack_dataset_filter(self, dataset_filter: DatasetFilter):
"""
Unpacks a [`DatasetFilter`] into something readable for `list_datasets`
"""
dataset_str = ""
# Handling author
if dataset_filter.author:
dataset_str = f"{dataset_filter.author}/"
# Handling dataset_name
if dataset_filter.dataset_name:
dataset_str += dataset_filter.dataset_name
filter_list = []
data_attributes = [
"benchmark",
"language_creators",
"language",
"multilinguality",
"size_categories",
"task_categories",
"task_ids",
]
for attr in data_attributes:
curr_attr = getattr(dataset_filter, attr)
if curr_attr is not None:
if not isinstance(curr_attr, (list, tuple)):
curr_attr = [curr_attr]
for data in curr_attr:
if f"{attr}:" not in data:
data = f"{attr}:{data}"
filter_list.append(data)
query_dict: Dict[str, Any] = {}
if dataset_str is not None:
query_dict["search"] = dataset_str
query_dict["filter"] = tuple(filter_list)
return query_dict
def list_metrics(self) -> List[MetricInfo]:
"""
Get the public list of all the metrics on huggingface.co
Returns:
`List[MetricInfo]`: a list of [`MetricInfo`] objects which.
"""
path = f"{self.endpoint}/api/metrics"
r = get_session().get(path)
hf_raise_for_status(r)
d = r.json()
return [MetricInfo(**x) for x in d]
@validate_hf_hub_args
def list_spaces(
self,
*,
filter: Union[str, Iterable[str], None] = None,
author: Optional[str] = None,
search: Optional[str] = None,
sort: Union[Literal["last_modified"], str, None] = None,
direction: Optional[Literal[-1]] = None,
limit: Optional[int] = None,
datasets: Union[str, Iterable[str], None] = None,
models: Union[str, Iterable[str], None] = None,
linked: bool = False,
full: Optional[bool] = None,
token: Optional[str] = None,
) -> Iterable[SpaceInfo]:
"""
List spaces hosted on the Huggingface Hub, given some filters.
Args:
filter (`str` or `Iterable`, *optional*):
A string tag or list of tags that can be used to identify Spaces on the Hub.
author (`str`, *optional*):
A string which identify the author of the returned Spaces.
search (`str`, *optional*):
A string that will be contained in the returned Spaces.
sort (`Literal["last_modified"]` or `str`, *optional*):
The key with which to sort the resulting Spaces. Possible
values are the properties of the [`huggingface_hub.hf_api.SpaceInfo`]` class.
direction (`Literal[-1]` or `int`, *optional*):
Direction in which to sort. The value `-1` sorts by descending
order while all other values sort by ascending order.
limit (`int`, *optional*):
The limit on the number of Spaces fetched. Leaving this option
to `None` fetches all Spaces.
datasets (`str` or `Iterable`, *optional*):
Whether to return Spaces that make use of a dataset.
The name of a specific dataset can be passed as a string.
models (`str` or `Iterable`, *optional*):
Whether to return Spaces that make use of a model.
The name of a specific model can be passed as a string.
linked (`bool`, *optional*):
Whether to return Spaces that make use of either a model or a dataset.
full (`bool`, *optional*):
Whether to fetch all Spaces data, including the `last_modified`, `siblings`
and `card_data` fields.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
Returns:
`Iterable[SpaceInfo]`: an iterable of [`huggingface_hub.hf_api.SpaceInfo`] objects.
"""
path = f"{self.endpoint}/api/spaces"
headers = self._build_hf_headers(token=token)
params: Dict[str, Any] = {}
if filter is not None:
params.update({"filter": filter})
if author is not None:
params.update({"author": author})
if search is not None:
params.update({"search": search})
if sort is not None:
params.update({"sort": "lastModified" if sort == "last_modified" else sort})
if direction is not None:
params.update({"direction": direction})
if limit is not None:
params.update({"limit": limit})
if full:
params.update({"full": True})
if linked:
params.update({"linked": True})
if datasets is not None:
params.update({"datasets": datasets})
if models is not None:
params.update({"models": models})
items = paginate(path, params=params, headers=headers)
if limit is not None:
items = islice(items, limit) # Do not iterate over all pages
for item in items:
if "siblings" not in item:
item["siblings"] = None
yield SpaceInfo(**item)
@validate_hf_hub_args
def like(
self,
repo_id: str,
*,
token: Optional[str] = None,
repo_type: Optional[str] = None,
) -> None:
"""
Like a given repo on the Hub (e.g. set as favorite).
See also [`unlike`] and [`list_liked_repos`].
Args:
repo_id (`str`):
The repository to like. Example: `"user/my-cool-model"`.
token (`str`, *optional*):
Authentication token. Will default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if liking a dataset or space, `None` or
`"model"` if liking a model. Default is `None`.
Raises:
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private
but not authenticated or repo does not exist.
Example:
```python
>>> from huggingface_hub import like, list_liked_repos, unlike
>>> like("gpt2")
>>> "gpt2" in list_liked_repos().models
True
>>> unlike("gpt2")
>>> "gpt2" in list_liked_repos().models
False
```
"""
if repo_type is None:
repo_type = REPO_TYPE_MODEL
response = get_session().post(
url=f"{self.endpoint}/api/{repo_type}s/{repo_id}/like",
headers=self._build_hf_headers(token=token),
)
hf_raise_for_status(response)
@validate_hf_hub_args
def unlike(
self,
repo_id: str,
*,
token: Optional[str] = None,
repo_type: Optional[str] = None,
) -> None:
"""
Unlike a given repo on the Hub (e.g. remove from favorite list).
See also [`like`] and [`list_liked_repos`].
Args:
repo_id (`str`):
The repository to unlike. Example: `"user/my-cool-model"`.
token (`str`, *optional*):
Authentication token. Will default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if unliking a dataset or space, `None` or
`"model"` if unliking a model. Default is `None`.
Raises:
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private
but not authenticated or repo does not exist.
Example:
```python
>>> from huggingface_hub import like, list_liked_repos, unlike
>>> like("gpt2")
>>> "gpt2" in list_liked_repos().models
True
>>> unlike("gpt2")
>>> "gpt2" in list_liked_repos().models
False
```
"""
if repo_type is None:
repo_type = REPO_TYPE_MODEL
response = get_session().delete(
url=f"{self.endpoint}/api/{repo_type}s/{repo_id}/like", headers=self._build_hf_headers(token=token)
)
hf_raise_for_status(response)
@validate_hf_hub_args
def list_liked_repos(
self,
user: Optional[str] = None,
*,
token: Optional[str] = None,
) -> UserLikes:
"""
List all public repos liked by a user on huggingface.co.
This list is public so token is optional. If `user` is not passed, it defaults to
the logged in user.
See also [`like`] and [`unlike`].
Args:
user (`str`, *optional*):
Name of the user for which you want to fetch the likes.
token (`str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
Used only if `user` is not passed to implicitly determine the current
user name.
Returns:
[`UserLikes`]: object containing the user name and 3 lists of repo ids (1 for
models, 1 for datasets and 1 for Spaces).
Raises:
[`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
If `user` is not passed and no token found (either from argument or from machine).
Example:
```python
>>> from huggingface_hub import list_liked_repos
>>> likes = list_liked_repos("julien-c")
>>> likes.user
"julien-c"
>>> likes.models
["osanseviero/streamlit_1.15", "Xhaheen/ChatGPT_HF", ...]
```
"""
# User is either provided explicitly or retrieved from current token.
if user is None:
me = self.whoami(token=token)
if me["type"] == "user":
user = me["name"]
else:
raise ValueError(
"Cannot list liked repos. You must provide a 'user' as input or be logged in as a user."
)
path = f"{self.endpoint}/api/users/{user}/likes"
headers = self._build_hf_headers(token=token)
likes = list(paginate(path, params={}, headers=headers))
# Looping over a list of items similar to:
# {
# 'createdAt': '2021-09-09T21:53:27.000Z',
# 'repo': {
# 'name': 'PaddlePaddle/PaddleOCR',
# 'type': 'space'
# }
# }
# Let's loop 3 times over the received list. Less efficient but more straightforward to read.
return UserLikes(
user=user,
total=len(likes),
models=[like["repo"]["name"] for like in likes if like["repo"]["type"] == "model"],
datasets=[like["repo"]["name"] for like in likes if like["repo"]["type"] == "dataset"],
spaces=[like["repo"]["name"] for like in likes if like["repo"]["type"] == "space"],
)
@validate_hf_hub_args
def list_repo_likers(
self,
repo_id: str,
*,
repo_type: Optional[str] = None,
token: Optional[str] = None,
) -> List[User]:
"""
List all users who liked a given repo on the hugging Face Hub.
See also [`like`] and [`list_liked_repos`].
Args:
repo_id (`str`):
The repository to retrieve . Example: `"user/my-cool-model"`.
token (`str`, *optional*):
Authentication token. Will default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
Returns:
`List[User]`: a list of [`User`] objects.
"""
# Construct the API endpoint
if repo_type is None:
repo_type = REPO_TYPE_MODEL
path = f"{self.endpoint}/api/{repo_type}s/{repo_id}/likers"
headers = self._build_hf_headers(token=token)
# Make the request
response = get_session().get(path, headers=headers)
hf_raise_for_status(response)
# Parse the results into User objects
likers_data = response.json()
return [
User(
username=user_data["user"],
fullname=user_data["fullname"],
avatar_url=user_data["avatarUrl"],
)
for user_data in likers_data
]
@validate_hf_hub_args
def model_info(
self,
repo_id: str,
*,
revision: Optional[str] = None,
timeout: Optional[float] = None,
securityStatus: Optional[bool] = None,
files_metadata: bool = False,
token: Optional[Union[bool, str]] = None,
) -> ModelInfo:
"""
Get info on one specific model on huggingface.co
Model can be private if you pass an acceptable token or are logged in.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
revision (`str`, *optional*):
The revision of the model repository from which to get the
information.
timeout (`float`, *optional*):
Whether to set a timeout for the request to the Hub.
securityStatus (`bool`, *optional*):
Whether to retrieve the security status from the model
repository as well.
files_metadata (`bool`, *optional*):
Whether or not to retrieve metadata for files in the repository
(size, LFS metadata, etc). Defaults to `False`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
Returns:
[`huggingface_hub.hf_api.ModelInfo`]: The model repository information.
<Tip>
Raises the following errors:
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
- [`~utils.RevisionNotFoundError`]
If the revision to download from cannot be found.
</Tip>
"""
headers = self._build_hf_headers(token=token)
path = (
f"{self.endpoint}/api/models/{repo_id}"
if revision is None
else (f"{self.endpoint}/api/models/{repo_id}/revision/{quote(revision, safe='')}")
)
params = {}
if securityStatus:
params["securityStatus"] = True
if files_metadata:
params["blobs"] = True
r = get_session().get(path, headers=headers, timeout=timeout, params=params)
hf_raise_for_status(r)
data = r.json()
return ModelInfo(**data)
@validate_hf_hub_args
def dataset_info(
self,
repo_id: str,
*,
revision: Optional[str] = None,
timeout: Optional[float] = None,
files_metadata: bool = False,
token: Optional[Union[bool, str]] = None,
) -> DatasetInfo:
"""
Get info on one specific dataset on huggingface.co.
Dataset can be private if you pass an acceptable token.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
revision (`str`, *optional*):
The revision of the dataset repository from which to get the
information.
timeout (`float`, *optional*):
Whether to set a timeout for the request to the Hub.
files_metadata (`bool`, *optional*):
Whether or not to retrieve metadata for files in the repository
(size, LFS metadata, etc). Defaults to `False`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
Returns:
[`hf_api.DatasetInfo`]: The dataset repository information.
<Tip>
Raises the following errors:
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
- [`~utils.RevisionNotFoundError`]
If the revision to download from cannot be found.
</Tip>
"""
headers = self._build_hf_headers(token=token)
path = (
f"{self.endpoint}/api/datasets/{repo_id}"
if revision is None
else (f"{self.endpoint}/api/datasets/{repo_id}/revision/{quote(revision, safe='')}")
)
params = {}
if files_metadata:
params["blobs"] = True
r = get_session().get(path, headers=headers, timeout=timeout, params=params)
hf_raise_for_status(r)
data = r.json()
return DatasetInfo(**data)
@validate_hf_hub_args
def space_info(
self,
repo_id: str,
*,
revision: Optional[str] = None,
timeout: Optional[float] = None,
files_metadata: bool = False,
token: Optional[Union[bool, str]] = None,
) -> SpaceInfo:
"""
Get info on one specific Space on huggingface.co.
Space can be private if you pass an acceptable token.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
revision (`str`, *optional*):
The revision of the space repository from which to get the
information.
timeout (`float`, *optional*):
Whether to set a timeout for the request to the Hub.
files_metadata (`bool`, *optional*):
Whether or not to retrieve metadata for files in the repository
(size, LFS metadata, etc). Defaults to `False`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
Returns:
[`~hf_api.SpaceInfo`]: The space repository information.
<Tip>
Raises the following errors:
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
- [`~utils.RevisionNotFoundError`]
If the revision to download from cannot be found.
</Tip>
"""
headers = self._build_hf_headers(token=token)
path = (
f"{self.endpoint}/api/spaces/{repo_id}"
if revision is None
else (f"{self.endpoint}/api/spaces/{repo_id}/revision/{quote(revision, safe='')}")
)
params = {}
if files_metadata:
params["blobs"] = True
r = get_session().get(path, headers=headers, timeout=timeout, params=params)
hf_raise_for_status(r)
data = r.json()
return SpaceInfo(**data)
@validate_hf_hub_args
def repo_info(
self,
repo_id: str,
*,
revision: Optional[str] = None,
repo_type: Optional[str] = None,
timeout: Optional[float] = None,
files_metadata: bool = False,
token: Optional[Union[bool, str]] = None,
) -> Union[ModelInfo, DatasetInfo, SpaceInfo]:
"""
Get the info object for a given repo of a given type.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
revision (`str`, *optional*):
The revision of the repository from which to get the
information.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space,
`None` or `"model"` if getting repository info from a model. Default is `None`.
timeout (`float`, *optional*):
Whether to set a timeout for the request to the Hub.
files_metadata (`bool`, *optional*):
Whether or not to retrieve metadata for files in the repository
(size, LFS metadata, etc). Defaults to `False`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
Returns:
`Union[SpaceInfo, DatasetInfo, ModelInfo]`: The repository information, as a
[`huggingface_hub.hf_api.DatasetInfo`], [`huggingface_hub.hf_api.ModelInfo`]
or [`huggingface_hub.hf_api.SpaceInfo`] object.
<Tip>
Raises the following errors:
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
- [`~utils.RevisionNotFoundError`]
If the revision to download from cannot be found.
</Tip>
"""
if repo_type is None or repo_type == "model":
method = self.model_info
elif repo_type == "dataset":
method = self.dataset_info # type: ignore
elif repo_type == "space":
method = self.space_info # type: ignore
else:
raise ValueError("Unsupported repo type.")
return method(
repo_id,
revision=revision,
token=token,
timeout=timeout,
files_metadata=files_metadata,
)
@validate_hf_hub_args
def repo_exists(
self,
repo_id: str,
*,
repo_type: Optional[str] = None,
token: Optional[str] = None,
) -> bool:
"""
Checks if a repository exists on the Hugging Face Hub.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space,
`None` or `"model"` if getting repository info from a model. Default is `None`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
Returns:
True if the repository exists, False otherwise.
Examples:
```py
>>> from huggingface_hub import repo_exists
>>> repo_exists("google/gemma-7b")
True
>>> repo_exists("google/not-a-repo")
False
```
"""
try:
self.repo_info(repo_id=repo_id, repo_type=repo_type, token=token)
return True
except GatedRepoError:
return True # we don't have access but it exists
except RepositoryNotFoundError:
return False
@validate_hf_hub_args
def revision_exists(
self,
repo_id: str,
revision: str,
*,
repo_type: Optional[str] = None,
token: Optional[str] = None,
) -> bool:
"""
Checks if a specific revision exists on a repo on the Hugging Face Hub.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
revision (`str`):
The revision of the repository to check.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space,
`None` or `"model"` if getting repository info from a model. Default is `None`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
Returns:
True if the repository and the revision exists, False otherwise.
Examples:
```py
>>> from huggingface_hub import revision_exists
>>> revision_exists("google/gemma-7b", "float16")
True
>>> revision_exists("google/gemma-7b", "not-a-revision")
False
```
"""
try:
self.repo_info(repo_id=repo_id, revision=revision, repo_type=repo_type, token=token)
return True
except RevisionNotFoundError:
return False
except RepositoryNotFoundError:
return False
@validate_hf_hub_args
def file_exists(
self,
repo_id: str,
filename: str,
*,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
token: Union[str, bool, None] = None,
) -> bool:
"""
Checks if a file exists in a repository on the Hugging Face Hub.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
filename (`str`):
The name of the file to check, for example:
`"config.json"`
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space,
`None` or `"model"` if getting repository info from a model. Default is `None`.
revision (`str`, *optional*):
The revision of the repository from which to get the information. Defaults to `"main"` branch.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
Returns:
True if the file exists, False otherwise.
Examples:
```py
>>> from huggingface_hub import file_exists
>>> file_exists("bigcode/starcoder", "config.json")
True
>>> file_exists("bigcode/starcoder", "not-a-file")
False
>>> file_exists("bigcode/not-a-repo", "config.json")
False
```
"""
url = hf_hub_url(
repo_id=repo_id, repo_type=repo_type, revision=revision, filename=filename, endpoint=self.endpoint
)
try:
if token is None:
token = self.token
get_hf_file_metadata(url, token=token)
return True
except GatedRepoError: # raise specifically on gated repo
raise
except (RepositoryNotFoundError, EntryNotFoundError, RevisionNotFoundError):
return False
@validate_hf_hub_args
@_deprecate_method(version="0.23", message="Use `list_repo_tree` and `get_paths_info` instead.")
def list_files_info(
self,
repo_id: str,
paths: Union[List[str], str, None] = None,
*,
expand: bool = False,
revision: Optional[str] = None,
repo_type: Optional[str] = None,
token: Optional[Union[bool, str]] = None,
) -> Iterable[RepoFile]:
"""
List files on a repo and get information about them.
Takes as input a list of paths. Those paths can be either files or folders. Two server endpoints are called:
1. POST "/paths-info" to get information about the provided paths. Called once.
2. GET "/tree?recursive=True" to paginate over the input folders. Called only if a folder path is provided as
input. Will be called multiple times to follow pagination.
If no path is provided as input, step 1. is ignored and all files from the repo are listed.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated by a `/`.
paths (`Union[List[str], str, None]`, *optional*):
The paths to get information about. Paths to files are directly resolved. Paths to folders are resolved
recursively which means that information is returned about all files in the folder and its subfolders.
If `None`, all files are returned (the default). If a path do not exist, it is ignored without raising
an exception.
expand (`bool`, *optional*, defaults to `False`):
Whether to fetch more information about the files (e.g. last commit and security scan results). This
operation is more expensive for the server so only 50 results are returned per page (instead of 1000).
As pagination is implemented in `huggingface_hub`, this is transparent for you except for the time it
takes to get the results.
revision (`str`, *optional*):
The revision of the repository from which to get the information. Defaults to `"main"` branch.
repo_type (`str`, *optional*):
The type of the repository from which to get the information (`"model"`, `"dataset"` or `"space"`.
Defaults to `"model"`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token). If `None` or `True` and
machine is logged in (through `huggingface-cli login` or [`~huggingface_hub.login`]), token will be
retrieved from the cache. If `False`, token is not sent in the request header.
Returns:
`Iterable[RepoFile]`:
The information about the files, as an iterable of [`RepoFile`] objects. The order of the files is
not guaranteed.
Raises:
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo
does not exist.
[`~utils.RevisionNotFoundError`]:
If revision is not found (error 404) on the repo.
Examples:
Get information about files on a repo.
```py
>>> from huggingface_hub import list_files_info
>>> files_info = list_files_info("lysandre/arxiv-nlp", ["README.md", "config.json"])
>>> files_info
<generator object HfApi.list_files_info at 0x7f93b848e730>
>>> list(files_info)
[
RepoFile(path='README.md', size=391, blob_id='43bd404b159de6fba7c2f4d3264347668d43af25', lfs=None, last_commit=None, security=None),
RepoFile(path='config.json', size=554, blob_id='2f9618c3a19b9a61add74f70bfb121335aeef666', lfs=None, last_commit=None, security=None)
]
```
Get even more information about files on a repo (last commit and security scan results)
```py
>>> from huggingface_hub import list_files_info
>>> files_info = list_files_info("prompthero/openjourney-v4", expand=True)
>>> list(files_info)
[
RepoFile(
path='safety_checker/pytorch_model.bin',
size=1216064769,
blob_id='c8835557a0d3af583cb06c7c154b7e54a069c41d',
lfs={
'size': 1216064769,
'sha256': '16d28f2b37109f222cdc33620fdd262102ac32112be0352a7f77e9614b35a394',
'pointer_size': 135
},
last_commit={
'oid': '47b62b20b20e06b9de610e840282b7e6c3d51190',
'title': 'Upload diffusers weights (#48)',
'date': datetime.datetime(2023, 3, 21, 10, 5, 27, tzinfo=datetime.timezone.utc)
},
security={
'safe': True,
'av_scan': {
'virusFound': False,
'virusNames': None
},
'pickle_import_scan': {
'highestSafetyLevel': 'innocuous',
'imports': [
{'module': 'torch', 'name': 'FloatStorage', 'safety': 'innocuous'},
{'module': 'collections', 'name': 'OrderedDict', 'safety': 'innocuous'},
{'module': 'torch', 'name': 'LongStorage', 'safety': 'innocuous'},
{'module': 'torch._utils', 'name': '_rebuild_tensor_v2', 'safety': 'innocuous'}
]
}
}
),
RepoFile(
path='scheduler/scheduler_config.json',
size=465,
blob_id='70d55e3e9679f41cbc66222831b38d5abce683dd',
lfs=None,
last_commit={
'oid': '47b62b20b20e06b9de610e840282b7e6c3d51190',
'title': 'Upload diffusers weights (#48)',
'date': datetime.datetime(2023, 3, 21, 10, 5, 27, tzinfo=datetime.timezone.utc)},
security={
'safe': True,
'av_scan': {
'virusFound': False,
'virusNames': None
},
'pickle_import_scan': None
}
),
...
]
```
List LFS files from the "vae/" folder in "stabilityai/stable-diffusion-2" repository.
```py
>>> from huggingface_hub import list_files_info
>>> [info.path for info in list_files_info("stabilityai/stable-diffusion-2", "vae") if info.lfs is not None]
['vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors']
```
List all files on a repo.
```py
>>> from huggingface_hub import list_files_info
>>> [info.path for info in list_files_info("glue", repo_type="dataset")]
['.gitattributes', 'README.md', 'dataset_infos.json', 'glue.py']
```
"""
repo_type = repo_type or REPO_TYPE_MODEL
revision = quote(revision, safe="") if revision is not None else DEFAULT_REVISION
headers = self._build_hf_headers(token=token)
folder_paths = []
if paths is None:
# `paths` is not provided => list all files from the repo
folder_paths.append("")
elif paths == []:
# corner case: server would return a 400 error if `paths` is an empty list. Let's return early.
return
else:
# `paths` is provided => get info about those
response = get_session().post(
f"{self.endpoint}/api/{repo_type}s/{repo_id}/paths-info/{revision}",
data={
"paths": paths if isinstance(paths, list) else [paths],
"expand": expand,
},
headers=headers,
)
hf_raise_for_status(response)
paths_info = response.json()
# List top-level files first
for path_info in paths_info:
if path_info["type"] == "file":
yield RepoFile(**path_info)
else:
folder_paths.append(path_info["path"])
# List files in subdirectories
for path in folder_paths:
encoded_path = "/" + quote(path, safe="") if path else ""
tree_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/tree/{revision}{encoded_path}"
for subpath_info in paginate(path=tree_url, headers=headers, params={"recursive": True, "expand": expand}):
if subpath_info["type"] == "file":
yield RepoFile(**subpath_info)
@validate_hf_hub_args
def list_repo_files(
self,
repo_id: str,
*,
revision: Optional[str] = None,
repo_type: Optional[str] = None,
token: Optional[Union[bool, str]] = None,
) -> List[str]:
"""
Get the list of files in a given repo.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated by a `/`.
revision (`str`, *optional*):
The revision of the model repository from which to get the information.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or space, `None` or `"model"` if uploading to
a model. Default is `None`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token). If `None` or `True` and
machine is logged in (through `huggingface-cli login` or [`~huggingface_hub.login`]), token will be
retrieved from the cache. If `False`, token is not sent in the request header.
Returns:
`List[str]`: the list of files in a given repository.
"""
return [
f.rfilename
for f in self.list_repo_tree(
repo_id=repo_id, recursive=True, revision=revision, repo_type=repo_type, token=token
)
if isinstance(f, RepoFile)
]
@validate_hf_hub_args
def list_repo_tree(
self,
repo_id: str,
path_in_repo: Optional[str] = None,
*,
recursive: bool = False,
expand: bool = False,
revision: Optional[str] = None,
repo_type: Optional[str] = None,
token: Optional[Union[bool, str]] = None,
) -> Iterable[Union[RepoFile, RepoFolder]]:
"""
List a repo tree's files and folders and get information about them.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated by a `/`.
path_in_repo (`str`, *optional*):
Relative path of the tree (folder) in the repo, for example:
`"checkpoints/1fec34a/results"`. Will default to the root tree (folder) of the repository.
recursive (`bool`, *optional*, defaults to `False`):
Whether to list tree's files and folders recursively.
expand (`bool`, *optional*, defaults to `False`):
Whether to fetch more information about the tree's files and folders (e.g. last commit and files' security scan results). This
operation is more expensive for the server so only 50 results are returned per page (instead of 1000).
As pagination is implemented in `huggingface_hub`, this is transparent for you except for the time it
takes to get the results.
revision (`str`, *optional*):
The revision of the repository from which to get the tree. Defaults to `"main"` branch.
repo_type (`str`, *optional*):
The type of the repository from which to get the tree (`"model"`, `"dataset"` or `"space"`.
Defaults to `"model"`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token). If `None` or `True` and
machine is logged in (through `huggingface-cli login` or [`~huggingface_hub.login`]), token will be
retrieved from the cache. If `False`, token is not sent in the request header.
Returns:
`Iterable[Union[RepoFile, RepoFolder]]`:
The information about the tree's files and folders, as an iterable of [`RepoFile`] and [`RepoFolder`] objects. The order of the files and folders is
not guaranteed.
Raises:
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo
does not exist.
[`~utils.RevisionNotFoundError`]:
If revision is not found (error 404) on the repo.
[`~utils.EntryNotFoundError`]:
If the tree (folder) does not exist (error 404) on the repo.
Examples:
Get information about a repo's tree.
```py
>>> from huggingface_hub import list_repo_tree
>>> repo_tree = list_repo_tree("lysandre/arxiv-nlp")
>>> repo_tree
<generator object HfApi.list_repo_tree at 0x7fa4088e1ac0>
>>> list(repo_tree)
[
RepoFile(path='.gitattributes', size=391, blob_id='ae8c63daedbd4206d7d40126955d4e6ab1c80f8f', lfs=None, last_commit=None, security=None),
RepoFile(path='README.md', size=391, blob_id='43bd404b159de6fba7c2f4d3264347668d43af25', lfs=None, last_commit=None, security=None),
RepoFile(path='config.json', size=554, blob_id='2f9618c3a19b9a61add74f70bfb121335aeef666', lfs=None, last_commit=None, security=None),
RepoFile(
path='flax_model.msgpack', size=497764107, blob_id='8095a62ccb4d806da7666fcda07467e2d150218e',
lfs={'size': 497764107, 'sha256': 'd88b0d6a6ff9c3f8151f9d3228f57092aaea997f09af009eefd7373a77b5abb9', 'pointer_size': 134}, last_commit=None, security=None
),
RepoFile(path='merges.txt', size=456318, blob_id='226b0752cac7789c48f0cb3ec53eda48b7be36cc', lfs=None, last_commit=None, security=None),
RepoFile(
path='pytorch_model.bin', size=548123560, blob_id='64eaa9c526867e404b68f2c5d66fd78e27026523',
lfs={'size': 548123560, 'sha256': '9be78edb5b928eba33aa88f431551348f7466ba9f5ef3daf1d552398722a5436', 'pointer_size': 134}, last_commit=None, security=None
),
RepoFile(path='vocab.json', size=898669, blob_id='b00361fece0387ca34b4b8b8539ed830d644dbeb', lfs=None, last_commit=None, security=None)]
]
```
Get even more information about a repo's tree (last commit and files' security scan results)
```py
>>> from huggingface_hub import list_repo_tree
>>> repo_tree = list_repo_tree("prompthero/openjourney-v4", expand=True)
>>> list(repo_tree)
[
RepoFolder(
path='feature_extractor',
tree_id='aa536c4ea18073388b5b0bc791057a7296a00398',
last_commit={
'oid': '47b62b20b20e06b9de610e840282b7e6c3d51190',
'title': 'Upload diffusers weights (#48)',
'date': datetime.datetime(2023, 3, 21, 9, 5, 27, tzinfo=datetime.timezone.utc)
}
),
RepoFolder(
path='safety_checker',
tree_id='65aef9d787e5557373fdf714d6c34d4fcdd70440',
last_commit={
'oid': '47b62b20b20e06b9de610e840282b7e6c3d51190',
'title': 'Upload diffusers weights (#48)',
'date': datetime.datetime(2023, 3, 21, 9, 5, 27, tzinfo=datetime.timezone.utc)
}
),
RepoFile(
path='model_index.json',
size=582,
blob_id='d3d7c1e8c3e78eeb1640b8e2041ee256e24c9ee1',
lfs=None,
last_commit={
'oid': 'b195ed2d503f3eb29637050a886d77bd81d35f0e',
'title': 'Fix deprecation warning by changing `CLIPFeatureExtractor` to `CLIPImageProcessor`. (#54)',
'date': datetime.datetime(2023, 5, 15, 21, 41, 59, tzinfo=datetime.timezone.utc)
},
security={
'safe': True,
'av_scan': {'virusFound': False, 'virusNames': None},
'pickle_import_scan': None
}
)
...
]
```
"""
repo_type = repo_type or REPO_TYPE_MODEL
revision = quote(revision, safe="") if revision is not None else DEFAULT_REVISION
headers = self._build_hf_headers(token=token)
encoded_path_in_repo = "/" + quote(path_in_repo, safe="") if path_in_repo else ""
tree_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/tree/{revision}{encoded_path_in_repo}"
for path_info in paginate(path=tree_url, headers=headers, params={"recursive": recursive, "expand": expand}):
yield (RepoFile(**path_info) if path_info["type"] == "file" else RepoFolder(**path_info))
@validate_hf_hub_args
def list_repo_refs(
self,
repo_id: str,
*,
repo_type: Optional[str] = None,
include_pull_requests: bool = False,
token: Optional[Union[bool, str]] = None,
) -> GitRefs:
"""
Get the list of refs of a given repo (both tags and branches).
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if listing refs from a dataset or a Space,
`None` or `"model"` if listing from a model. Default is `None`.
include_pull_requests (`bool`, *optional*):
Whether to include refs from pull requests in the list. Defaults to `False`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
Example:
```py
>>> from huggingface_hub import HfApi
>>> api = HfApi()
>>> api.list_repo_refs("gpt2")
GitRefs(branches=[GitRefInfo(name='main', ref='refs/heads/main', target_commit='e7da7f221d5bf496a48136c0cd264e630fe9fcc8')], converts=[], tags=[])
>>> api.list_repo_refs("bigcode/the-stack", repo_type='dataset')
GitRefs(
branches=[
GitRefInfo(name='main', ref='refs/heads/main', target_commit='18edc1591d9ce72aa82f56c4431b3c969b210ae3'),
GitRefInfo(name='v1.1.a1', ref='refs/heads/v1.1.a1', target_commit='f9826b862d1567f3822d3d25649b0d6d22ace714')
],
converts=[],
tags=[
GitRefInfo(name='v1.0', ref='refs/tags/v1.0', target_commit='c37a8cd1e382064d8aced5e05543c5f7753834da')
]
)
```
Returns:
[`GitRefs`]: object containing all information about branches and tags for a
repo on the Hub.
"""
repo_type = repo_type or REPO_TYPE_MODEL
response = get_session().get(
f"{self.endpoint}/api/{repo_type}s/{repo_id}/refs",
headers=self._build_hf_headers(token=token),
params={"include_prs": 1} if include_pull_requests else {},
)
hf_raise_for_status(response)
data = response.json()
def _format_as_git_ref_info(item: Dict) -> GitRefInfo:
return GitRefInfo(name=item["name"], ref=item["ref"], target_commit=item["targetCommit"])
return GitRefs(
branches=[_format_as_git_ref_info(item) for item in data["branches"]],
converts=[_format_as_git_ref_info(item) for item in data["converts"]],
tags=[_format_as_git_ref_info(item) for item in data["tags"]],
pull_requests=[_format_as_git_ref_info(item) for item in data["pullRequests"]]
if include_pull_requests
else None,
)
@validate_hf_hub_args
def list_repo_commits(
self,
repo_id: str,
*,
repo_type: Optional[str] = None,
token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
formatted: bool = False,
) -> List[GitCommitInfo]:
"""
Get the list of commits of a given revision for a repo on the Hub.
Commits are sorted by date (last commit first).
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated by a `/`.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if listing commits from a dataset or a Space, `None` or `"model"` if
listing from a model. Default is `None`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
revision (`str`, *optional*):
The git revision to commit from. Defaults to the head of the `"main"` branch.
formatted (`bool`):
Whether to return the HTML-formatted title and description of the commits. Defaults to False.
Example:
```py
>>> from huggingface_hub import HfApi
>>> api = HfApi()
# Commits are sorted by date (last commit first)
>>> initial_commit = api.list_repo_commits("gpt2")[-1]
# Initial commit is always a system commit containing the `.gitattributes` file.
>>> initial_commit
GitCommitInfo(
commit_id='9b865efde13a30c13e0a33e536cf3e4a5a9d71d8',
authors=['system'],
created_at=datetime.datetime(2019, 2, 18, 10, 36, 15, tzinfo=datetime.timezone.utc),
title='initial commit',
message='',
formatted_title=None,
formatted_message=None
)
# Create an empty branch by deriving from initial commit
>>> api.create_branch("gpt2", "new_empty_branch", revision=initial_commit.commit_id)
```
Returns:
List[[`GitCommitInfo`]]: list of objects containing information about the commits for a repo on the Hub.
Raises:
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo
does not exist.
[`~utils.RevisionNotFoundError`]:
If revision is not found (error 404) on the repo.
"""
repo_type = repo_type or REPO_TYPE_MODEL
revision = quote(revision, safe="") if revision is not None else DEFAULT_REVISION
# Paginate over results and return the list of commits.
return [
GitCommitInfo(
commit_id=item["id"],
authors=[author["user"] for author in item["authors"]],
created_at=parse_datetime(item["date"]),
title=item["title"],
message=item["message"],
formatted_title=item.get("formatted", {}).get("title"),
formatted_message=item.get("formatted", {}).get("message"),
)
for item in paginate(
f"{self.endpoint}/api/{repo_type}s/{repo_id}/commits/{revision}",
headers=self._build_hf_headers(token=token),
params={"expand[]": "formatted"} if formatted else {},
)
]
@validate_hf_hub_args
def get_paths_info(
self,
repo_id: str,
paths: Union[List[str], str],
*,
expand: bool = False,
revision: Optional[str] = None,
repo_type: Optional[str] = None,
token: Optional[Union[bool, str]] = None,
) -> List[Union[RepoFile, RepoFolder]]:
"""
Get information about a repo's paths.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated by a `/`.
paths (`Union[List[str], str]`, *optional*):
The paths to get information about. If a path do not exist, it is ignored without raising
an exception.
expand (`bool`, *optional*, defaults to `False`):
Whether to fetch more information about the paths (e.g. last commit and files' security scan results). This
operation is more expensive for the server so only 50 results are returned per page (instead of 1000).
As pagination is implemented in `huggingface_hub`, this is transparent for you except for the time it
takes to get the results.
revision (`str`, *optional*):
The revision of the repository from which to get the information. Defaults to `"main"` branch.
repo_type (`str`, *optional*):
The type of the repository from which to get the information (`"model"`, `"dataset"` or `"space"`.
Defaults to `"model"`.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token). If `None` or `True` and
machine is logged in (through `huggingface-cli login` or [`~huggingface_hub.login`]), token will be
retrieved from the cache. If `False`, token is not sent in the request header.
Returns:
`List[Union[RepoFile, RepoFolder]]`:
The information about the paths, as a list of [`RepoFile`] and [`RepoFolder`] objects.
Raises:
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo
does not exist.
[`~utils.RevisionNotFoundError`]:
If revision is not found (error 404) on the repo.
Example:
```py
>>> from huggingface_hub import get_paths_info
>>> paths_info = get_paths_info("allenai/c4", ["README.md", "en"], repo_type="dataset")
>>> paths_info
[
RepoFile(path='README.md', size=2379, blob_id='f84cb4c97182890fc1dbdeaf1a6a468fd27b4fff', lfs=None, last_commit=None, security=None),
RepoFolder(path='en', tree_id='dc943c4c40f53d02b31ced1defa7e5f438d5862e', last_commit=None)
]
```
"""
repo_type = repo_type or REPO_TYPE_MODEL
revision = quote(revision, safe="") if revision is not None else DEFAULT_REVISION
headers = self._build_hf_headers(token=token)
response = get_session().post(
f"{self.endpoint}/api/{repo_type}s/{repo_id}/paths-info/{revision}",
data={
"paths": paths if isinstance(paths, list) else [paths],
"expand": expand,
},
headers=headers,
)
hf_raise_for_status(response)
paths_info = response.json()
return [
RepoFile(**path_info) if path_info["type"] == "file" else RepoFolder(**path_info)
for path_info in paths_info
]
@validate_hf_hub_args
def super_squash_history(
self,
repo_id: str,
*,
branch: Optional[str] = None,
commit_message: Optional[str] = None,
repo_type: Optional[str] = None,
token: Optional[str] = None,
) -> None:
"""Squash commit history on a branch for a repo on the Hub.
Squashing the repo history is useful when you know you'll make hundreds of commits and you don't want to
clutter the history. Squashing commits can only be performed from the head of a branch.
<Tip warning={true}>
Once squashed, the commit history cannot be retrieved. This is a non-revertible operation.
</Tip>
<Tip warning={true}>
Once the history of a branch has been squashed, it is not possible to merge it back into another branch since
their history will have diverged.
</Tip>
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated by a `/`.
branch (`str`, *optional*):
The branch to squash. Defaults to the head of the `"main"` branch.
commit_message (`str`, *optional*):
The commit message to use for the squashed commit.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if listing commits from a dataset or a Space, `None` or `"model"` if
listing from a model. Default is `None`.
token (`str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token). If the machine is logged in
(through `huggingface-cli login` or [`~huggingface_hub.login`]), token can be automatically retrieved
from the cache.
Raises:
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo
does not exist.
[`~utils.RevisionNotFoundError`]:
If the branch to squash cannot be found.
[`~utils.BadRequestError`]:
If invalid reference for a branch. You cannot squash history on tags.
Example:
```py
>>> from huggingface_hub import HfApi
>>> api = HfApi()
# Create repo
>>> repo_id = api.create_repo("test-squash").repo_id
# Make a lot of commits.
>>> api.upload_file(repo_id=repo_id, path_in_repo="file.txt", path_or_fileobj=b"content")
>>> api.upload_file(repo_id=repo_id, path_in_repo="lfs.bin", path_or_fileobj=b"content")
>>> api.upload_file(repo_id=repo_id, path_in_repo="file.txt", path_or_fileobj=b"another_content")
# Squash history
>>> api.super_squash_history(repo_id=repo_id)
```
"""
if repo_type is None:
repo_type = REPO_TYPE_MODEL
if repo_type not in REPO_TYPES:
raise ValueError("Invalid repo type")
if branch is None:
branch = DEFAULT_REVISION
# Prepare request
url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/super-squash/{branch}"
headers = self._build_hf_headers(token=token)
commit_message = commit_message or f"Super-squash branch '{branch}' using huggingface_hub"
# Super-squash
response = get_session().post(url=url, headers=headers, json={"message": commit_message})
hf_raise_for_status(response)
@validate_hf_hub_args
def create_repo(
self,
repo_id: str,
*,
token: Optional[str] = None,
private: bool = False,
repo_type: Optional[str] = None,
exist_ok: bool = False,
space_sdk: Optional[str] = None,
space_hardware: Optional[SpaceHardware] = None,
space_storage: Optional[SpaceStorage] = None,
space_sleep_time: Optional[int] = None,
space_secrets: Optional[List[Dict[str, str]]] = None,
space_variables: Optional[List[Dict[str, str]]] = None,
) -> RepoUrl:
"""Create an empty repo on the HuggingFace Hub.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
private (`bool`, *optional*, defaults to `False`):
Whether the model repo should be private.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
exist_ok (`bool`, *optional*, defaults to `False`):
If `True`, do not raise an error if repo already exists.
space_sdk (`str`, *optional*):
Choice of SDK to use if repo_type is "space". Can be "streamlit", "gradio", "docker", or "static".
space_hardware (`SpaceHardware` or `str`, *optional*):
Choice of Hardware if repo_type is "space". See [`SpaceHardware`] for a complete list.
space_storage (`SpaceStorage` or `str`, *optional*):
Choice of persistent storage tier. Example: `"small"`. See [`SpaceStorage`] for a complete list.
space_sleep_time (`int`, *optional*):
Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want
your Space to sleep (default behavior for upgraded hardware). For free hardware, you can't configure
the sleep time (value is fixed to 48 hours of inactivity).
See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details.
space_secrets (`List[Dict[str, str]]`, *optional*):
A list of secret keys to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional.
For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets.
space_variables (`List[Dict[str, str]]`, *optional*):
A list of public environment variables to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional.
For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables.
Returns:
[`RepoUrl`]: URL to the newly created repo. Value is a subclass of `str` containing
attributes like `endpoint`, `repo_type` and `repo_id`.
"""
organization, name = repo_id.split("/") if "/" in repo_id else (None, repo_id)
path = f"{self.endpoint}/api/repos/create"
if repo_type not in REPO_TYPES:
raise ValueError("Invalid repo type")
json: Dict[str, Any] = {"name": name, "organization": organization, "private": private}
if repo_type is not None:
json["type"] = repo_type
if repo_type == "space":
if space_sdk is None:
raise ValueError(
"No space_sdk provided. `create_repo` expects space_sdk to be one"
f" of {SPACES_SDK_TYPES} when repo_type is 'space'`"
)
if space_sdk not in SPACES_SDK_TYPES:
raise ValueError(f"Invalid space_sdk. Please choose one of {SPACES_SDK_TYPES}.")
json["sdk"] = space_sdk
if space_sdk is not None and repo_type != "space":
warnings.warn("Ignoring provided space_sdk because repo_type is not 'space'.")
function_args = [
"space_hardware",
"space_storage",
"space_sleep_time",
"space_secrets",
"space_variables",
]
json_keys = ["hardware", "storageTier", "sleepTimeSeconds", "secrets", "variables"]
values = [space_hardware, space_storage, space_sleep_time, space_secrets, space_variables]
if repo_type == "space":
json.update({k: v for k, v in zip(json_keys, values) if v is not None})
else:
provided_space_args = [key for key, value in zip(function_args, values) if value is not None]
if provided_space_args:
warnings.warn(f"Ignoring provided {', '.join(provided_space_args)} because repo_type is not 'space'.")
if getattr(self, "_lfsmultipartthresh", None):
# Testing purposes only.
# See https://github.com/huggingface/huggingface_hub/pull/733/files#r820604472
json["lfsmultipartthresh"] = self._lfsmultipartthresh # type: ignore
headers = self._build_hf_headers(token=token)
while True:
r = get_session().post(path, headers=headers, json=json)
if r.status_code == 409 and "Cannot create repo: another conflicting operation is in progress" in r.text:
# Since https://github.com/huggingface/moon-landing/pull/7272 (private repo), it is not possible to
# concurrently create repos on the Hub for a same user. This is rarely an issue, except when running
# tests. To avoid any inconvenience, we retry to create the repo for this specific error.
# NOTE: This could have being fixed directly in the tests but adding it here should fixed CIs for all
# dependent libraries.
# NOTE: If a fix is implemented server-side, we should be able to remove this retry mechanism.
logger.debug("Create repo failed due to a concurrency issue. Retrying...")
continue
break
try:
hf_raise_for_status(r)
except HTTPError as err:
if exist_ok and err.response.status_code == 409:
# Repo already exists and `exist_ok=True`
pass
elif exist_ok and err.response.status_code == 403:
# No write permission on the namespace but repo might already exist
try:
self.repo_info(repo_id=repo_id, repo_type=repo_type, token=token)
if repo_type is None or repo_type == REPO_TYPE_MODEL:
return RepoUrl(f"{self.endpoint}/{repo_id}")
return RepoUrl(f"{self.endpoint}/{repo_type}/{repo_id}")
except HfHubHTTPError:
raise
else:
raise
d = r.json()
return RepoUrl(d["url"], endpoint=self.endpoint)
@validate_hf_hub_args
def delete_repo(
self,
repo_id: str,
*,
token: Optional[str] = None,
repo_type: Optional[str] = None,
missing_ok: bool = False,
) -> None:
"""
Delete a repo from the HuggingFace Hub. CAUTION: this is irreversible.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model.
missing_ok (`bool`, *optional*, defaults to `False`):
If `True`, do not raise an error if repo does not exist.
Raises:
- [`~utils.RepositoryNotFoundError`]
If the repository to delete from cannot be found and `missing_ok` is set to False (default).
"""
organization, name = repo_id.split("/") if "/" in repo_id else (None, repo_id)
path = f"{self.endpoint}/api/repos/delete"
if repo_type not in REPO_TYPES:
raise ValueError("Invalid repo type")
json = {"name": name, "organization": organization}
if repo_type is not None:
json["type"] = repo_type
headers = self._build_hf_headers(token=token)
r = get_session().delete(path, headers=headers, json=json)
try:
hf_raise_for_status(r)
except RepositoryNotFoundError:
if not missing_ok:
raise
@validate_hf_hub_args
@_deprecate_arguments(
version="0.24.0", deprecated_args=("organization", "name"), custom_message="Use `repo_id` instead."
)
def update_repo_visibility(
self,
repo_id: str,
private: bool = False,
*,
token: Optional[str] = None,
organization: Optional[str] = None,
repo_type: Optional[str] = None,
name: Optional[str] = None,
) -> Dict[str, bool]:
"""Update the visibility setting of a repository.
Args:
repo_id (`str`, *optional*):
A namespace (user or an organization) and a repo name separated
by a `/`.
private (`bool`, *optional*, defaults to `False`):
Whether the model repo should be private.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
Returns:
The HTTP response in json.
<Tip>
Raises the following errors:
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
</Tip>
"""
if repo_type not in REPO_TYPES:
raise ValueError("Invalid repo type")
organization, name = repo_id.split("/") if "/" in repo_id else (None, repo_id)
if organization is None:
namespace = self.whoami(token)["name"]
else:
namespace = organization
if repo_type is None:
repo_type = REPO_TYPE_MODEL # default repo type
r = get_session().put(
url=f"{self.endpoint}/api/{repo_type}s/{namespace}/{name}/settings",
headers=self._build_hf_headers(token=token),
json={"private": private},
)
hf_raise_for_status(r)
return r.json()
def move_repo(
self,
from_id: str,
to_id: str,
*,
repo_type: Optional[str] = None,
token: Optional[str] = None,
):
"""
Moving a repository from namespace1/repo_name1 to namespace2/repo_name2
Note there are certain limitations. For more information about moving
repositories, please see
https://hf.co/docs/hub/repositories-settings#renaming-or-transferring-a-repo.
Args:
from_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`. Original repository identifier.
to_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`. Final repository identifier.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
<Tip>
Raises the following errors:
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
</Tip>
"""
if len(from_id.split("/")) != 2:
raise ValueError(f"Invalid repo_id: {from_id}. It should have a namespace (:namespace:/:repo_name:)")
if len(to_id.split("/")) != 2:
raise ValueError(f"Invalid repo_id: {to_id}. It should have a namespace (:namespace:/:repo_name:)")
if repo_type is None:
repo_type = REPO_TYPE_MODEL # Hub won't accept `None`.
json = {"fromRepo": from_id, "toRepo": to_id, "type": repo_type}
path = f"{self.endpoint}/api/repos/move"
headers = self._build_hf_headers(token=token)
r = get_session().post(path, headers=headers, json=json)
try:
hf_raise_for_status(r)
except HfHubHTTPError as e:
e.append_to_message(
"\nFor additional documentation please see"
" https://hf.co/docs/hub/repositories-settings#renaming-or-transferring-a-repo."
)
raise
@overload
def create_commit( # type: ignore
self,
repo_id: str,
operations: Iterable[CommitOperation],
*,
commit_message: str,
commit_description: Optional[str] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = None,
num_threads: int = 5,
parent_commit: Optional[str] = None,
run_as_future: Literal[False] = ...,
) -> CommitInfo: ...
@overload
def create_commit(
self,
repo_id: str,
operations: Iterable[CommitOperation],
*,
commit_message: str,
commit_description: Optional[str] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = None,
num_threads: int = 5,
parent_commit: Optional[str] = None,
run_as_future: Literal[True] = ...,
) -> Future[CommitInfo]: ...
@validate_hf_hub_args
@future_compatible
def create_commit(
self,
repo_id: str,
operations: Iterable[CommitOperation],
*,
commit_message: str,
commit_description: Optional[str] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = None,
num_threads: int = 5,
parent_commit: Optional[str] = None,
run_as_future: bool = False,
) -> Union[CommitInfo, Future[CommitInfo]]:
"""
Creates a commit in the given repo, deleting & uploading files as needed.
<Tip warning={true}>
The input list of `CommitOperation` will be mutated during the commit process. Do not reuse the same objects
for multiple commits.
</Tip>
<Tip warning={true}>
`create_commit` assumes that the repo already exists on the Hub. If you get a
Client error 404, please make sure you are authenticated and that `repo_id` and
`repo_type` are set correctly. If repo does not exist, create it first using
[`~hf_api.create_repo`].
</Tip>
<Tip warning={true}>
`create_commit` is limited to 25k LFS files and a 1GB payload for regular files.
</Tip>
Args:
repo_id (`str`):
The repository in which the commit will be created, for example:
`"username/custom_transformers"`
operations (`Iterable` of [`~hf_api.CommitOperation`]):
An iterable of operations to include in the commit, either:
- [`~hf_api.CommitOperationAdd`] to upload a file
- [`~hf_api.CommitOperationDelete`] to delete a file
- [`~hf_api.CommitOperationCopy`] to copy a file
Operation objects will be mutated to include information relative to the upload. Do not reuse the
same objects for multiple commits.
commit_message (`str`):
The summary (first line) of the commit that will be created.
commit_description (`str`, *optional*):
The description of the commit that will be created
token (`str`, *optional*):
Authentication token, obtained with `HfApi.login` method. Will
default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
revision (`str`, *optional*):
The git revision to commit from. Defaults to the head of the `"main"` branch.
create_pr (`boolean`, *optional*):
Whether or not to create a Pull Request with that commit. Defaults to `False`.
If `revision` is not set, PR is opened against the `"main"` branch. If
`revision` is set and is a branch, PR is opened against this branch. If
`revision` is set and is not a branch name (example: a commit oid), an
`RevisionNotFoundError` is returned by the server.
num_threads (`int`, *optional*):
Number of concurrent threads for uploading files. Defaults to 5.
Setting it to 2 means at most 2 files will be uploaded concurrently.
parent_commit (`str`, *optional*):
The OID / SHA of the parent commit, as a hexadecimal string.
Shorthands (7 first characters) are also supported. If specified and `create_pr` is `False`,
the commit will fail if `revision` does not point to `parent_commit`. If specified and `create_pr`
is `True`, the pull request will be created from `parent_commit`. Specifying `parent_commit`
ensures the repo has not changed before committing the changes, and can be especially useful
if the repo is updated / committed to concurrently.
run_as_future (`bool`, *optional*):
Whether or not to run this method in the background. Background jobs are run sequentially without
blocking the main thread. Passing `run_as_future=True` will return a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects)
object. Defaults to `False`.
Returns:
[`CommitInfo`] or `Future`:
Instance of [`CommitInfo`] containing information about the newly created commit (commit hash, commit
url, pr url, commit message,...). If `run_as_future=True` is passed, returns a Future object which will
contain the result when executed.
Raises:
[`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
If commit message is empty.
[`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
If parent commit is not a valid commit OID.
[`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
If a README.md file with an invalid metadata section is committed. In this case, the commit will fail
early, before trying to upload any file.
[`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
If `create_pr` is `True` and revision is neither `None` nor `"main"`.
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private
but not authenticated or repo does not exist.
"""
if parent_commit is not None and not REGEX_COMMIT_OID.fullmatch(parent_commit):
raise ValueError(
f"`parent_commit` is not a valid commit OID. It must match the following regex: {REGEX_COMMIT_OID}"
)
if commit_message is None or len(commit_message) == 0:
raise ValueError("`commit_message` can't be empty, please pass a value.")
commit_description = commit_description if commit_description is not None else ""
repo_type = repo_type if repo_type is not None else REPO_TYPE_MODEL
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}")
unquoted_revision = revision or DEFAULT_REVISION
revision = quote(unquoted_revision, safe="")
create_pr = create_pr if create_pr is not None else False
headers = self._build_hf_headers(token=token)
operations = list(operations)
additions = [op for op in operations if isinstance(op, CommitOperationAdd)]
copies = [op for op in operations if isinstance(op, CommitOperationCopy)]
nb_additions = len(additions)
nb_copies = len(copies)
nb_deletions = len(operations) - nb_additions - nb_copies
for addition in additions:
if addition._is_committed:
raise ValueError(
f"CommitOperationAdd {addition} has already being committed and cannot be reused. Please create a"
" new CommitOperationAdd object if you want to create a new commit."
)
logger.debug(
f"About to commit to the hub: {len(additions)} addition(s), {len(copies)} copie(s) and"
f" {nb_deletions} deletion(s)."
)
# If updating a README.md file, make sure the metadata format is valid
# It's better to fail early than to fail after all the files have been uploaded.
for addition in additions:
if addition.path_in_repo == "README.md":
with addition.as_file() as file:
response = get_session().post(
f"{ENDPOINT}/api/validate-yaml",
json={"content": file.read().decode(), "repoType": repo_type},
headers=headers,
)
# Handle warnings (example: empty metadata)
response_content = response.json()
message = "\n".join(
[f"- {warning.get('message')}" for warning in response_content.get("warnings", [])]
)
if message:
warnings.warn(f"Warnings while validating metadata in README.md:\n{message}")
# Raise on errors
try:
hf_raise_for_status(response)
except BadRequestError as e:
errors = response_content.get("errors", [])
message = "\n".join([f"- {error.get('message')}" for error in errors])
raise ValueError(f"Invalid metadata in README.md.\n{message}") from e
# If updating twice the same file or update then delete a file in a single commit
_warn_on_overwriting_operations(operations)
self.preupload_lfs_files(
repo_id=repo_id,
additions=additions,
token=token,
repo_type=repo_type,
revision=unquoted_revision, # first-class methods take unquoted revision
create_pr=create_pr,
num_threads=num_threads,
free_memory=False, # do not remove `CommitOperationAdd.path_or_fileobj` on LFS files for "normal" users
)
files_to_copy = _fetch_files_to_copy(
copies=copies,
repo_type=repo_type,
repo_id=repo_id,
headers=headers,
revision=revision,
endpoint=self.endpoint,
)
commit_payload = _prepare_commit_payload(
operations=operations,
files_to_copy=files_to_copy,
commit_message=commit_message,
commit_description=commit_description,
parent_commit=parent_commit,
)
commit_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/commit/{revision}"
def _payload_as_ndjson() -> Iterable[bytes]:
for item in commit_payload:
yield json.dumps(item).encode()
yield b"\n"
headers = {
# See https://github.com/huggingface/huggingface_hub/issues/1085#issuecomment-1265208073
"Content-Type": "application/x-ndjson",
**headers,
}
data = b"".join(_payload_as_ndjson())
params = {"create_pr": "1"} if create_pr else None
try:
commit_resp = get_session().post(url=commit_url, headers=headers, data=data, params=params)
hf_raise_for_status(commit_resp, endpoint_name="commit")
except RepositoryNotFoundError as e:
e.append_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE)
raise
except EntryNotFoundError as e:
if nb_deletions > 0 and "A file with this name doesn't exist" in str(e):
e.append_to_message(
"\nMake sure to differentiate file and folder paths in delete"
" operations with a trailing '/' or using `is_folder=True/False`."
)
raise
# Mark additions as committed (cannot be reused in another commit)
for addition in additions:
addition._is_committed = True
commit_data = commit_resp.json()
return CommitInfo(
commit_url=commit_data["commitUrl"],
commit_message=commit_message,
commit_description=commit_description,
oid=commit_data["commitOid"],
pr_url=commit_data["pullRequestUrl"] if create_pr else None,
)
@experimental
@validate_hf_hub_args
def create_commits_on_pr(
self,
*,
repo_id: str,
addition_commits: List[List[CommitOperationAdd]],
deletion_commits: List[List[CommitOperationDelete]],
commit_message: str,
commit_description: Optional[str] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
merge_pr: bool = True,
num_threads: int = 5, # TODO: use to multithread uploads
verbose: bool = False,
) -> str:
"""Push changes to the Hub in multiple commits.
Commits are pushed to a draft PR branch. If the upload fails or gets interrupted, it can be resumed. Progress
is tracked in the PR description. At the end of the process, the PR is set as open and the title is updated to
match the initial commit message. If `merge_pr=True` is passed, the PR is merged automatically.
All deletion commits are pushed first, followed by the addition commits. The order of the commits is not
guaranteed as we might implement parallel commits in the future. Be sure that your are not updating several
times the same file.
<Tip warning={true}>
`create_commits_on_pr` is experimental. Its API and behavior is subject to change in the future without prior notice.
</Tip>
<Tip warning={true}>
`create_commits_on_pr` assumes that the repo already exists on the Hub. If you get a Client error 404, please
make sure you are authenticated and that `repo_id` and `repo_type` are set correctly. If repo does not exist,
create it first using [`~hf_api.create_repo`].
</Tip>
Args:
repo_id (`str`):
The repository in which the commits will be pushed. Example: `"username/my-cool-model"`.
addition_commits (`List` of `List` of [`~hf_api.CommitOperationAdd`]):
A list containing lists of [`~hf_api.CommitOperationAdd`]. Each sublist will result in a commit on the
PR.
deletion_commits
A list containing lists of [`~hf_api.CommitOperationDelete`]. Each sublist will result in a commit on
the PR. Deletion commits are pushed before addition commits.
commit_message (`str`):
The summary (first line) of the commit that will be created. Will also be the title of the PR.
commit_description (`str`, *optional*):
The description of the commit that will be created. The description will be added to the PR.
token (`str`, *optional*):
Authentication token, obtained with `HfApi.login` method. Will default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or space, `None` or `"model"` if uploading to
a model. Default is `None`.
merge_pr (`bool`):
If set to `True`, the Pull Request is merged at the end of the process. Defaults to `True`.
num_threads (`int`, *optional*):
Number of concurrent threads for uploading files. Defaults to 5.
verbose (`bool`):
If set to `True`, process will run on verbose mode i.e. print information about the ongoing tasks.
Defaults to `False`.
Returns:
`str`: URL to the created PR.
Example:
```python
>>> from huggingface_hub import HfApi, plan_multi_commits
>>> addition_commits, deletion_commits = plan_multi_commits(
... operations=[
... CommitOperationAdd(...),
... CommitOperationAdd(...),
... CommitOperationDelete(...),
... CommitOperationDelete(...),
... CommitOperationAdd(...),
... ],
... )
>>> HfApi().create_commits_on_pr(
... repo_id="my-cool-model",
... addition_commits=addition_commits,
... deletion_commits=deletion_commits,
... (...)
... verbose=True,
... )
```
Raises:
[`MultiCommitException`]:
If an unexpected issue occur in the process: empty commits, unexpected commits in a PR, unexpected PR
description, etc.
"""
logger = logging.get_logger(__name__ + ".create_commits_on_pr")
if verbose:
logger.setLevel("INFO")
# 1. Get strategy ID
logger.info(
f"Will create {len(deletion_commits)} deletion commit(s) and {len(addition_commits)} addition commit(s),"
f" totalling {sum(len(ops) for ops in addition_commits+deletion_commits)} atomic operations."
)
strategy = MultiCommitStrategy(
addition_commits=[MultiCommitStep(operations=operations) for operations in addition_commits], # type: ignore
deletion_commits=[MultiCommitStep(operations=operations) for operations in deletion_commits], # type: ignore
)
logger.info(f"Multi-commits strategy with ID {strategy.id}.")
# 2. Get or create a PR with this strategy ID
for discussion in self.get_repo_discussions(repo_id=repo_id, repo_type=repo_type, token=token):
# search for a draft PR with strategy ID
if discussion.is_pull_request and discussion.status == "draft" and strategy.id in discussion.title:
pr = self.get_discussion_details(
repo_id=repo_id, discussion_num=discussion.num, repo_type=repo_type, token=token
)
logger.info(f"PR already exists: {pr.url}. Will resume process where it stopped.")
break
else:
# did not find a PR matching the strategy ID
pr = multi_commit_create_pull_request(
self,
repo_id=repo_id,
commit_message=commit_message,
commit_description=commit_description,
strategy=strategy,
token=token,
repo_type=repo_type,
)
logger.info(f"New PR created: {pr.url}")
# 3. Parse PR description to check consistency with strategy (e.g. same commits are scheduled)
for event in pr.events:
if isinstance(event, DiscussionComment):
pr_comment = event
break
else:
raise MultiCommitException(f"PR #{pr.num} must have at least 1 comment")
description_commits = multi_commit_parse_pr_description(pr_comment.content)
if len(description_commits) != len(strategy.all_steps):
raise MultiCommitException(
f"Corrupted multi-commit PR #{pr.num}: got {len(description_commits)} steps in"
f" description but {len(strategy.all_steps)} in strategy."
)
for step_id in strategy.all_steps:
if step_id not in description_commits:
raise MultiCommitException(
f"Corrupted multi-commit PR #{pr.num}: expected step {step_id} but didn't find"
f" it (have {', '.join(description_commits)})."
)
# 4. Retrieve commit history (and check consistency)
commits_on_main_branch = {
commit.commit_id
for commit in self.list_repo_commits(
repo_id=repo_id, repo_type=repo_type, token=token, revision=DEFAULT_REVISION
)
}
pr_commits = [
commit
for commit in self.list_repo_commits(
repo_id=repo_id, repo_type=repo_type, token=token, revision=pr.git_reference
)
if commit.commit_id not in commits_on_main_branch
]
if len(pr_commits) > 0:
logger.info(f"Found {len(pr_commits)} existing commits on the PR.")
# At this point `pr_commits` is a list of commits pushed to the PR. We expect all of these commits (if any) to have
# a step_id as title. We raise exception if an unexpected commit has been pushed.
if len(pr_commits) > len(strategy.all_steps):
raise MultiCommitException(
f"Corrupted multi-commit PR #{pr.num}: scheduled {len(strategy.all_steps)} steps but"
f" {len(pr_commits)} commits have already been pushed to the PR."
)
# Check which steps are already completed
remaining_additions = {step.id: step for step in strategy.addition_commits}
remaining_deletions = {step.id: step for step in strategy.deletion_commits}
for commit in pr_commits:
if commit.title in remaining_additions:
step = remaining_additions.pop(commit.title)
step.completed = True
elif commit.title in remaining_deletions:
step = remaining_deletions.pop(commit.title)
step.completed = True
if len(remaining_deletions) > 0 and len(remaining_additions) < len(strategy.addition_commits):
raise MultiCommitException(
f"Corrupted multi-commit PR #{pr.num}: some addition commits have already been pushed to the PR but"
" deletion commits are not all completed yet."
)
nb_remaining = len(remaining_deletions) + len(remaining_additions)
if len(pr_commits) > 0:
logger.info(
f"{nb_remaining} commits remaining ({len(remaining_deletions)} deletion commits and"
f" {len(remaining_additions)} addition commits)"
)
# 5. Push remaining commits to the PR + update description
# TODO: multi-thread this
for step in list(remaining_deletions.values()) + list(remaining_additions.values()):
# Push new commit
self.create_commit(
repo_id=repo_id,
repo_type=repo_type,
token=token,
commit_message=step.id,
revision=pr.git_reference,
num_threads=num_threads,
operations=step.operations,
create_pr=False,
)
step.completed = True
nb_remaining -= 1
logger.info(f" step {step.id} completed (still {nb_remaining} to go).")
# Update PR description
self.edit_discussion_comment(
repo_id=repo_id,
repo_type=repo_type,
token=token,
discussion_num=pr.num,
comment_id=pr_comment.id,
new_content=multi_commit_generate_comment(
commit_message=commit_message, commit_description=commit_description, strategy=strategy
),
)
logger.info("All commits have been pushed.")
# 6. Update PR (and merge)
self.rename_discussion(
repo_id=repo_id,
repo_type=repo_type,
token=token,
discussion_num=pr.num,
new_title=commit_message,
)
self.change_discussion_status(
repo_id=repo_id,
repo_type=repo_type,
token=token,
discussion_num=pr.num,
new_status="open",
comment=MULTI_COMMIT_PR_COMPLETION_COMMENT_TEMPLATE,
)
logger.info("PR is now open for reviews.")
if merge_pr: # User don't want a PR => merge it
try:
self.merge_pull_request(
repo_id=repo_id,
repo_type=repo_type,
token=token,
discussion_num=pr.num,
comment=MULTI_COMMIT_PR_CLOSING_COMMENT_TEMPLATE,
)
logger.info("PR has been automatically merged (`merge_pr=True` was passed).")
except BadRequestError as error:
if error.server_message is not None and "no associated changes" in error.server_message:
# PR cannot be merged as no changes are associated. We close the PR without merging with a comment to
# explain.
self.change_discussion_status(
repo_id=repo_id,
repo_type=repo_type,
token=token,
discussion_num=pr.num,
comment=MULTI_COMMIT_PR_CLOSE_COMMENT_FAILURE_NO_CHANGES_TEMPLATE,
new_status="closed",
)
logger.warning("Couldn't merge the PR: no associated changes.")
else:
# PR cannot be merged for another reason (conflicting files for example). We comment the PR to explain
# and re-raise the exception.
self.comment_discussion(
repo_id=repo_id,
repo_type=repo_type,
token=token,
discussion_num=pr.num,
comment=MULTI_COMMIT_PR_CLOSE_COMMENT_FAILURE_BAD_REQUEST_TEMPLATE.format(
error_message=error.server_message
),
)
raise MultiCommitException(
f"Couldn't merge Pull Request in multi-commit: {error.server_message}"
) from error
return pr.url
def preupload_lfs_files(
self,
repo_id: str,
additions: Iterable[CommitOperationAdd],
*,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = None,
num_threads: int = 5,
free_memory: bool = True,
gitignore_content: Optional[str] = None,
):
"""Pre-upload LFS files to S3 in preparation on a future commit.
This method is useful if you are generating the files to upload on-the-fly and you don't want to store them
in memory before uploading them all at once.
<Tip warning={true}>
This is a power-user method. You shouldn't need to call it directly to make a normal commit.
Use [`create_commit`] directly instead.
</Tip>
<Tip warning={true}>
Commit operations will be mutated during the process. In particular, the attached `path_or_fileobj` will be
removed after the upload to save memory (and replaced by an empty `bytes` object). Do not reuse the same
objects except to pass them to [`create_commit`]. If you don't want to remove the attached content from the
commit operation object, pass `free_memory=False`.
</Tip>
Args:
repo_id (`str`):
The repository in which you will commit the files, for example: `"username/custom_transformers"`.
operations (`Iterable` of [`CommitOperationAdd`]):
The list of files to upload. Warning: the objects in this list will be mutated to include information
relative to the upload. Do not reuse the same objects for multiple commits.
token (`str`, *optional*):
Authentication token. Will default to the stored token.
repo_type (`str`, *optional*):
The type of repository to upload to (e.g. `"model"` -default-, `"dataset"` or `"space"`).
revision (`str`, *optional*):
The git revision to commit from. Defaults to the head of the `"main"` branch.
create_pr (`boolean`, *optional*):
Whether or not you plan to create a Pull Request with that commit. Defaults to `False`.
num_threads (`int`, *optional*):
Number of concurrent threads for uploading files. Defaults to 5.
Setting it to 2 means at most 2 files will be uploaded concurrently.
gitignore_content (`str`, *optional*):
The content of the `.gitignore` file to know which files should be ignored. The order of priority
is to first check if `gitignore_content` is passed, then check if the `.gitignore` file is present
in the list of files to commit and finally default to the `.gitignore` file already hosted on the Hub
(if any).
Example:
```py
>>> from huggingface_hub import CommitOperationAdd, preupload_lfs_files, create_commit, create_repo
>>> repo_id = create_repo("test_preupload").repo_id
# Generate and preupload LFS files one by one
>>> operations = [] # List of all `CommitOperationAdd` objects that will be generated
>>> for i in range(5):
... content = ... # generate binary content
... addition = CommitOperationAdd(path_in_repo=f"shard_{i}_of_5.bin", path_or_fileobj=content)
... preupload_lfs_files(repo_id, additions=[addition]) # upload + free memory
... operations.append(addition)
# Create commit
>>> create_commit(repo_id, operations=operations, commit_message="Commit all shards")
```
"""
repo_type = repo_type if repo_type is not None else REPO_TYPE_MODEL
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}")
revision = quote(revision, safe="") if revision is not None else DEFAULT_REVISION
create_pr = create_pr if create_pr is not None else False
headers = self._build_hf_headers(token=token)
# Check if a `gitignore` file is being committed to the Hub.
additions = list(additions)
if gitignore_content is None:
for addition in additions:
if addition.path_in_repo == ".gitignore":
with addition.as_file() as f:
gitignore_content = f.read().decode()
break
# Filter out already uploaded files
new_additions = [addition for addition in additions if not addition._is_uploaded]
# Check which new files are LFS
try:
_fetch_upload_modes(
additions=new_additions,
repo_type=repo_type,
repo_id=repo_id,
headers=headers,
revision=revision,
endpoint=self.endpoint,
create_pr=create_pr or False,
gitignore_content=gitignore_content,
)
except RepositoryNotFoundError as e:
e.append_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE)
raise
# Filter out regular files
new_lfs_additions = [addition for addition in new_additions if addition._upload_mode == "lfs"]
# Filter out files listed in .gitignore
new_lfs_additions_to_upload = []
for addition in new_lfs_additions:
if addition._should_ignore:
logger.debug(f"Skipping upload for LFS file '{addition.path_in_repo}' (ignored by gitignore file).")
else:
new_lfs_additions_to_upload.append(addition)
if len(new_lfs_additions) != len(new_lfs_additions_to_upload):
logger.info(
f"Skipped upload for {len(new_lfs_additions) - len(new_lfs_additions_to_upload)} LFS file(s) "
"(ignored by gitignore file)."
)
# Upload new LFS files
_upload_lfs_files(
additions=new_lfs_additions_to_upload,
repo_type=repo_type,
repo_id=repo_id,
headers=headers,
endpoint=self.endpoint,
num_threads=num_threads,
# If `create_pr`, we don't want to check user permission on the revision as users with read permission
# should still be able to create PRs even if they don't have write permission on the target branch of the
# PR (i.e. `revision`).
revision=revision if not create_pr else None,
)
for addition in new_lfs_additions_to_upload:
addition._is_uploaded = True
if free_memory:
addition.path_or_fileobj = b""
@overload
def upload_file( # type: ignore
self,
*,
path_or_fileobj: Union[str, Path, bytes, BinaryIO],
path_in_repo: str,
repo_id: str,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
create_pr: Optional[bool] = None,
parent_commit: Optional[str] = None,
run_as_future: Literal[False] = ...,
) -> CommitInfo: ...
@overload
def upload_file(
self,
*,
path_or_fileobj: Union[str, Path, bytes, BinaryIO],
path_in_repo: str,
repo_id: str,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
create_pr: Optional[bool] = None,
parent_commit: Optional[str] = None,
run_as_future: Literal[True] = ...,
) -> Future[CommitInfo]: ...
@validate_hf_hub_args
@future_compatible
def upload_file(
self,
*,
path_or_fileobj: Union[str, Path, bytes, BinaryIO],
path_in_repo: str,
repo_id: str,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
create_pr: Optional[bool] = None,
parent_commit: Optional[str] = None,
run_as_future: bool = False,
) -> Union[CommitInfo, Future[CommitInfo]]:
"""
Upload a local file (up to 50 GB) to the given repo. The upload is done
through a HTTP post request, and doesn't require git or git-lfs to be
installed.
Args:
path_or_fileobj (`str`, `Path`, `bytes`, or `IO`):
Path to a file on the local machine or binary data stream /
fileobj / buffer.
path_in_repo (`str`):
Relative filepath in the repo, for example:
`"checkpoints/1fec34a/weights.bin"`
repo_id (`str`):
The repository to which the file will be uploaded, for example:
`"username/custom_transformers"`
token (`str`, *optional*):
Authentication token, obtained with `HfApi.login` method. Will
default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
revision (`str`, *optional*):
The git revision to commit from. Defaults to the head of the `"main"` branch.
commit_message (`str`, *optional*):
The summary / title / first line of the generated commit
commit_description (`str` *optional*)
The description of the generated commit
create_pr (`boolean`, *optional*):
Whether or not to create a Pull Request with that commit. Defaults to `False`.
If `revision` is not set, PR is opened against the `"main"` branch. If
`revision` is set and is a branch, PR is opened against this branch. If
`revision` is set and is not a branch name (example: a commit oid), an
`RevisionNotFoundError` is returned by the server.
parent_commit (`str`, *optional*):
The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported.
If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`.
If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`.
Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be
especially useful if the repo is updated / committed to concurrently.
run_as_future (`bool`, *optional*):
Whether or not to run this method in the background. Background jobs are run sequentially without
blocking the main thread. Passing `run_as_future=True` will return a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects)
object. Defaults to `False`.
Returns:
[`CommitInfo`] or `Future`:
Instance of [`CommitInfo`] containing information about the newly created commit (commit hash, commit
url, pr url, commit message,...). If `run_as_future=True` is passed, returns a Future object which will
contain the result when executed.
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
- [`~utils.RevisionNotFoundError`]
If the revision to download from cannot be found.
</Tip>
<Tip warning={true}>
`upload_file` assumes that the repo already exists on the Hub. If you get a
Client error 404, please make sure you are authenticated and that `repo_id` and
`repo_type` are set correctly. If repo does not exist, create it first using
[`~hf_api.create_repo`].
</Tip>
Example:
```python
>>> from huggingface_hub import upload_file
>>> with open("./local/filepath", "rb") as fobj:
... upload_file(
... path_or_fileobj=fileobj,
... path_in_repo="remote/file/path.h5",
... repo_id="username/my-dataset",
... repo_type="dataset",
... token="my_token",
... )
"https://huggingface.co/datasets/username/my-dataset/blob/main/remote/file/path.h5"
>>> upload_file(
... path_or_fileobj=".\\\\local\\\\file\\\\path",
... path_in_repo="remote/file/path.h5",
... repo_id="username/my-model",
... token="my_token",
... )
"https://huggingface.co/username/my-model/blob/main/remote/file/path.h5"
>>> upload_file(
... path_or_fileobj=".\\\\local\\\\file\\\\path",
... path_in_repo="remote/file/path.h5",
... repo_id="username/my-model",
... token="my_token",
... create_pr=True,
... )
"https://huggingface.co/username/my-model/blob/refs%2Fpr%2F1/remote/file/path.h5"
```
"""
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}")
commit_message = (
commit_message if commit_message is not None else f"Upload {path_in_repo} with huggingface_hub"
)
operation = CommitOperationAdd(
path_or_fileobj=path_or_fileobj,
path_in_repo=path_in_repo,
)
commit_info = self.create_commit(
repo_id=repo_id,
repo_type=repo_type,
operations=[operation],
commit_message=commit_message,
commit_description=commit_description,
token=token,
revision=revision,
create_pr=create_pr,
parent_commit=parent_commit,
)
if commit_info.pr_url is not None:
revision = quote(_parse_revision_from_pr_url(commit_info.pr_url), safe="")
if repo_type in REPO_TYPES_URL_PREFIXES:
repo_id = REPO_TYPES_URL_PREFIXES[repo_type] + repo_id
revision = revision if revision is not None else DEFAULT_REVISION
return CommitInfo(
commit_url=commit_info.commit_url,
commit_message=commit_info.commit_message,
commit_description=commit_info.commit_description,
oid=commit_info.oid,
pr_url=commit_info.pr_url,
# Similar to `hf_hub_url` but it's "blob" instead of "resolve"
# TODO: remove this in v1.0
_url=f"{self.endpoint}/{repo_id}/blob/{revision}/{path_in_repo}",
)
@overload
def upload_folder( # type: ignore
self,
*,
repo_id: str,
folder_path: Union[str, Path],
path_in_repo: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = None,
parent_commit: Optional[str] = None,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
delete_patterns: Optional[Union[List[str], str]] = None,
multi_commits: Literal[False] = ...,
multi_commits_verbose: bool = False,
run_as_future: Literal[False] = ...,
) -> CommitInfo: ...
@overload
def upload_folder( # type: ignore
self,
*,
repo_id: str,
folder_path: Union[str, Path],
path_in_repo: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = None,
parent_commit: Optional[str] = None,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
delete_patterns: Optional[Union[List[str], str]] = None,
multi_commits: Literal[True] = ...,
multi_commits_verbose: bool = False,
run_as_future: Literal[False] = ...,
) -> str: # Only the PR url in multi-commits mode
...
@overload
def upload_folder( # type: ignore
self,
*,
repo_id: str,
folder_path: Union[str, Path],
path_in_repo: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = None,
parent_commit: Optional[str] = None,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
delete_patterns: Optional[Union[List[str], str]] = None,
multi_commits: Literal[False] = ...,
multi_commits_verbose: bool = False,
run_as_future: Literal[True] = ...,
) -> Future[CommitInfo]: ...
@overload
def upload_folder(
self,
*,
repo_id: str,
folder_path: Union[str, Path],
path_in_repo: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = None,
parent_commit: Optional[str] = None,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
delete_patterns: Optional[Union[List[str], str]] = None,
multi_commits: Literal[True] = ...,
multi_commits_verbose: bool = False,
run_as_future: Literal[True] = ...,
) -> Future[str]: # Only the PR url in multi-commits mode
...
@validate_hf_hub_args
@future_compatible
def upload_folder(
self,
*,
repo_id: str,
folder_path: Union[str, Path],
path_in_repo: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
create_pr: Optional[bool] = None,
parent_commit: Optional[str] = None,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
delete_patterns: Optional[Union[List[str], str]] = None,
multi_commits: bool = False,
multi_commits_verbose: bool = False,
run_as_future: bool = False,
) -> Union[CommitInfo, str, Future[CommitInfo], Future[str]]:
"""
Upload a local folder to the given repo. The upload is done through a HTTP requests, and doesn't require git or
git-lfs to be installed.
The structure of the folder will be preserved. Files with the same name already present in the repository will
be overwritten. Others will be left untouched.
Use the `allow_patterns` and `ignore_patterns` arguments to specify which files to upload. These parameters
accept either a single pattern or a list of patterns. Patterns are Standard Wildcards (globbing patterns) as
documented [here](https://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm). If both `allow_patterns` and
`ignore_patterns` are provided, both constraints apply. By default, all files from the folder are uploaded.
Use the `delete_patterns` argument to specify remote files you want to delete. Input type is the same as for
`allow_patterns` (see above). If `path_in_repo` is also provided, the patterns are matched against paths
relative to this folder. For example, `upload_folder(..., path_in_repo="experiment", delete_patterns="logs/*")`
will delete any remote file under `./experiment/logs/`. Note that the `.gitattributes` file will not be deleted
even if it matches the patterns.
Any `.git/` folder present in any subdirectory will be ignored. However, please be aware that the `.gitignore`
file is not taken into account.
Uses `HfApi.create_commit` under the hood.
Args:
repo_id (`str`):
The repository to which the file will be uploaded, for example:
`"username/custom_transformers"`
folder_path (`str` or `Path`):
Path to the folder to upload on the local file system
path_in_repo (`str`, *optional*):
Relative path of the directory in the repo, for example:
`"checkpoints/1fec34a/results"`. Will default to the root folder of the repository.
token (`str`, *optional*):
Authentication token, obtained with `HfApi.login` method. Will
default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
revision (`str`, *optional*):
The git revision to commit from. Defaults to the head of the `"main"` branch.
commit_message (`str`, *optional*):
The summary / title / first line of the generated commit. Defaults to:
`f"Upload {path_in_repo} with huggingface_hub"`
commit_description (`str` *optional*):
The description of the generated commit
create_pr (`boolean`, *optional*):
Whether or not to create a Pull Request with that commit. Defaults to `False`. If `revision` is not
set, PR is opened against the `"main"` branch. If `revision` is set and is a branch, PR is opened
against this branch. If `revision` is set and is not a branch name (example: a commit oid), an
`RevisionNotFoundError` is returned by the server. If both `multi_commits` and `create_pr` are True,
the PR created in the multi-commit process is kept opened.
parent_commit (`str`, *optional*):
The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported.
If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`.
If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`.
Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be
especially useful if the repo is updated / committed to concurrently.
allow_patterns (`List[str]` or `str`, *optional*):
If provided, only files matching at least one pattern are uploaded.
ignore_patterns (`List[str]` or `str`, *optional*):
If provided, files matching any of the patterns are not uploaded.
delete_patterns (`List[str]` or `str`, *optional*):
If provided, remote files matching any of the patterns will be deleted from the repo while committing
new files. This is useful if you don't know which files have already been uploaded.
Note: to avoid discrepancies the `.gitattributes` file is not deleted even if it matches the pattern.
multi_commits (`bool`):
If True, changes are pushed to a PR using a multi-commit process. Defaults to `False`.
multi_commits_verbose (`bool`):
If True and `multi_commits` is used, more information will be displayed to the user.
run_as_future (`bool`, *optional*):
Whether or not to run this method in the background. Background jobs are run sequentially without
blocking the main thread. Passing `run_as_future=True` will return a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects)
object. Defaults to `False`.
Returns:
[`CommitInfo`] or `Future`:
Instance of [`CommitInfo`] containing information about the newly created commit (commit hash, commit
url, pr url, commit message,...). If `run_as_future=True` is passed, returns a Future object which will
contain the result when executed.
[`str`] or `Future`:
If `multi_commits=True`, returns the url of the PR created to push the changes. If `run_as_future=True`
is passed, returns a Future object which will contain the result when executed.
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
</Tip>
<Tip warning={true}>
`upload_folder` assumes that the repo already exists on the Hub. If you get a Client error 404, please make
sure you are authenticated and that `repo_id` and `repo_type` are set correctly. If repo does not exist, create
it first using [`~hf_api.create_repo`].
</Tip>
<Tip warning={true}>
`multi_commits` is experimental. Its API and behavior is subject to change in the future without prior notice.
</Tip>
Example:
```python
# Upload checkpoints folder except the log files
>>> upload_folder(
... folder_path="local/checkpoints",
... path_in_repo="remote/experiment/checkpoints",
... repo_id="username/my-dataset",
... repo_type="datasets",
... token="my_token",
... ignore_patterns="**/logs/*.txt",
... )
# "https://huggingface.co/datasets/username/my-dataset/tree/main/remote/experiment/checkpoints"
# Upload checkpoints folder including logs while deleting existing logs from the repo
# Useful if you don't know exactly which log files have already being pushed
>>> upload_folder(
... folder_path="local/checkpoints",
... path_in_repo="remote/experiment/checkpoints",
... repo_id="username/my-dataset",
... repo_type="datasets",
... token="my_token",
... delete_patterns="**/logs/*.txt",
... )
"https://huggingface.co/datasets/username/my-dataset/tree/main/remote/experiment/checkpoints"
# Upload checkpoints folder while creating a PR
>>> upload_folder(
... folder_path="local/checkpoints",
... path_in_repo="remote/experiment/checkpoints",
... repo_id="username/my-dataset",
... repo_type="datasets",
... token="my_token",
... create_pr=True,
... )
"https://huggingface.co/datasets/username/my-dataset/tree/refs%2Fpr%2F1/remote/experiment/checkpoints"
```
"""
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}")
if multi_commits:
if revision is not None and revision != DEFAULT_REVISION:
raise ValueError("Cannot use `multi_commit` to commit changes other than the main branch.")
# By default, upload folder to the root directory in repo.
if path_in_repo is None:
path_in_repo = ""
# Do not upload .git folder
if ignore_patterns is None:
ignore_patterns = []
elif isinstance(ignore_patterns, str):
ignore_patterns = [ignore_patterns]
ignore_patterns += IGNORE_GIT_FOLDER_PATTERNS
delete_operations = self._prepare_upload_folder_deletions(
repo_id=repo_id,
repo_type=repo_type,
revision=DEFAULT_REVISION if create_pr else revision,
token=token,
path_in_repo=path_in_repo,
delete_patterns=delete_patterns,
)
add_operations = _prepare_upload_folder_additions(
folder_path,
path_in_repo,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
)
# Optimize operations: if some files will be overwritten, we don't need to delete them first
if len(add_operations) > 0:
added_paths = set(op.path_in_repo for op in add_operations)
delete_operations = [
delete_op for delete_op in delete_operations if delete_op.path_in_repo not in added_paths
]
commit_operations = delete_operations + add_operations
commit_message = commit_message or "Upload folder using huggingface_hub"
if multi_commits:
addition_commits, deletion_commits = plan_multi_commits(operations=commit_operations)
pr_url = self.create_commits_on_pr(
repo_id=repo_id,
repo_type=repo_type,
addition_commits=addition_commits,
deletion_commits=deletion_commits,
commit_message=commit_message,
commit_description=commit_description,
token=token,
merge_pr=not create_pr,
verbose=multi_commits_verbose,
)
# Defining a CommitInfo object is not really relevant in this case
# Let's return early with pr_url only (as string).
return pr_url
commit_info = self.create_commit(
repo_type=repo_type,
repo_id=repo_id,
operations=commit_operations,
commit_message=commit_message,
commit_description=commit_description,
token=token,
revision=revision,
create_pr=create_pr,
parent_commit=parent_commit,
)
# Create url to uploaded folder (for legacy return value)
if create_pr and commit_info.pr_url is not None:
revision = quote(_parse_revision_from_pr_url(commit_info.pr_url), safe="")
if repo_type in REPO_TYPES_URL_PREFIXES:
repo_id = REPO_TYPES_URL_PREFIXES[repo_type] + repo_id
revision = revision if revision is not None else DEFAULT_REVISION
return CommitInfo(
commit_url=commit_info.commit_url,
commit_message=commit_info.commit_message,
commit_description=commit_info.commit_description,
oid=commit_info.oid,
pr_url=commit_info.pr_url,
# Similar to `hf_hub_url` but it's "tree" instead of "resolve"
# TODO: remove this in v1.0
_url=f"{self.endpoint}/{repo_id}/tree/{revision}/{path_in_repo}",
)
@validate_hf_hub_args
def delete_file(
self,
path_in_repo: str,
repo_id: str,
*,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
create_pr: Optional[bool] = None,
parent_commit: Optional[str] = None,
) -> CommitInfo:
"""
Deletes a file in the given repo.
Args:
path_in_repo (`str`):
Relative filepath in the repo, for example:
`"checkpoints/1fec34a/weights.bin"`
repo_id (`str`):
The repository from which the file will be deleted, for example:
`"username/custom_transformers"`
token (`str`, *optional*):
Authentication token, obtained with `HfApi.login` method. Will
default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if the file is in a dataset or
space, `None` or `"model"` if in a model. Default is `None`.
revision (`str`, *optional*):
The git revision to commit from. Defaults to the head of the `"main"` branch.
commit_message (`str`, *optional*):
The summary / title / first line of the generated commit. Defaults to
`f"Delete {path_in_repo} with huggingface_hub"`.
commit_description (`str` *optional*)
The description of the generated commit
create_pr (`boolean`, *optional*):
Whether or not to create a Pull Request with that commit. Defaults to `False`.
If `revision` is not set, PR is opened against the `"main"` branch. If
`revision` is set and is a branch, PR is opened against this branch. If
`revision` is set and is not a branch name (example: a commit oid), an
`RevisionNotFoundError` is returned by the server.
parent_commit (`str`, *optional*):
The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported.
If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`.
If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`.
Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be
especially useful if the repo is updated / committed to concurrently.
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
- [`~utils.RevisionNotFoundError`]
If the revision to download from cannot be found.
- [`~utils.EntryNotFoundError`]
If the file to download cannot be found.
</Tip>
"""
commit_message = (
commit_message if commit_message is not None else f"Delete {path_in_repo} with huggingface_hub"
)
operations = [CommitOperationDelete(path_in_repo=path_in_repo)]
return self.create_commit(
repo_id=repo_id,
repo_type=repo_type,
token=token,
operations=operations,
revision=revision,
commit_message=commit_message,
commit_description=commit_description,
create_pr=create_pr,
parent_commit=parent_commit,
)
@validate_hf_hub_args
def delete_folder(
self,
path_in_repo: str,
repo_id: str,
*,
token: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
create_pr: Optional[bool] = None,
parent_commit: Optional[str] = None,
) -> CommitInfo:
"""
Deletes a folder in the given repo.
Simple wrapper around [`create_commit`] method.
Args:
path_in_repo (`str`):
Relative folder path in the repo, for example: `"checkpoints/1fec34a"`.
repo_id (`str`):
The repository from which the folder will be deleted, for example:
`"username/custom_transformers"`
token (`str`, *optional*):
Authentication token, obtained with `HfApi.login` method. Will default
to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if the folder is in a dataset or
space, `None` or `"model"` if in a model. Default is `None`.
revision (`str`, *optional*):
The git revision to commit from. Defaults to the head of the `"main"` branch.
commit_message (`str`, *optional*):
The summary / title / first line of the generated commit. Defaults to
`f"Delete folder {path_in_repo} with huggingface_hub"`.
commit_description (`str` *optional*)
The description of the generated commit.
create_pr (`boolean`, *optional*):
Whether or not to create a Pull Request with that commit. Defaults to `False`.
If `revision` is not set, PR is opened against the `"main"` branch. If
`revision` is set and is a branch, PR is opened against this branch. If
`revision` is set and is not a branch name (example: a commit oid), an
`RevisionNotFoundError` is returned by the server.
parent_commit (`str`, *optional*):
The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported.
If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`.
If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`.
Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be
especially useful if the repo is updated / committed to concurrently.
"""
return self.create_commit(
repo_id=repo_id,
repo_type=repo_type,
token=token,
operations=[CommitOperationDelete(path_in_repo=path_in_repo, is_folder=True)],
revision=revision,
commit_message=(
commit_message if commit_message is not None else f"Delete folder {path_in_repo} with huggingface_hub"
),
commit_description=commit_description,
create_pr=create_pr,
parent_commit=parent_commit,
)
@validate_hf_hub_args
def get_hf_file_metadata(
self,
*,
url: str,
token: Union[bool, str, None] = None,
proxies: Optional[Dict] = None,
timeout: Optional[float] = DEFAULT_REQUEST_TIMEOUT,
) -> HfFileMetadata:
"""Fetch metadata of a file versioned on the Hub for a given url.
Args:
url (`str`):
File url, for example returned by [`hf_hub_url`].
token (`str` or `bool`, *optional*):
A token to be used for the download.
- If `True`, the token is read from the HuggingFace config
folder.
- If `False` or `None`, no token is provided.
- If a string, it's used as the authentication token.
proxies (`dict`, *optional*):
Dictionary mapping protocol to the URL of the proxy passed to `requests.request`.
timeout (`float`, *optional*, defaults to 10):
How many seconds to wait for the server to send metadata before giving up.
Returns:
A [`HfFileMetadata`] object containing metadata such as location, etag, size and commit_hash.
"""
if token is None:
# Cannot do `token = token or self.token` as token can be `False`.
token = self.token
return get_hf_file_metadata(
url=url,
token=token,
proxies=proxies,
timeout=timeout,
library_name=self.library_name,
library_version=self.library_version,
user_agent=self.user_agent,
)
@validate_hf_hub_args
def hf_hub_download(
self,
repo_id: str,
filename: str,
*,
subfolder: Optional[str] = None,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
cache_dir: Union[str, Path, None] = None,
local_dir: Union[str, Path, None] = None,
local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto",
force_download: bool = False,
force_filename: Optional[str] = None,
proxies: Optional[Dict] = None,
etag_timeout: float = DEFAULT_ETAG_TIMEOUT,
resume_download: bool = False,
token: Optional[Union[str, bool]] = None,
local_files_only: bool = False,
legacy_cache_layout: bool = False,
) -> str:
"""Download a given file if it's not already present in the local cache.
The new cache file layout looks like this:
- The cache directory contains one subfolder per repo_id (namespaced by repo type)
- inside each repo folder:
- refs is a list of the latest known revision => commit_hash pairs
- blobs contains the actual file blobs (identified by their git-sha or sha256, depending on
whether they're LFS files or not)
- snapshots contains one subfolder per commit, each "commit" contains the subset of the files
that have been resolved at that particular commit. Each filename is a symlink to the blob
at that particular commit.
If `local_dir` is provided, the file structure from the repo will be replicated in this location. You can configure
how you want to move those files:
- If `local_dir_use_symlinks="auto"` (default), files are downloaded and stored in the cache directory as blob
files. Small files (<5MB) are duplicated in `local_dir` while a symlink is created for bigger files. The goal
is to be able to manually edit and save small files without corrupting the cache while saving disk space for
binary files. The 5MB threshold can be configured with the `HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD`
environment variable.
- If `local_dir_use_symlinks=True`, files are downloaded, stored in the cache directory and symlinked in `local_dir`.
This is optimal in term of disk usage but files must not be manually edited.
- If `local_dir_use_symlinks=False` and the blob files exist in the cache directory, they are duplicated in the
local dir. This means disk usage is not optimized.
- Finally, if `local_dir_use_symlinks=False` and the blob files do not exist in the cache directory, then the
files are downloaded and directly placed under `local_dir`. This means if you need to download them again later,
they will be re-downloaded entirely.
```
[ 96] .
[ 160] models--julien-c--EsperBERTo-small
[ 160] blobs
[321M] 403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd
[ 398] 7cb18dc9bafbfcf74629a4b760af1b160957a83e
[1.4K] d7edf6bd2a681fb0175f7735299831ee1b22b812
[ 96] refs
[ 40] main
[ 128] snapshots
[ 128] 2439f60ef33a0d46d85da5001d52aeda5b00ce9f
[ 52] README.md -> ../../blobs/d7edf6bd2a681fb0175f7735299831ee1b22b812
[ 76] pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd
[ 128] bbc77c8132af1cc5cf678da3f1ddf2de43606d48
[ 52] README.md -> ../../blobs/7cb18dc9bafbfcf74629a4b760af1b160957a83e
[ 76] pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd
```
Args:
repo_id (`str`):
A user or an organization name and a repo name separated by a `/`.
filename (`str`):
The name of the file in the repo.
subfolder (`str`, *optional*):
An optional value corresponding to a folder inside the model repo.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if downloading from a dataset or space,
`None` or `"model"` if downloading from a model. Default is `None`.
revision (`str`, *optional*):
An optional Git revision id which can be a branch name, a tag, or a
commit hash.
cache_dir (`str`, `Path`, *optional*):
Path to the folder where cached files are stored.
local_dir (`str` or `Path`, *optional*):
If provided, the downloaded file will be placed under this directory, either as a symlink (default) or
a regular file (see description for more details).
local_dir_use_symlinks (`"auto"` or `bool`, defaults to `"auto"`):
To be used with `local_dir`. If set to "auto", the cache directory will be used and the file will be either
duplicated or symlinked to the local directory depending on its size. It set to `True`, a symlink will be
created, no matter the file size. If set to `False`, the file will either be duplicated from cache (if
already exists) or downloaded from the Hub and not cached. See description for more details.
force_download (`bool`, *optional*, defaults to `False`):
Whether the file should be downloaded even if it already exists in
the local cache.
proxies (`dict`, *optional*):
Dictionary mapping protocol to the URL of the proxy passed to
`requests.request`.
etag_timeout (`float`, *optional*, defaults to `10`):
When fetching ETag, how many seconds to wait for the server to send
data before giving up which is passed to `requests.request`.
resume_download (`bool`, *optional*, defaults to `False`):
If `True`, resume a previously interrupted download.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, avoid downloading the file and return the path to the
local cached file if it exists.
legacy_cache_layout (`bool`, *optional*, defaults to `False`):
If `True`, uses the legacy file cache layout i.e. just call [`hf_hub_url`]
then `cached_download`. This is deprecated as the new cache layout is
more powerful.
Returns:
Local path (string) of file or if networking is off, last version of
file cached on disk.
<Tip>
Raises the following errors:
- [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError)
if `token=True` and the token cannot be found.
- [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError)
if ETag cannot be determined.
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
- [`~utils.RevisionNotFoundError`]
If the revision to download from cannot be found.
- [`~utils.EntryNotFoundError`]
If the file to download cannot be found.
- [`~utils.LocalEntryNotFoundError`]
If network is disabled or unavailable and file is not found in cache.
</Tip>
"""
from .file_download import hf_hub_download
if token is None:
# Cannot do `token = token or self.token` as token can be `False`.
token = self.token
return hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
repo_type=repo_type,
revision=revision,
endpoint=self.endpoint,
library_name=self.library_name,
library_version=self.library_version,
cache_dir=cache_dir,
local_dir=local_dir,
local_dir_use_symlinks=local_dir_use_symlinks,
user_agent=self.user_agent,
force_download=force_download,
force_filename=force_filename,
proxies=proxies,
etag_timeout=etag_timeout,
resume_download=resume_download,
token=token,
headers=self.headers,
local_files_only=local_files_only,
legacy_cache_layout=legacy_cache_layout,
)
@validate_hf_hub_args
def snapshot_download(
self,
repo_id: str,
*,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
cache_dir: Union[str, Path, None] = None,
local_dir: Union[str, Path, None] = None,
local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto",
proxies: Optional[Dict] = None,
etag_timeout: float = DEFAULT_ETAG_TIMEOUT,
resume_download: bool = False,
force_download: bool = False,
token: Optional[Union[str, bool]] = None,
local_files_only: bool = False,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
max_workers: int = 8,
tqdm_class: Optional[base_tqdm] = None,
) -> str:
"""Download repo files.
Download a whole snapshot of a repo's files at the specified revision. This is useful when you want all files from
a repo, because you don't know which ones you will need a priori. All files are nested inside a folder in order
to keep their actual filename relative to that folder. You can also filter which files to download using
`allow_patterns` and `ignore_patterns`.
If `local_dir` is provided, the file structure from the repo will be replicated in this location. You can configure
how you want to move those files:
- If `local_dir_use_symlinks="auto"` (default), files are downloaded and stored in the cache directory as blob
files. Small files (<5MB) are duplicated in `local_dir` while a symlink is created for bigger files. The goal
is to be able to manually edit and save small files without corrupting the cache while saving disk space for
binary files. The 5MB threshold can be configured with the `HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD`
environment variable.
- If `local_dir_use_symlinks=True`, files are downloaded, stored in the cache directory and symlinked in `local_dir`.
This is optimal in term of disk usage but files must not be manually edited.
- If `local_dir_use_symlinks=False` and the blob files exist in the cache directory, they are duplicated in the
local dir. This means disk usage is not optimized.
- Finally, if `local_dir_use_symlinks=False` and the blob files do not exist in the cache directory, then the
files are downloaded and directly placed under `local_dir`. This means if you need to download them again later,
they will be re-downloaded entirely.
An alternative would be to clone the repo but this requires git and git-lfs to be installed and properly
configured. It is also not possible to filter which files to download when cloning a repository using git.
Args:
repo_id (`str`):
A user or an organization name and a repo name separated by a `/`.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if downloading from a dataset or space,
`None` or `"model"` if downloading from a model. Default is `None`.
revision (`str`, *optional*):
An optional Git revision id which can be a branch name, a tag, or a
commit hash.
cache_dir (`str`, `Path`, *optional*):
Path to the folder where cached files are stored.
local_dir (`str` or `Path`, *optional*):
If provided, the downloaded files will be placed under this directory, either as symlinks (default) or
regular files (see description for more details).
local_dir_use_symlinks (`"auto"` or `bool`, defaults to `"auto"`):
To be used with `local_dir`. If set to "auto", the cache directory will be used and the file will be either
duplicated or symlinked to the local directory depending on its size. It set to `True`, a symlink will be
created, no matter the file size. If set to `False`, the file will either be duplicated from cache (if
already exists) or downloaded from the Hub and not cached. See description for more details.
proxies (`dict`, *optional*):
Dictionary mapping protocol to the URL of the proxy passed to
`requests.request`.
etag_timeout (`float`, *optional*, defaults to `10`):
When fetching ETag, how many seconds to wait for the server to send
data before giving up which is passed to `requests.request`.
resume_download (`bool`, *optional*, defaults to `False):
If `True`, resume a previously interrupted download.
force_download (`bool`, *optional*, defaults to `False`):
Whether the file should be downloaded even if it already exists in the local cache.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, avoid downloading the file and return the path to the
local cached file if it exists.
allow_patterns (`List[str]` or `str`, *optional*):
If provided, only files matching at least one pattern are downloaded.
ignore_patterns (`List[str]` or `str`, *optional*):
If provided, files matching any of the patterns are not downloaded.
max_workers (`int`, *optional*):
Number of concurrent threads to download files (1 thread = 1 file download).
Defaults to 8.
tqdm_class (`tqdm`, *optional*):
If provided, overwrites the default behavior for the progress bar. Passed
argument must inherit from `tqdm.auto.tqdm` or at least mimic its behavior.
Note that the `tqdm_class` is not passed to each individual download.
Defaults to the custom HF progress bar that can be disabled by setting
`HF_HUB_DISABLE_PROGRESS_BARS` environment variable.
Returns:
Local folder path (string) of repo snapshot
<Tip>
Raises the following errors:
- [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError)
if `token=True` and the token cannot be found.
- [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) if
ETag cannot be determined.
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
</Tip>
"""
from ._snapshot_download import snapshot_download
if token is None:
# Cannot do `token = token or self.token` as token can be `False`.
token = self.token
return snapshot_download(
repo_id=repo_id,
repo_type=repo_type,
revision=revision,
endpoint=self.endpoint,
cache_dir=cache_dir,
local_dir=local_dir,
local_dir_use_symlinks=local_dir_use_symlinks,
library_name=self.library_name,
library_version=self.library_version,
user_agent=self.user_agent,
proxies=proxies,
etag_timeout=etag_timeout,
resume_download=resume_download,
force_download=force_download,
token=token,
local_files_only=local_files_only,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
max_workers=max_workers,
tqdm_class=tqdm_class,
)
def get_safetensors_metadata(
self,
repo_id: str,
*,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
token: Optional[str] = None,
) -> SafetensorsRepoMetadata:
"""
Parse metadata for a safetensors repo on the Hub.
We first check if the repo has a single safetensors file or a sharded safetensors repo. If it's a single
safetensors file, we parse the metadata from this file. If it's a sharded safetensors repo, we parse the
metadata from the index file and then parse the metadata from each shard.
To parse metadata from a single safetensors file, use [`parse_safetensors_file_metadata`].
For more details regarding the safetensors format, check out https://huggingface.co/docs/safetensors/index#format.
Args:
repo_id (`str`):
A user or an organization name and a repo name separated by a `/`.
filename (`str`):
The name of the file in the repo.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if the file is in a dataset or space, `None` or `"model"` if in a
model. Default is `None`.
revision (`str`, *optional*):
The git revision to fetch the file from. Can be a branch name, a tag, or a commit hash. Defaults to the
head of the `"main"` branch.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token). If `None` or `True` and
machine is logged in (through `huggingface-cli login` or [`~huggingface_hub.login`]), token will be
retrieved from the cache. If `False`, token is not sent in the request header.
Returns:
[`SafetensorsRepoMetadata`]: information related to safetensors repo.
Raises:
- [`NotASafetensorsRepoError`]: if the repo is not a safetensors repo i.e. doesn't have either a
`model.safetensors` or a `model.safetensors.index.json` file.
- [`SafetensorsParsingError`]: if a safetensors file header couldn't be parsed correctly.
Example:
```py
# Parse repo with single weights file
>>> metadata = get_safetensors_metadata("bigscience/bloomz-560m")
>>> metadata
SafetensorsRepoMetadata(
metadata=None,
sharded=False,
weight_map={'h.0.input_layernorm.bias': 'model.safetensors', ...},
files_metadata={'model.safetensors': SafetensorsFileMetadata(...)}
)
>>> metadata.files_metadata["model.safetensors"].metadata
{'format': 'pt'}
# Parse repo with sharded model
>>> metadata = get_safetensors_metadata("bigscience/bloom")
Parse safetensors files: 100%|| 72/72 [00:12<00:00, 5.78it/s]
>>> metadata
SafetensorsRepoMetadata(metadata={'total_size': 352494542848}, sharded=True, weight_map={...}, files_metadata={...})
>>> len(metadata.files_metadata)
72 # All safetensors files have been fetched
# Parse repo with sharded model
>>> get_safetensors_metadata("runwayml/stable-diffusion-v1-5")
NotASafetensorsRepoError: 'runwayml/stable-diffusion-v1-5' is not a safetensors repo. Couldn't find 'model.safetensors.index.json' or 'model.safetensors' files.
```
"""
if self.file_exists( # Single safetensors file => non-sharded model
repo_id=repo_id, filename=SAFETENSORS_SINGLE_FILE, repo_type=repo_type, revision=revision, token=token
):
file_metadata = self.parse_safetensors_file_metadata(
repo_id=repo_id, filename=SAFETENSORS_SINGLE_FILE, repo_type=repo_type, revision=revision, token=token
)
return SafetensorsRepoMetadata(
metadata=None,
sharded=False,
weight_map={tensor_name: SAFETENSORS_SINGLE_FILE for tensor_name in file_metadata.tensors.keys()},
files_metadata={SAFETENSORS_SINGLE_FILE: file_metadata},
)
elif self.file_exists( # Multiple safetensors files => sharded with index
repo_id=repo_id, filename=SAFETENSORS_INDEX_FILE, repo_type=repo_type, revision=revision, token=token
):
# Fetch index
index_file = self.hf_hub_download(
repo_id=repo_id, filename=SAFETENSORS_INDEX_FILE, repo_type=repo_type, revision=revision, token=token
)
with open(index_file) as f:
index = json.load(f)
weight_map = index.get("weight_map", {})
# Fetch metadata per shard
files_metadata = {}
def _parse(filename: str) -> None:
files_metadata[filename] = self.parse_safetensors_file_metadata(
repo_id=repo_id, filename=filename, repo_type=repo_type, revision=revision, token=token
)
thread_map(
_parse,
set(weight_map.values()),
desc="Parse safetensors files",
tqdm_class=hf_tqdm,
)
return SafetensorsRepoMetadata(
metadata=index.get("metadata", None),
sharded=True,
weight_map=weight_map,
files_metadata=files_metadata,
)
else:
# Not a safetensors repo
raise NotASafetensorsRepoError(
f"'{repo_id}' is not a safetensors repo. Couldn't find '{SAFETENSORS_INDEX_FILE}' or '{SAFETENSORS_SINGLE_FILE}' files."
)
def parse_safetensors_file_metadata(
self,
repo_id: str,
filename: str,
*,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
token: Optional[str] = None,
) -> SafetensorsFileMetadata:
"""
Parse metadata from a safetensors file on the Hub.
To parse metadata from all safetensors files in a repo at once, use [`get_safetensors_metadata`].
For more details regarding the safetensors format, check out https://huggingface.co/docs/safetensors/index#format.
Args:
repo_id (`str`):
A user or an organization name and a repo name separated by a `/`.
filename (`str`):
The name of the file in the repo.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if the file is in a dataset or space, `None` or `"model"` if in a
model. Default is `None`.
revision (`str`, *optional*):
The git revision to fetch the file from. Can be a branch name, a tag, or a commit hash. Defaults to the
head of the `"main"` branch.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token). If `None` or `True` and
machine is logged in (through `huggingface-cli login` or [`~huggingface_hub.login`]), token will be
retrieved from the cache. If `False`, token is not sent in the request header.
Returns:
[`SafetensorsFileMetadata`]: information related to a safetensors file.
Raises:
- [`NotASafetensorsRepoError`]: if the repo is not a safetensors repo i.e. doesn't have either a
`model.safetensors` or a `model.safetensors.index.json` file.
- [`SafetensorsParsingError`]: if a safetensors file header couldn't be parsed correctly.
"""
url = hf_hub_url(
repo_id=repo_id, filename=filename, repo_type=repo_type, revision=revision, endpoint=self.endpoint
)
_headers = self._build_hf_headers(token=token)
# 1. Fetch first 100kb
# Empirically, 97% of safetensors files have a metadata size < 100kb (over the top 1000 models on the Hub).
# We assume fetching 100kb is faster than making 2 GET requests. Therefore we always fetch the first 100kb to
# avoid the 2nd GET in most cases.
# See https://github.com/huggingface/huggingface_hub/pull/1855#discussion_r1404286419.
response = get_session().get(url, headers={**_headers, "range": "bytes=0-100000"})
hf_raise_for_status(response)
# 2. Parse metadata size
metadata_size = struct.unpack("<Q", response.content[:8])[0]
if metadata_size > SAFETENSORS_MAX_HEADER_LENGTH:
raise SafetensorsParsingError(
f"Failed to parse safetensors header for '{filename}' (repo '{repo_id}', revision "
f"'{revision or DEFAULT_REVISION}'): safetensors header is too big. Maximum supported size is "
f"{SAFETENSORS_MAX_HEADER_LENGTH} bytes (got {metadata_size})."
)
# 3.a. Get metadata from payload
if metadata_size <= 100000:
metadata_as_bytes = response.content[8 : 8 + metadata_size]
else: # 3.b. Request full metadata
response = get_session().get(url, headers={**_headers, "range": f"bytes=8-{metadata_size+7}"})
hf_raise_for_status(response)
metadata_as_bytes = response.content
# 4. Parse json header
try:
metadata_as_dict = json.loads(metadata_as_bytes.decode(errors="ignore"))
except json.JSONDecodeError as e:
raise SafetensorsParsingError(
f"Failed to parse safetensors header for '{filename}' (repo '{repo_id}', revision "
f"'{revision or DEFAULT_REVISION}'): header is not json-encoded string. Please make sure this is a "
"correctly formatted safetensors file."
) from e
try:
return SafetensorsFileMetadata(
metadata=metadata_as_dict.get("__metadata__", {}),
tensors={
key: TensorInfo(
dtype=tensor["dtype"],
shape=tensor["shape"],
data_offsets=tuple(tensor["data_offsets"]), # type: ignore
)
for key, tensor in metadata_as_dict.items()
if key != "__metadata__"
},
)
except (KeyError, IndexError) as e:
raise SafetensorsParsingError(
f"Failed to parse safetensors header for '{filename}' (repo '{repo_id}', revision "
f"'{revision or DEFAULT_REVISION}'): header format not recognized. Please make sure this is a correctly"
" formatted safetensors file."
) from e
@validate_hf_hub_args
def create_branch(
self,
repo_id: str,
*,
branch: str,
revision: Optional[str] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
exist_ok: bool = False,
) -> None:
"""
Create a new branch for a repo on the Hub, starting from the specified revision (defaults to `main`).
To find a revision suiting your needs, you can use [`list_repo_refs`] or [`list_repo_commits`].
Args:
repo_id (`str`):
The repository in which the branch will be created.
Example: `"user/my-cool-model"`.
branch (`str`):
The name of the branch to create.
revision (`str`, *optional*):
The git revision to create the branch from. It can be a branch name or
the OID/SHA of a commit, as a hexadecimal string. Defaults to the head
of the `"main"` branch.
token (`str`, *optional*):
Authentication token. Will default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if creating a branch on a dataset or
space, `None` or `"model"` if tagging a model. Default is `None`.
exist_ok (`bool`, *optional*, defaults to `False`):
If `True`, do not raise an error if branch already exists.
Raises:
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private
but not authenticated or repo does not exist.
[`~utils.BadRequestError`]:
If invalid reference for a branch. Ex: `refs/pr/5` or 'refs/foo/bar'.
[`~utils.HfHubHTTPError`]:
If the branch already exists on the repo (error 409) and `exist_ok` is
set to `False`.
"""
if repo_type is None:
repo_type = REPO_TYPE_MODEL
branch = quote(branch, safe="")
# Prepare request
branch_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/branch/{branch}"
headers = self._build_hf_headers(token=token)
payload = {}
if revision is not None:
payload["startingPoint"] = revision
# Create branch
response = get_session().post(url=branch_url, headers=headers, json=payload)
try:
hf_raise_for_status(response)
except HfHubHTTPError as e:
if not (e.response.status_code == 409 and exist_ok):
raise
@validate_hf_hub_args
def delete_branch(
self,
repo_id: str,
*,
branch: str,
token: Optional[str] = None,
repo_type: Optional[str] = None,
) -> None:
"""
Delete a branch from a repo on the Hub.
Args:
repo_id (`str`):
The repository in which a branch will be deleted.
Example: `"user/my-cool-model"`.
branch (`str`):
The name of the branch to delete.
token (`str`, *optional*):
Authentication token. Will default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if creating a branch on a dataset or
space, `None` or `"model"` if tagging a model. Default is `None`.
Raises:
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private
but not authenticated or repo does not exist.
[`~utils.HfHubHTTPError`]:
If trying to delete a protected branch. Ex: `main` cannot be deleted.
[`~utils.HfHubHTTPError`]:
If trying to delete a branch that does not exist.
"""
if repo_type is None:
repo_type = REPO_TYPE_MODEL
branch = quote(branch, safe="")
# Prepare request
branch_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/branch/{branch}"
headers = self._build_hf_headers(token=token)
# Delete branch
response = get_session().delete(url=branch_url, headers=headers)
hf_raise_for_status(response)
@validate_hf_hub_args
def create_tag(
self,
repo_id: str,
*,
tag: str,
tag_message: Optional[str] = None,
revision: Optional[str] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
exist_ok: bool = False,
) -> None:
"""
Tag a given commit of a repo on the Hub.
Args:
repo_id (`str`):
The repository in which a commit will be tagged.
Example: `"user/my-cool-model"`.
tag (`str`):
The name of the tag to create.
tag_message (`str`, *optional*):
The description of the tag to create.
revision (`str`, *optional*):
The git revision to tag. It can be a branch name or the OID/SHA of a
commit, as a hexadecimal string. Shorthands (7 first characters) are
also supported. Defaults to the head of the `"main"` branch.
token (`str`, *optional*):
Authentication token. Will default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if tagging a dataset or
space, `None` or `"model"` if tagging a model. Default is
`None`.
exist_ok (`bool`, *optional*, defaults to `False`):
If `True`, do not raise an error if tag already exists.
Raises:
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private
but not authenticated or repo does not exist.
[`~utils.RevisionNotFoundError`]:
If revision is not found (error 404) on the repo.
[`~utils.HfHubHTTPError`]:
If the branch already exists on the repo (error 409) and `exist_ok` is
set to `False`.
"""
if repo_type is None:
repo_type = REPO_TYPE_MODEL
revision = quote(revision, safe="") if revision is not None else DEFAULT_REVISION
# Prepare request
tag_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/tag/{revision}"
headers = self._build_hf_headers(token=token)
payload = {"tag": tag}
if tag_message is not None:
payload["message"] = tag_message
# Tag
response = get_session().post(url=tag_url, headers=headers, json=payload)
try:
hf_raise_for_status(response)
except HfHubHTTPError as e:
if not (e.response.status_code == 409 and exist_ok):
raise
@validate_hf_hub_args
def delete_tag(
self,
repo_id: str,
*,
tag: str,
token: Optional[str] = None,
repo_type: Optional[str] = None,
) -> None:
"""
Delete a tag from a repo on the Hub.
Args:
repo_id (`str`):
The repository in which a tag will be deleted.
Example: `"user/my-cool-model"`.
tag (`str`):
The name of the tag to delete.
token (`str`, *optional*):
Authentication token. Will default to the stored token.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if tagging a dataset or space, `None` or
`"model"` if tagging a model. Default is `None`.
Raises:
[`~utils.RepositoryNotFoundError`]:
If repository is not found (error 404): wrong repo_id/repo_type, private
but not authenticated or repo does not exist.
[`~utils.RevisionNotFoundError`]:
If tag is not found.
"""
if repo_type is None:
repo_type = REPO_TYPE_MODEL
tag = quote(tag, safe="")
# Prepare request
tag_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/tag/{tag}"
headers = self._build_hf_headers(token=token)
# Un-tag
response = get_session().delete(url=tag_url, headers=headers)
hf_raise_for_status(response)
@validate_hf_hub_args
def get_full_repo_name(
self,
model_id: str,
*,
organization: Optional[str] = None,
token: Optional[Union[bool, str]] = None,
):
"""
Returns the repository name for a given model ID and optional
organization.
Args:
model_id (`str`):
The name of the model.
organization (`str`, *optional*):
If passed, the repository name will be in the organization
namespace instead of the user namespace.
token (`bool` or `str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
If `None` or `True` and machine is logged in (through `huggingface-cli login`
or [`~huggingface_hub.login`]), token will be retrieved from the cache.
If `False`, token is not sent in the request header.
Returns:
`str`: The repository name in the user's namespace
({username}/{model_id}) if no organization is passed, and under the
organization namespace ({organization}/{model_id}) otherwise.
"""
if organization is None:
if "/" in model_id:
username = model_id.split("/")[0]
else:
username = self.whoami(token=token)["name"] # type: ignore
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
@validate_hf_hub_args
def get_repo_discussions(
self,
repo_id: str,
*,
author: Optional[str] = None,
discussion_type: Optional[DiscussionTypeFilter] = None,
discussion_status: Optional[DiscussionStatusFilter] = None,
repo_type: Optional[str] = None,
token: Optional[str] = None,
) -> Iterator[Discussion]:
"""
Fetches Discussions and Pull Requests for the given repo.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
author (`str`, *optional*):
Pass a value to filter by discussion author. `None` means no filter.
Default is `None`.
discussion_type (`str`, *optional*):
Set to `"pull_request"` to fetch only pull requests, `"discussion"`
to fetch only discussions. Set to `"all"` or `None` to fetch both.
Default is `None`.
discussion_status (`str`, *optional*):
Set to `"open"` (respectively `"closed"`) to fetch only open
(respectively closed) discussions. Set to `"all"` or `None`
to fetch both.
Default is `None`.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if fetching from a dataset or
space, `None` or `"model"` if fetching from a model. Default is
`None`.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token).
Returns:
`Iterator[Discussion]`: An iterator of [`Discussion`] objects.
Example:
Collecting all discussions of a repo in a list:
```python
>>> from huggingface_hub import get_repo_discussions
>>> discussions_list = list(get_repo_discussions(repo_id="bert-base-uncased"))
```
Iterating over discussions of a repo:
```python
>>> from huggingface_hub import get_repo_discussions
>>> for discussion in get_repo_discussions(repo_id="bert-base-uncased"):
... print(discussion.num, discussion.title)
```
"""
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}")
if repo_type is None:
repo_type = REPO_TYPE_MODEL
if discussion_type is not None and discussion_type not in DISCUSSION_TYPES:
raise ValueError(f"Invalid discussion_type, must be one of {DISCUSSION_TYPES}")
if discussion_status is not None and discussion_status not in DISCUSSION_STATUS:
raise ValueError(f"Invalid discussion_status, must be one of {DISCUSSION_STATUS}")
headers = self._build_hf_headers(token=token)
path = f"{self.endpoint}/api/{repo_type}s/{repo_id}/discussions"
params: Dict[str, Union[str, int]] = {}
if discussion_type is not None:
params["type"] = discussion_type
if discussion_status is not None:
params["status"] = discussion_status
if author is not None:
params["author"] = author
def _fetch_discussion_page(page_index: int):
params["p"] = page_index
resp = get_session().get(path, headers=headers, params=params)
hf_raise_for_status(resp)
paginated_discussions = resp.json()
total = paginated_discussions["count"]
start = paginated_discussions["start"]
discussions = paginated_discussions["discussions"]
has_next = (start + len(discussions)) < total
return discussions, has_next
has_next, page_index = True, 0
while has_next:
discussions, has_next = _fetch_discussion_page(page_index=page_index)
for discussion in discussions:
yield Discussion(
title=discussion["title"],
num=discussion["num"],
author=discussion.get("author", {}).get("name", "deleted"),
created_at=parse_datetime(discussion["createdAt"]),
status=discussion["status"],
repo_id=discussion["repo"]["name"],
repo_type=discussion["repo"]["type"],
is_pull_request=discussion["isPullRequest"],
endpoint=self.endpoint,
)
page_index = page_index + 1
@validate_hf_hub_args
def get_discussion_details(
self,
repo_id: str,
discussion_num: int,
*,
repo_type: Optional[str] = None,
token: Optional[str] = None,
) -> DiscussionWithDetails:
"""Fetches a Discussion's / Pull Request 's details from the Hub.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
discussion_num (`int`):
The number of the Discussion or Pull Request . Must be a strictly positive integer.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
Returns: [`DiscussionWithDetails`]
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
</Tip>
"""
if not isinstance(discussion_num, int) or discussion_num <= 0:
raise ValueError("Invalid discussion_num, must be a positive integer")
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}")
if repo_type is None:
repo_type = REPO_TYPE_MODEL
path = f"{self.endpoint}/api/{repo_type}s/{repo_id}/discussions/{discussion_num}"
headers = self._build_hf_headers(token=token)
resp = get_session().get(path, params={"diff": "1"}, headers=headers)
hf_raise_for_status(resp)
discussion_details = resp.json()
is_pull_request = discussion_details["isPullRequest"]
target_branch = discussion_details["changes"]["base"] if is_pull_request else None
conflicting_files = discussion_details["filesWithConflicts"] if is_pull_request else None
merge_commit_oid = discussion_details["changes"].get("mergeCommitId", None) if is_pull_request else None
return DiscussionWithDetails(
title=discussion_details["title"],
num=discussion_details["num"],
author=discussion_details.get("author", {}).get("name", "deleted"),
created_at=parse_datetime(discussion_details["createdAt"]),
status=discussion_details["status"],
repo_id=discussion_details["repo"]["name"],
repo_type=discussion_details["repo"]["type"],
is_pull_request=discussion_details["isPullRequest"],
events=[deserialize_event(evt) for evt in discussion_details["events"]],
conflicting_files=conflicting_files,
target_branch=target_branch,
merge_commit_oid=merge_commit_oid,
diff=discussion_details.get("diff"),
endpoint=self.endpoint,
)
@validate_hf_hub_args
def create_discussion(
self,
repo_id: str,
title: str,
*,
token: Optional[str] = None,
description: Optional[str] = None,
repo_type: Optional[str] = None,
pull_request: bool = False,
) -> DiscussionWithDetails:
"""Creates a Discussion or Pull Request.
Pull Requests created programmatically will be in `"draft"` status.
Creating a Pull Request with changes can also be done at once with [`HfApi.create_commit`].
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
title (`str`):
The title of the discussion. It can be up to 200 characters long,
and must be at least 3 characters long. Leading and trailing whitespaces
will be stripped.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
description (`str`, *optional*):
An optional description for the Pull Request.
Defaults to `"Discussion opened with the huggingface_hub Python library"`
pull_request (`bool`, *optional*):
Whether to create a Pull Request or discussion. If `True`, creates a Pull Request.
If `False`, creates a discussion. Defaults to `False`.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
Returns: [`DiscussionWithDetails`]
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
</Tip>"""
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}")
if repo_type is None:
repo_type = REPO_TYPE_MODEL
if description is not None:
description = description.strip()
description = (
description
if description
else (
f"{'Pull Request' if pull_request else 'Discussion'} opened with the"
" [huggingface_hub Python"
" library](https://huggingface.co/docs/huggingface_hub)"
)
)
headers = self._build_hf_headers(token=token)
resp = get_session().post(
f"{self.endpoint}/api/{repo_type}s/{repo_id}/discussions",
json={
"title": title.strip(),
"description": description,
"pullRequest": pull_request,
},
headers=headers,
)
hf_raise_for_status(resp)
num = resp.json()["num"]
return self.get_discussion_details(
repo_id=repo_id,
repo_type=repo_type,
discussion_num=num,
token=token,
)
@validate_hf_hub_args
def create_pull_request(
self,
repo_id: str,
title: str,
*,
token: Optional[str] = None,
description: Optional[str] = None,
repo_type: Optional[str] = None,
) -> DiscussionWithDetails:
"""Creates a Pull Request . Pull Requests created programmatically will be in `"draft"` status.
Creating a Pull Request with changes can also be done at once with [`HfApi.create_commit`];
This is a wrapper around [`HfApi.create_discussion`].
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
title (`str`):
The title of the discussion. It can be up to 200 characters long,
and must be at least 3 characters long. Leading and trailing whitespaces
will be stripped.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
description (`str`, *optional*):
An optional description for the Pull Request.
Defaults to `"Discussion opened with the huggingface_hub Python library"`
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
Returns: [`DiscussionWithDetails`]
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
</Tip>"""
return self.create_discussion(
repo_id=repo_id,
title=title,
token=token,
description=description,
repo_type=repo_type,
pull_request=True,
)
def _post_discussion_changes(
self,
*,
repo_id: str,
discussion_num: int,
resource: str,
body: Optional[dict] = None,
token: Optional[str] = None,
repo_type: Optional[str] = None,
) -> requests.Response:
"""Internal utility to POST changes to a Discussion or Pull Request"""
if not isinstance(discussion_num, int) or discussion_num <= 0:
raise ValueError("Invalid discussion_num, must be a positive integer")
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}")
if repo_type is None:
repo_type = REPO_TYPE_MODEL
repo_id = f"{repo_type}s/{repo_id}"
path = f"{self.endpoint}/api/{repo_id}/discussions/{discussion_num}/{resource}"
headers = self._build_hf_headers(token=token)
resp = requests.post(path, headers=headers, json=body)
hf_raise_for_status(resp)
return resp
@validate_hf_hub_args
def comment_discussion(
self,
repo_id: str,
discussion_num: int,
comment: str,
*,
token: Optional[str] = None,
repo_type: Optional[str] = None,
) -> DiscussionComment:
"""Creates a new comment on the given Discussion.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
discussion_num (`int`):
The number of the Discussion or Pull Request . Must be a strictly positive integer.
comment (`str`):
The content of the comment to create. Comments support markdown formatting.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
Returns:
[`DiscussionComment`]: the newly created comment
Examples:
```python
>>> comment = \"\"\"
... Hello @otheruser!
...
... # This is a title
...
... **This is bold**, *this is italic* and ~this is strikethrough~
... And [this](http://url) is a link
... \"\"\"
>>> HfApi().comment_discussion(
... repo_id="username/repo_name",
... discussion_num=34
... comment=comment
... )
# DiscussionComment(id='deadbeef0000000', type='comment', ...)
```
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
</Tip>
"""
resp = self._post_discussion_changes(
repo_id=repo_id,
repo_type=repo_type,
discussion_num=discussion_num,
token=token,
resource="comment",
body={"comment": comment},
)
return deserialize_event(resp.json()["newMessage"]) # type: ignore
@validate_hf_hub_args
def rename_discussion(
self,
repo_id: str,
discussion_num: int,
new_title: str,
*,
token: Optional[str] = None,
repo_type: Optional[str] = None,
) -> DiscussionTitleChange:
"""Renames a Discussion.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
discussion_num (`int`):
The number of the Discussion or Pull Request . Must be a strictly positive integer.
new_title (`str`):
The new title for the discussion
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
Returns:
[`DiscussionTitleChange`]: the title change event
Examples:
```python
>>> new_title = "New title, fixing a typo"
>>> HfApi().rename_discussion(
... repo_id="username/repo_name",
... discussion_num=34
... new_title=new_title
... )
# DiscussionTitleChange(id='deadbeef0000000', type='title-change', ...)
```
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
</Tip>
"""
resp = self._post_discussion_changes(
repo_id=repo_id,
repo_type=repo_type,
discussion_num=discussion_num,
token=token,
resource="title",
body={"title": new_title},
)
return deserialize_event(resp.json()["newTitle"]) # type: ignore
@validate_hf_hub_args
def change_discussion_status(
self,
repo_id: str,
discussion_num: int,
new_status: Literal["open", "closed"],
*,
token: Optional[str] = None,
comment: Optional[str] = None,
repo_type: Optional[str] = None,
) -> DiscussionStatusChange:
"""Closes or re-opens a Discussion or Pull Request.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
discussion_num (`int`):
The number of the Discussion or Pull Request . Must be a strictly positive integer.
new_status (`str`):
The new status for the discussion, either `"open"` or `"closed"`.
comment (`str`, *optional*):
An optional comment to post with the status change.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
Returns:
[`DiscussionStatusChange`]: the status change event
Examples:
```python
>>> new_title = "New title, fixing a typo"
>>> HfApi().rename_discussion(
... repo_id="username/repo_name",
... discussion_num=34
... new_title=new_title
... )
# DiscussionStatusChange(id='deadbeef0000000', type='status-change', ...)
```
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
</Tip>
"""
if new_status not in ["open", "closed"]:
raise ValueError("Invalid status, valid statuses are: 'open' and 'closed'")
body: Dict[str, str] = {"status": new_status}
if comment and comment.strip():
body["comment"] = comment.strip()
resp = self._post_discussion_changes(
repo_id=repo_id,
repo_type=repo_type,
discussion_num=discussion_num,
token=token,
resource="status",
body=body,
)
return deserialize_event(resp.json()["newStatus"]) # type: ignore
@validate_hf_hub_args
def merge_pull_request(
self,
repo_id: str,
discussion_num: int,
*,
token: Optional[str] = None,
comment: Optional[str] = None,
repo_type: Optional[str] = None,
):
"""Merges a Pull Request.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
discussion_num (`int`):
The number of the Discussion or Pull Request . Must be a strictly positive integer.
comment (`str`, *optional*):
An optional comment to post with the status change.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
Returns:
[`DiscussionStatusChange`]: the status change event
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
</Tip>
"""
self._post_discussion_changes(
repo_id=repo_id,
repo_type=repo_type,
discussion_num=discussion_num,
token=token,
resource="merge",
body={"comment": comment.strip()} if comment and comment.strip() else None,
)
@validate_hf_hub_args
def edit_discussion_comment(
self,
repo_id: str,
discussion_num: int,
comment_id: str,
new_content: str,
*,
token: Optional[str] = None,
repo_type: Optional[str] = None,
) -> DiscussionComment:
"""Edits a comment on a Discussion / Pull Request.
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
discussion_num (`int`):
The number of the Discussion or Pull Request . Must be a strictly positive integer.
comment_id (`str`):
The ID of the comment to edit.
new_content (`str`):
The new content of the comment. Comments support markdown formatting.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
Returns:
[`DiscussionComment`]: the edited comment
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
</Tip>
"""
resp = self._post_discussion_changes(
repo_id=repo_id,
repo_type=repo_type,
discussion_num=discussion_num,
token=token,
resource=f"comment/{comment_id.lower()}/edit",
body={"content": new_content},
)
return deserialize_event(resp.json()["updatedComment"]) # type: ignore
@validate_hf_hub_args
def hide_discussion_comment(
self,
repo_id: str,
discussion_num: int,
comment_id: str,
*,
token: Optional[str] = None,
repo_type: Optional[str] = None,
) -> DiscussionComment:
"""Hides a comment on a Discussion / Pull Request.
<Tip warning={true}>
Hidden comments' content cannot be retrieved anymore. Hiding a comment is irreversible.
</Tip>
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
discussion_num (`int`):
The number of the Discussion or Pull Request . Must be a strictly positive integer.
comment_id (`str`):
The ID of the comment to edit.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if uploading to a dataset or
space, `None` or `"model"` if uploading to a model. Default is
`None`.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token)
Returns:
[`DiscussionComment`]: the hidden comment
<Tip>
Raises the following errors:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
- [`~utils.RepositoryNotFoundError`]
If the repository to download from cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
</Tip>
"""
warnings.warn(
"Hidden comments' content cannot be retrieved anymore. Hiding a comment is irreversible.",
UserWarning,
)
resp = self._post_discussion_changes(
repo_id=repo_id,
repo_type=repo_type,
discussion_num=discussion_num,
token=token,
resource=f"comment/{comment_id.lower()}/hide",
)
return deserialize_event(resp.json()["updatedComment"]) # type: ignore
@validate_hf_hub_args
def add_space_secret(
self, repo_id: str, key: str, value: str, *, description: Optional[str] = None, token: Optional[str] = None
) -> None:
"""Adds or updates a secret in a Space.
Secrets allow to set secret keys or tokens to a Space without hardcoding them.
For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets.
Args:
repo_id (`str`):
ID of the repo to update. Example: `"bigcode/in-the-stack"`.
key (`str`):
Secret key. Example: `"GITHUB_API_KEY"`
value (`str`):
Secret value. Example: `"your_github_api_key"`.
description (`str`, *optional*):
Secret description. Example: `"Github API key to access the Github API"`.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
"""
payload = {"key": key, "value": value}
if description is not None:
payload["description"] = description
r = get_session().post(
f"{self.endpoint}/api/spaces/{repo_id}/secrets",
headers=self._build_hf_headers(token=token),
json=payload,
)
hf_raise_for_status(r)
@validate_hf_hub_args
def delete_space_secret(self, repo_id: str, key: str, *, token: Optional[str] = None) -> None:
"""Deletes a secret from a Space.
Secrets allow to set secret keys or tokens to a Space without hardcoding them.
For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets.
Args:
repo_id (`str`):
ID of the repo to update. Example: `"bigcode/in-the-stack"`.
key (`str`):
Secret key. Example: `"GITHUB_API_KEY"`.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
"""
r = get_session().delete(
f"{self.endpoint}/api/spaces/{repo_id}/secrets",
headers=self._build_hf_headers(token=token),
json={"key": key},
)
hf_raise_for_status(r)
@validate_hf_hub_args
def get_space_variables(self, repo_id: str, *, token: Optional[str] = None) -> Dict[str, SpaceVariable]:
"""Gets all variables from a Space.
Variables allow to set environment variables to a Space without hardcoding them.
For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables
Args:
repo_id (`str`):
ID of the repo to query. Example: `"bigcode/in-the-stack"`.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
"""
r = get_session().get(
f"{self.endpoint}/api/spaces/{repo_id}/variables",
headers=self._build_hf_headers(token=token),
)
hf_raise_for_status(r)
return {k: SpaceVariable(k, v) for k, v in r.json().items()}
@validate_hf_hub_args
def add_space_variable(
self, repo_id: str, key: str, value: str, *, description: Optional[str] = None, token: Optional[str] = None
) -> Dict[str, SpaceVariable]:
"""Adds or updates a variable in a Space.
Variables allow to set environment variables to a Space without hardcoding them.
For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables
Args:
repo_id (`str`):
ID of the repo to update. Example: `"bigcode/in-the-stack"`.
key (`str`):
Variable key. Example: `"MODEL_REPO_ID"`
value (`str`):
Variable value. Example: `"the_model_repo_id"`.
description (`str`):
Description of the variable. Example: `"Model Repo ID of the implemented model"`.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
"""
payload = {"key": key, "value": value}
if description is not None:
payload["description"] = description
r = get_session().post(
f"{self.endpoint}/api/spaces/{repo_id}/variables",
headers=self._build_hf_headers(token=token),
json=payload,
)
hf_raise_for_status(r)
return {k: SpaceVariable(k, v) for k, v in r.json().items()}
@validate_hf_hub_args
def delete_space_variable(
self, repo_id: str, key: str, *, token: Optional[str] = None
) -> Dict[str, SpaceVariable]:
"""Deletes a variable from a Space.
Variables allow to set environment variables to a Space without hardcoding them.
For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables
Args:
repo_id (`str`):
ID of the repo to update. Example: `"bigcode/in-the-stack"`.
key (`str`):
Variable key. Example: `"MODEL_REPO_ID"`
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
"""
r = get_session().delete(
f"{self.endpoint}/api/spaces/{repo_id}/variables",
headers=self._build_hf_headers(token=token),
json={"key": key},
)
hf_raise_for_status(r)
return {k: SpaceVariable(k, v) for k, v in r.json().items()}
@validate_hf_hub_args
def get_space_runtime(self, repo_id: str, *, token: Optional[str] = None) -> SpaceRuntime:
"""Gets runtime information about a Space.
Args:
repo_id (`str`):
ID of the repo to update. Example: `"bigcode/in-the-stack"`.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if
not provided.
Returns:
[`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware.
"""
r = get_session().get(
f"{self.endpoint}/api/spaces/{repo_id}/runtime", headers=self._build_hf_headers(token=token)
)
hf_raise_for_status(r)
return SpaceRuntime(r.json())
@validate_hf_hub_args
def request_space_hardware(
self,
repo_id: str,
hardware: SpaceHardware,
*,
token: Optional[str] = None,
sleep_time: Optional[int] = None,
) -> SpaceRuntime:
"""Request new hardware for a Space.
Args:
repo_id (`str`):
ID of the repo to update. Example: `"bigcode/in-the-stack"`.
hardware (`str` or [`SpaceHardware`]):
Hardware on which to run the Space. Example: `"t4-medium"`.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
sleep_time (`int`, *optional*):
Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want
your Space to sleep (default behavior for upgraded hardware). For free hardware, you can't configure
the sleep time (value is fixed to 48 hours of inactivity).
See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details.
Returns:
[`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware.
<Tip>
It is also possible to request hardware directly when creating the Space repo! See [`create_repo`] for details.
</Tip>
"""
if sleep_time is not None and hardware == SpaceHardware.CPU_BASIC:
warnings.warn(
"If your Space runs on the default 'cpu-basic' hardware, it will go to sleep if inactive for more"
" than 48 hours. This value is not configurable. If you don't want your Space to deactivate or if"
" you want to set a custom sleep time, you need to upgrade to a paid Hardware.",
UserWarning,
)
payload: Dict[str, Any] = {"flavor": hardware}
if sleep_time is not None:
payload["sleepTimeSeconds"] = sleep_time
r = get_session().post(
f"{self.endpoint}/api/spaces/{repo_id}/hardware",
headers=self._build_hf_headers(token=token),
json=payload,
)
hf_raise_for_status(r)
return SpaceRuntime(r.json())
@validate_hf_hub_args
def set_space_sleep_time(self, repo_id: str, sleep_time: int, *, token: Optional[str] = None) -> SpaceRuntime:
"""Set a custom sleep time for a Space running on upgraded hardware..
Your Space will go to sleep after X seconds of inactivity. You are not billed when your Space is in "sleep"
mode. If a new visitor lands on your Space, it will "wake it up". Only upgraded hardware can have a
configurable sleep time. To know more about the sleep stage, please refer to
https://huggingface.co/docs/hub/spaces-gpus#sleep-time.
Args:
repo_id (`str`):
ID of the repo to update. Example: `"bigcode/in-the-stack"`.
sleep_time (`int`, *optional*):
Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want
your Space to pause (default behavior for upgraded hardware). For free hardware, you can't configure
the sleep time (value is fixed to 48 hours of inactivity).
See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Returns:
[`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware.
<Tip>
It is also possible to set a custom sleep time when requesting hardware with [`request_space_hardware`].
</Tip>
"""
r = get_session().post(
f"{self.endpoint}/api/spaces/{repo_id}/sleeptime",
headers=self._build_hf_headers(token=token),
json={"seconds": sleep_time},
)
hf_raise_for_status(r)
runtime = SpaceRuntime(r.json())
hardware = runtime.requested_hardware or runtime.hardware
if hardware == SpaceHardware.CPU_BASIC:
warnings.warn(
"If your Space runs on the default 'cpu-basic' hardware, it will go to sleep if inactive for more"
" than 48 hours. This value is not configurable. If you don't want your Space to deactivate or if"
" you want to set a custom sleep time, you need to upgrade to a paid Hardware.",
UserWarning,
)
return runtime
@validate_hf_hub_args
def pause_space(self, repo_id: str, *, token: Optional[str] = None) -> SpaceRuntime:
"""Pause your Space.
A paused Space stops executing until manually restarted by its owner. This is different from the sleeping
state in which free Spaces go after 48h of inactivity. Paused time is not billed to your account, no matter the
hardware you've selected. To restart your Space, use [`restart_space`] and go to your Space settings page.
For more details, please visit [the docs](https://huggingface.co/docs/hub/spaces-gpus#pause).
Args:
repo_id (`str`):
ID of the Space to pause. Example: `"Salesforce/BLIP2"`.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Returns:
[`SpaceRuntime`]: Runtime information about your Space including `stage=PAUSED` and requested hardware.
Raises:
[`~utils.RepositoryNotFoundError`]:
If your Space is not found (error 404). Most probably wrong repo_id or your space is private but you
are not authenticated.
[`~utils.HfHubHTTPError`]:
403 Forbidden: only the owner of a Space can pause it. If you want to manage a Space that you don't
own, either ask the owner by opening a Discussion or duplicate the Space.
[`~utils.BadRequestError`]:
If your Space is a static Space. Static Spaces are always running and never billed. If you want to hide
a static Space, you can set it to private.
"""
r = get_session().post(
f"{self.endpoint}/api/spaces/{repo_id}/pause", headers=self._build_hf_headers(token=token)
)
hf_raise_for_status(r)
return SpaceRuntime(r.json())
@validate_hf_hub_args
def restart_space(
self, repo_id: str, *, token: Optional[str] = None, factory_reboot: bool = False
) -> SpaceRuntime:
"""Restart your Space.
This is the only way to programmatically restart a Space if you've put it on Pause (see [`pause_space`]). You
must be the owner of the Space to restart it. If you are using an upgraded hardware, your account will be
billed as soon as the Space is restarted. You can trigger a restart no matter the current state of a Space.
For more details, please visit [the docs](https://huggingface.co/docs/hub/spaces-gpus#pause).
Args:
repo_id (`str`):
ID of the Space to restart. Example: `"Salesforce/BLIP2"`.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
factory_reboot (`bool`, *optional*):
If `True`, the Space will be rebuilt from scratch without caching any requirements.
Returns:
[`SpaceRuntime`]: Runtime information about your Space.
Raises:
[`~utils.RepositoryNotFoundError`]:
If your Space is not found (error 404). Most probably wrong repo_id or your space is private but you
are not authenticated.
[`~utils.HfHubHTTPError`]:
403 Forbidden: only the owner of a Space can restart it. If you want to restart a Space that you don't
own, either ask the owner by opening a Discussion or duplicate the Space.
[`~utils.BadRequestError`]:
If your Space is a static Space. Static Spaces are always running and never billed. If you want to hide
a static Space, you can set it to private.
"""
params = {}
if factory_reboot:
params["factory"] = "true"
r = get_session().post(
f"{self.endpoint}/api/spaces/{repo_id}/restart", headers=self._build_hf_headers(token=token), params=params
)
hf_raise_for_status(r)
return SpaceRuntime(r.json())
@validate_hf_hub_args
def duplicate_space(
self,
from_id: str,
to_id: Optional[str] = None,
*,
private: Optional[bool] = None,
token: Optional[str] = None,
exist_ok: bool = False,
hardware: Optional[SpaceHardware] = None,
storage: Optional[SpaceStorage] = None,
sleep_time: Optional[int] = None,
secrets: Optional[List[Dict[str, str]]] = None,
variables: Optional[List[Dict[str, str]]] = None,
) -> RepoUrl:
"""Duplicate a Space.
Programmatically duplicate a Space. The new Space will be created in your account and will be in the same state
as the original Space (running or paused). You can duplicate a Space no matter the current state of a Space.
Args:
from_id (`str`):
ID of the Space to duplicate. Example: `"pharma/CLIP-Interrogator"`.
to_id (`str`, *optional*):
ID of the new Space. Example: `"dog/CLIP-Interrogator"`. If not provided, the new Space will have the same
name as the original Space, but in your account.
private (`bool`, *optional*):
Whether the new Space should be private or not. Defaults to the same privacy as the original Space.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
exist_ok (`bool`, *optional*, defaults to `False`):
If `True`, do not raise an error if repo already exists.
hardware (`SpaceHardware` or `str`, *optional*):
Choice of Hardware. Example: `"t4-medium"`. See [`SpaceHardware`] for a complete list.
storage (`SpaceStorage` or `str`, *optional*):
Choice of persistent storage tier. Example: `"small"`. See [`SpaceStorage`] for a complete list.
sleep_time (`int`, *optional*):
Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want
your Space to sleep (default behavior for upgraded hardware). For free hardware, you can't configure
the sleep time (value is fixed to 48 hours of inactivity).
See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details.
secrets (`List[Dict[str, str]]`, *optional*):
A list of secret keys to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional.
For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets.
variables (`List[Dict[str, str]]`, *optional*):
A list of public environment variables to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional.
For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables.
Returns:
[`RepoUrl`]: URL to the newly created repo. Value is a subclass of `str` containing
attributes like `endpoint`, `repo_type` and `repo_id`.
Raises:
- [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError)
if the HuggingFace API returned an error
- [`~utils.RepositoryNotFoundError`]
If one of `from_id` or `to_id` cannot be found. This may be because it doesn't exist,
or because it is set to `private` and you do not have access.
Example:
```python
>>> from huggingface_hub import duplicate_space
# Duplicate a Space to your account
>>> duplicate_space("multimodalart/dreambooth-training")
RepoUrl('https://huggingface.co/spaces/nateraw/dreambooth-training',...)
# Can set custom destination id and visibility flag.
>>> duplicate_space("multimodalart/dreambooth-training", to_id="my-dreambooth", private=True)
RepoUrl('https://huggingface.co/spaces/nateraw/my-dreambooth',...)
```
"""
# Parse to_id if provided
parsed_to_id = RepoUrl(to_id) if to_id is not None else None
# Infer target repo_id
to_namespace = ( # set namespace manually or default to username
parsed_to_id.namespace
if parsed_to_id is not None and parsed_to_id.namespace is not None
else self.whoami(token)["name"]
)
to_repo_name = parsed_to_id.repo_name if to_id is not None else RepoUrl(from_id).repo_name # type: ignore
# repository must be a valid repo_id (namespace/repo_name).
payload: Dict[str, Any] = {"repository": f"{to_namespace}/{to_repo_name}"}
keys = ["private", "hardware", "storageTier", "sleepTimeSeconds", "secrets", "variables"]
values = [private, hardware, storage, sleep_time, secrets, variables]
payload.update({k: v for k, v in zip(keys, values) if v is not None})
if sleep_time is not None and hardware == SpaceHardware.CPU_BASIC:
warnings.warn(
"If your Space runs on the default 'cpu-basic' hardware, it will go to sleep if inactive for more"
" than 48 hours. This value is not configurable. If you don't want your Space to deactivate or if"
" you want to set a custom sleep time, you need to upgrade to a paid Hardware.",
UserWarning,
)
r = get_session().post(
f"{self.endpoint}/api/spaces/{from_id}/duplicate",
headers=self._build_hf_headers(token=token),
json=payload,
)
try:
hf_raise_for_status(r)
except HTTPError as err:
if exist_ok and err.response.status_code == 409:
# Repo already exists and `exist_ok=True`
pass
else:
raise
return RepoUrl(r.json()["url"], endpoint=self.endpoint)
@validate_hf_hub_args
def request_space_storage(
self,
repo_id: str,
storage: SpaceStorage,
*,
token: Optional[str] = None,
) -> SpaceRuntime:
"""Request persistent storage for a Space.
Args:
repo_id (`str`):
ID of the Space to update. Example: `"HuggingFaceH4/open_llm_leaderboard"`.
storage (`str` or [`SpaceStorage`]):
Storage tier. Either 'small', 'medium', or 'large'.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Returns:
[`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware.
<Tip>
It is not possible to decrease persistent storage after its granted. To do so, you must delete it
via [`delete_space_storage`].
</Tip>
"""
payload: Dict[str, SpaceStorage] = {"tier": storage}
r = get_session().post(
f"{self.endpoint}/api/spaces/{repo_id}/storage",
headers=self._build_hf_headers(token=token),
json=payload,
)
hf_raise_for_status(r)
return SpaceRuntime(r.json())
@validate_hf_hub_args
def delete_space_storage(
self,
repo_id: str,
*,
token: Optional[str] = None,
) -> SpaceRuntime:
"""Delete persistent storage for a Space.
Args:
repo_id (`str`):
ID of the Space to update. Example: `"HuggingFaceH4/open_llm_leaderboard"`.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Returns:
[`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware.
Raises:
[`BadRequestError`]
If space has no persistent storage.
"""
r = get_session().delete(
f"{self.endpoint}/api/spaces/{repo_id}/storage",
headers=self._build_hf_headers(token=token),
)
hf_raise_for_status(r)
return SpaceRuntime(r.json())
#######################
# Inference Endpoints #
#######################
def list_inference_endpoints(
self, namespace: Optional[str] = None, *, token: Optional[str] = None
) -> List[InferenceEndpoint]:
"""Lists all inference endpoints for the given namespace.
Args:
namespace (`str`, *optional*):
The namespace to list endpoints for. Defaults to the current user. Set to `"*"` to list all endpoints
from all namespaces (i.e. personal namespace and all orgs the user belongs to).
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token).
Returns:
List[`InferenceEndpoint`]: A list of all inference endpoints for the given namespace.
Example:
```python
>>> from huggingface_hub import HfApi
>>> api = HfApi()
>>> api.list_inference_endpoints()
[InferenceEndpoint(name='my-endpoint', ...), ...]
```
"""
# Special case: list all endpoints for all namespaces the user has access to
if namespace == "*":
user = self.whoami(token=token)
# List personal endpoints first
endpoints: List[InferenceEndpoint] = list_inference_endpoints(namespace=self._get_namespace(token=token))
# Then list endpoints for all orgs the user belongs to and ignore 401 errors (no billing or no access)
for org in user.get("orgs", []):
try:
endpoints += list_inference_endpoints(namespace=org["name"], token=token)
except HfHubHTTPError as error:
if error.response.status_code == 401: # Either no billing or user don't have access)
logger.debug("Cannot list Inference Endpoints for org '%s': %s", org["name"], error)
pass
return endpoints
# Normal case: list endpoints for a specific namespace
namespace = namespace or self._get_namespace(token=token)
response = get_session().get(
f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}",
headers=self._build_hf_headers(token=token),
)
hf_raise_for_status(response)
return [
InferenceEndpoint.from_raw(endpoint, namespace=namespace, token=token)
for endpoint in response.json()["items"]
]
def create_inference_endpoint(
self,
name: str,
*,
repository: str,
framework: str,
accelerator: str,
instance_size: str,
instance_type: str,
region: str,
vendor: str,
account_id: Optional[str] = None,
min_replica: int = 0,
max_replica: int = 1,
revision: Optional[str] = None,
task: Optional[str] = None,
custom_image: Optional[Dict] = None,
type: InferenceEndpointType = InferenceEndpointType.PROTECTED,
namespace: Optional[str] = None,
token: Optional[str] = None,
) -> InferenceEndpoint:
"""Create a new Inference Endpoint.
Args:
name (`str`):
The unique name for the new Inference Endpoint.
repository (`str`):
The name of the model repository associated with the Inference Endpoint (e.g. `"gpt2"`).
framework (`str`):
The machine learning framework used for the model (e.g. `"custom"`).
accelerator (`str`):
The hardware accelerator to be used for inference (e.g. `"cpu"`).
instance_size (`str`):
The size or type of the instance to be used for hosting the model (e.g. `"large"`).
instance_type (`str`):
The cloud instance type where the Inference Endpoint will be deployed (e.g. `"c6i"`).
region (`str`):
The cloud region in which the Inference Endpoint will be created (e.g. `"us-east-1"`).
vendor (`str`):
The cloud provider or vendor where the Inference Endpoint will be hosted (e.g. `"aws"`).
account_id (`str`, *optional*):
The account ID used to link a VPC to a private Inference Endpoint (if applicable).
min_replica (`int`, *optional*):
The minimum number of replicas (instances) to keep running for the Inference Endpoint. Defaults to 0.
max_replica (`int`, *optional*):
The maximum number of replicas (instances) to scale to for the Inference Endpoint. Defaults to 1.
revision (`str`, *optional*):
The specific model revision to deploy on the Inference Endpoint (e.g. `"6c0e6080953db56375760c0471a8c5f2929baf11"`).
task (`str`, *optional*):
The task on which to deploy the model (e.g. `"text-classification"`).
custom_image (`Dict`, *optional*):
A custom Docker image to use for the Inference Endpoint. This is useful if you want to deploy an
Inference Endpoint running on the `text-generation-inference` (TGI) framework (see examples).
type ([`InferenceEndpointType]`, *optional*):
The type of the Inference Endpoint, which can be `"protected"` (default), `"public"` or `"private"`.
namespace (`str`, *optional*):
The namespace where the Inference Endpoint will be created. Defaults to the current user's namespace.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token).
Returns:
[`InferenceEndpoint`]: information about the updated Inference Endpoint.
Example:
```python
>>> from huggingface_hub import HfApi
>>> api = HfApi()
>>> create_inference_endpoint(
... "my-endpoint-name",
... repository="gpt2",
... framework="pytorch",
... task="text-generation",
... accelerator="cpu",
... vendor="aws",
... region="us-east-1",
... type="protected",
... instance_size="medium",
... instance_type="c6i",
... )
>>> endpoint
InferenceEndpoint(name='my-endpoint-name', status="pending",...)
# Run inference on the endpoint
>>> endpoint.client.text_generation(...)
"..."
```
```python
# Start an Inference Endpoint running Zephyr-7b-beta on TGI
>>> from huggingface_hub import HfApi
>>> api = HfApi()
>>> create_inference_endpoint(
... "aws-zephyr-7b-beta-0486",
... repository="HuggingFaceH4/zephyr-7b-beta",
... framework="pytorch",
... task="text-generation",
... accelerator="gpu",
... vendor="aws",
... region="us-east-1",
... type="protected",
... instance_size="medium",
... instance_type="g5.2xlarge",
... custom_image={
... "health_route": "/health",
... "env": {
... "MAX_BATCH_PREFILL_TOKENS": "2048",
... "MAX_INPUT_LENGTH": "1024",
... "MAX_TOTAL_TOKENS": "1512",
... "MODEL_ID": "/repository"
... },
... "url": "ghcr.io/huggingface/text-generation-inference:1.1.0",
... },
... )
```
"""
namespace = namespace or self._get_namespace(token=token)
image = {"custom": custom_image} if custom_image is not None else {"huggingface": {}}
payload: Dict = {
"accountId": account_id,
"compute": {
"accelerator": accelerator,
"instanceSize": instance_size,
"instanceType": instance_type,
"scaling": {
"maxReplica": max_replica,
"minReplica": min_replica,
},
},
"model": {
"framework": framework,
"repository": repository,
"revision": revision,
"task": task,
"image": image,
},
"name": name,
"provider": {
"region": region,
"vendor": vendor,
},
"type": type,
}
response = get_session().post(
f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}",
headers=self._build_hf_headers(token=token),
json=payload,
)
hf_raise_for_status(response)
return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token)
def get_inference_endpoint(
self, name: str, *, namespace: Optional[str] = None, token: Optional[str] = None
) -> InferenceEndpoint:
"""Get information about an Inference Endpoint.
Args:
name (`str`):
The name of the Inference Endpoint to retrieve information about.
namespace (`str`, *optional*):
The namespace in which the Inference Endpoint is located. Defaults to the current user.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token).
Returns:
[`InferenceEndpoint`]: information about the requested Inference Endpoint.
Example:
```python
>>> from huggingface_hub import HfApi
>>> api = HfApi()
>>> endpoint = api.get_inference_endpoint("my-text-to-image")
>>> endpoint
InferenceEndpoint(name='my-text-to-image', ...)
# Get status
>>> endpoint.status
'running'
>>> endpoint.url
'https://my-text-to-image.region.vendor.endpoints.huggingface.cloud'
# Run inference
>>> endpoint.client.text_to_image(...)
```
"""
namespace = namespace or self._get_namespace(token=token)
response = get_session().get(
f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}",
headers=self._build_hf_headers(token=token),
)
hf_raise_for_status(response)
return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token)
def update_inference_endpoint(
self,
name: str,
*,
# Compute update
accelerator: Optional[str] = None,
instance_size: Optional[str] = None,
instance_type: Optional[str] = None,
min_replica: Optional[int] = None,
max_replica: Optional[int] = None,
# Model update
repository: Optional[str] = None,
framework: Optional[str] = None,
revision: Optional[str] = None,
task: Optional[str] = None,
# Other
namespace: Optional[str] = None,
token: Optional[str] = None,
) -> InferenceEndpoint:
"""Update an Inference Endpoint.
This method allows the update of either the compute configuration, the deployed model, or both. All arguments are
optional but at least one must be provided.
For convenience, you can also update an Inference Endpoint using [`InferenceEndpoint.update`].
Args:
name (`str`):
The name of the Inference Endpoint to update.
accelerator (`str`, *optional*):
The hardware accelerator to be used for inference (e.g. `"cpu"`).
instance_size (`str`, *optional*):
The size or type of the instance to be used for hosting the model (e.g. `"large"`).
instance_type (`str`, *optional*):
The cloud instance type where the Inference Endpoint will be deployed (e.g. `"c6i"`).
min_replica (`int`, *optional*):
The minimum number of replicas (instances) to keep running for the Inference Endpoint.
max_replica (`int`, *optional*):
The maximum number of replicas (instances) to scale to for the Inference Endpoint.
repository (`str`, *optional*):
The name of the model repository associated with the Inference Endpoint (e.g. `"gpt2"`).
framework (`str`, *optional*):
The machine learning framework used for the model (e.g. `"custom"`).
revision (`str`, *optional*):
The specific model revision to deploy on the Inference Endpoint (e.g. `"6c0e6080953db56375760c0471a8c5f2929baf11"`).
task (`str`, *optional*):
The task on which to deploy the model (e.g. `"text-classification"`).
namespace (`str`, *optional*):
The namespace where the Inference Endpoint will be updated. Defaults to the current user's namespace.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token).
Returns:
[`InferenceEndpoint`]: information about the updated Inference Endpoint.
"""
namespace = namespace or self._get_namespace(token=token)
payload: Dict = {}
if any(value is not None for value in (accelerator, instance_size, instance_type, min_replica, max_replica)):
payload["compute"] = {
"accelerator": accelerator,
"instanceSize": instance_size,
"instanceType": instance_type,
"scaling": {
"maxReplica": max_replica,
"minReplica": min_replica,
},
}
if any(value is not None for value in (repository, framework, revision, task)):
payload["model"] = {
"framework": framework,
"repository": repository,
"revision": revision,
"task": task,
"image": {"huggingface": {}},
}
response = get_session().put(
f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}",
headers=self._build_hf_headers(token=token),
json=payload,
)
hf_raise_for_status(response)
return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token)
def delete_inference_endpoint(
self, name: str, *, namespace: Optional[str] = None, token: Optional[str] = None
) -> None:
"""Delete an Inference Endpoint.
This operation is not reversible. If you don't want to be charged for an Inference Endpoint, it is preferable
to pause it with [`pause_inference_endpoint`] or scale it to zero with [`scale_to_zero_inference_endpoint`].
For convenience, you can also delete an Inference Endpoint using [`InferenceEndpoint.delete`].
Args:
name (`str`):
The name of the Inference Endpoint to delete.
namespace (`str`, *optional*):
The namespace in which the Inference Endpoint is located. Defaults to the current user.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token).
"""
namespace = namespace or self._get_namespace(token=token)
response = get_session().delete(
f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}",
headers=self._build_hf_headers(token=token),
)
hf_raise_for_status(response)
def pause_inference_endpoint(
self, name: str, *, namespace: Optional[str] = None, token: Optional[str] = None
) -> InferenceEndpoint:
"""Pause an Inference Endpoint.
A paused Inference Endpoint will not be charged. It can be resumed at any time using [`resume_inference_endpoint`].
This is different than scaling the Inference Endpoint to zero with [`scale_to_zero_inference_endpoint`], which
would be automatically restarted when a request is made to it.
For convenience, you can also pause an Inference Endpoint using [`pause_inference_endpoint`].
Args:
name (`str`):
The name of the Inference Endpoint to pause.
namespace (`str`, *optional*):
The namespace in which the Inference Endpoint is located. Defaults to the current user.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token).
Returns:
[`InferenceEndpoint`]: information about the paused Inference Endpoint.
"""
namespace = namespace or self._get_namespace(token=token)
response = get_session().post(
f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}/pause",
headers=self._build_hf_headers(token=token),
)
hf_raise_for_status(response)
return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token)
def resume_inference_endpoint(
self, name: str, *, namespace: Optional[str] = None, token: Optional[str] = None
) -> InferenceEndpoint:
"""Resume an Inference Endpoint.
For convenience, you can also resume an Inference Endpoint using [`InferenceEndpoint.resume`].
Args:
name (`str`):
The name of the Inference Endpoint to resume.
namespace (`str`, *optional*):
The namespace in which the Inference Endpoint is located. Defaults to the current user.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token).
Returns:
[`InferenceEndpoint`]: information about the resumed Inference Endpoint.
"""
namespace = namespace or self._get_namespace(token=token)
response = get_session().post(
f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}/resume",
headers=self._build_hf_headers(token=token),
)
hf_raise_for_status(response)
return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token)
def scale_to_zero_inference_endpoint(
self, name: str, *, namespace: Optional[str] = None, token: Optional[str] = None
) -> InferenceEndpoint:
"""Scale Inference Endpoint to zero.
An Inference Endpoint scaled to zero will not be charged. It will be resume on the next request to it, with a
cold start delay. This is different than pausing the Inference Endpoint with [`pause_inference_endpoint`], which
would require a manual resume with [`resume_inference_endpoint`].
For convenience, you can also scale an Inference Endpoint to zero using [`InferenceEndpoint.scale_to_zero`].
Args:
name (`str`):
The name of the Inference Endpoint to scale to zero.
namespace (`str`, *optional*):
The namespace in which the Inference Endpoint is located. Defaults to the current user.
token (`str`, *optional*):
An authentication token (See https://huggingface.co/settings/token).
Returns:
[`InferenceEndpoint`]: information about the scaled-to-zero Inference Endpoint.
"""
namespace = namespace or self._get_namespace(token=token)
response = get_session().post(
f"{INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}/scale-to-zero",
headers=self._build_hf_headers(token=token),
)
hf_raise_for_status(response)
return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token)
def _get_namespace(self, token: Optional[str] = None) -> str:
"""Get the default namespace for the current user."""
me = self.whoami(token=token)
if me["type"] == "user":
return me["name"]
else:
raise ValueError(
"Cannot determine default namespace. You must provide a 'namespace' as input or be logged in as a"
" user."
)
########################
# Collection Endpoints #
########################
@validate_hf_hub_args
def list_collections(
self,
*,
owner: Union[List[str], str, None] = None,
item: Union[List[str], str, None] = None,
sort: Optional[Literal["lastModified", "trending", "upvotes"]] = None,
limit: Optional[int] = None,
token: Optional[Union[bool, str]] = None,
) -> Iterable[Collection]:
"""List collections on the Huggingface Hub, given some filters.
<Tip warning={true}>
When listing collections, the item list per collection is truncated to 4 items maximum. To retrieve all items
from a collection, you must use [`get_collection`].
</Tip>
Args:
owner (`List[str]` or `str`, *optional*):
Filter by owner's username.
item (`List[str]` or `str`, *optional*):
Filter collections containing a particular items. Example: `"models/teknium/OpenHermes-2.5-Mistral-7B"`, `"datasets/squad"` or `"papers/2311.12983"`.
sort (`Literal["lastModified", "trending", "upvotes"]`, *optional*):
Sort collections by last modified, trending or upvotes.
limit (`int`, *optional*):
Maximum number of collections to be returned.
token (`bool` or `str`, *optional*):
An authentication token (see https://huggingface.co/settings/token).
Returns:
`Iterable[Collection]`: an iterable of [`Collection`] objects.
"""
# Construct the API endpoint
path = f"{self.endpoint}/api/collections"
headers = self._build_hf_headers(token=token)
params: Dict = {}
if owner is not None:
params.update({"owner": owner})
if item is not None:
params.update({"item": item})
if sort is not None:
params.update({"sort": sort})
if limit is not None:
params.update({"limit": limit})
# Paginate over the results until limit is reached
items = paginate(path, headers=headers, params=params)
if limit is not None:
items = islice(items, limit) # Do not iterate over all pages
# Parse as Collection and return
for position, collection_data in enumerate(items):
yield Collection(position=position, **collection_data)
def get_collection(self, collection_slug: str, *, token: Optional[str] = None) -> Collection:
"""Gets information about a Collection on the Hub.
Args:
collection_slug (`str`):
Slug of the collection of the Hub. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Returns: [`Collection`]
Example:
```py
>>> from huggingface_hub import get_collection
>>> collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026")
>>> collection.title
'Recent models'
>>> len(collection.items)
37
>>> collection.items[0]
CollectionItem(
item_object_id='651446103cd773a050bf64c2',
item_id='TheBloke/U-Amethyst-20B-AWQ',
item_type='model',
position=88,
note=None
)
```
"""
r = get_session().get(
f"{self.endpoint}/api/collections/{collection_slug}", headers=self._build_hf_headers(token=token)
)
hf_raise_for_status(r)
return Collection(**{**r.json(), "endpoint": self.endpoint})
def create_collection(
self,
title: str,
*,
namespace: Optional[str] = None,
description: Optional[str] = None,
private: bool = False,
exists_ok: bool = False,
token: Optional[str] = None,
) -> Collection:
"""Create a new Collection on the Hub.
Args:
title (`str`):
Title of the collection to create. Example: `"Recent models"`.
namespace (`str`, *optional*):
Namespace of the collection to create (username or org). Will default to the owner name.
description (`str`, *optional*):
Description of the collection to create.
private (`bool`, *optional*):
Whether the collection should be private or not. Defaults to `False` (i.e. public collection).
exists_ok (`bool`, *optional*):
If `True`, do not raise an error if collection already exists.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Returns: [`Collection`]
Example:
```py
>>> from huggingface_hub import create_collection
>>> collection = create_collection(
... title="ICCV 2023",
... description="Portfolio of models, papers and demos I presented at ICCV 2023",
... )
>>> collection.slug
"username/iccv-2023-64f9a55bb3115b4f513ec026"
```
"""
if namespace is None:
namespace = self.whoami(token)["name"]
payload = {
"title": title,
"namespace": namespace,
"private": private,
}
if description is not None:
payload["description"] = description
r = get_session().post(
f"{self.endpoint}/api/collections", headers=self._build_hf_headers(token=token), json=payload
)
try:
hf_raise_for_status(r)
except HTTPError as err:
if exists_ok and err.response.status_code == 409:
# Collection already exists and `exists_ok=True`
slug = r.json()["slug"]
return self.get_collection(slug, token=token)
else:
raise
return Collection(**{**r.json(), "endpoint": self.endpoint})
def update_collection_metadata(
self,
collection_slug: str,
*,
title: Optional[str] = None,
description: Optional[str] = None,
position: Optional[int] = None,
private: Optional[bool] = None,
theme: Optional[str] = None,
token: Optional[str] = None,
) -> Collection:
"""Update metadata of a collection on the Hub.
All arguments are optional. Only provided metadata will be updated.
Args:
collection_slug (`str`):
Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`.
title (`str`):
Title of the collection to update.
description (`str`, *optional*):
Description of the collection to update.
position (`int`, *optional*):
New position of the collection in the list of collections of the user.
private (`bool`, *optional*):
Whether the collection should be private or not.
theme (`str`, *optional*):
Theme of the collection on the Hub.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Returns: [`Collection`]
Example:
```py
>>> from huggingface_hub import update_collection_metadata
>>> collection = update_collection_metadata(
... collection_slug="username/iccv-2023-64f9a55bb3115b4f513ec026",
... title="ICCV Oct. 2023"
... description="Portfolio of models, datasets, papers and demos I presented at ICCV Oct. 2023",
... private=False,
... theme="pink",
... )
>>> collection.slug
"username/iccv-oct-2023-64f9a55bb3115b4f513ec026"
# ^collection slug got updated but not the trailing ID
```
"""
payload = {
"position": position,
"private": private,
"theme": theme,
"title": title,
"description": description,
}
r = get_session().patch(
f"{self.endpoint}/api/collections/{collection_slug}",
headers=self._build_hf_headers(token=token),
# Only send not-none values to the API
json={key: value for key, value in payload.items() if value is not None},
)
hf_raise_for_status(r)
return Collection(**{**r.json()["data"], "endpoint": self.endpoint})
def delete_collection(
self, collection_slug: str, *, missing_ok: bool = False, token: Optional[str] = None
) -> None:
"""Delete a collection on the Hub.
Args:
collection_slug (`str`):
Slug of the collection to delete. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`.
missing_ok (`bool`, *optional*):
If `True`, do not raise an error if collection doesn't exists.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Example:
```py
>>> from huggingface_hub import delete_collection
>>> collection = delete_collection("username/useless-collection-64f9a55bb3115b4f513ec026", missing_ok=True)
```
<Tip warning={true}>
This is a non-revertible action. A deleted collection cannot be restored.
</Tip>
"""
r = get_session().delete(
f"{self.endpoint}/api/collections/{collection_slug}", headers=self._build_hf_headers(token=token)
)
try:
hf_raise_for_status(r)
except HTTPError as err:
if missing_ok and err.response.status_code == 404:
# Collection doesn't exists and `missing_ok=True`
return
else:
raise
def add_collection_item(
self,
collection_slug: str,
item_id: str,
item_type: CollectionItemType_T,
*,
note: Optional[str] = None,
exists_ok: bool = False,
token: Optional[str] = None,
) -> Collection:
"""Add an item to a collection on the Hub.
Args:
collection_slug (`str`):
Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`.
item_id (`str`):
ID of the item to add to the collection. It can be the ID of a repo on the Hub (e.g. `"facebook/bart-large-mnli"`)
or a paper id (e.g. `"2307.09288"`).
item_type (`str`):
Type of the item to add. Can be one of `"model"`, `"dataset"`, `"space"` or `"paper"`.
note (`str`, *optional*):
A note to attach to the item in the collection. The maximum size for a note is 500 characters.
exists_ok (`bool`, *optional*):
If `True`, do not raise an error if item already exists.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Returns: [`Collection`]
Raises:
`HTTPError`:
HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write`
or `admin` role in the organization the repo belongs to or if you passed a `read` token.
`HTTPError`:
HTTP 404 if the item you try to add to the collection does not exist on the Hub.
`HTTPError`:
HTTP 409 if the item you try to add to the collection is already in the collection (and exists_ok=False)
Example:
```py
>>> from huggingface_hub import add_collection_item
>>> collection = add_collection_item(
... collection_slug="davanstrien/climate-64f99dc2a5067f6b65531bab",
... item_id="pierre-loic/climate-news-articles",
... item_type="dataset"
... )
>>> collection.items[-1].item_id
"pierre-loic/climate-news-articles"
# ^item got added to the collection on last position
# Add item with a note
>>> add_collection_item(
... collection_slug="davanstrien/climate-64f99dc2a5067f6b65531bab",
... item_id="datasets/climate_fever",
... item_type="dataset"
... note="This dataset adopts the FEVER methodology that consists of 1,535 real-world claims regarding climate-change collected on the internet."
... )
(...)
```
"""
payload: Dict[str, Any] = {"item": {"id": item_id, "type": item_type}}
if note is not None:
payload["note"] = note
r = get_session().post(
f"{self.endpoint}/api/collections/{collection_slug}/items",
headers=self._build_hf_headers(token=token),
json=payload,
)
try:
hf_raise_for_status(r)
except HTTPError as err:
if exists_ok and err.response.status_code == 409:
# Item already exists and `exists_ok=True`
return self.get_collection(collection_slug, token=token)
else:
raise
return Collection(**{**r.json(), "endpoint": self.endpoint})
def update_collection_item(
self,
collection_slug: str,
item_object_id: str,
*,
note: Optional[str] = None,
position: Optional[int] = None,
token: Optional[str] = None,
) -> None:
"""Update an item in a collection.
Args:
collection_slug (`str`):
Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`.
item_object_id (`str`):
ID of the item in the collection. This is not the id of the item on the Hub (repo_id or paper id).
It must be retrieved from a [`CollectionItem`] object. Example: `collection.items[0].item_object_id`.
note (`str`, *optional*):
A note to attach to the item in the collection. The maximum size for a note is 500 characters.
position (`int`, *optional*):
New position of the item in the collection.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Example:
```py
>>> from huggingface_hub import get_collection, update_collection_item
# Get collection first
>>> collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026")
# Update item based on its ID (add note + update position)
>>> update_collection_item(
... collection_slug="TheBloke/recent-models-64f9a55bb3115b4f513ec026",
... item_object_id=collection.items[-1].item_object_id,
... note="Newly updated model!"
... position=0,
... )
```
"""
payload = {"position": position, "note": note}
r = get_session().patch(
f"{self.endpoint}/api/collections/{collection_slug}/items/{item_object_id}",
headers=self._build_hf_headers(token=token),
# Only send not-none values to the API
json={key: value for key, value in payload.items() if value is not None},
)
hf_raise_for_status(r)
def delete_collection_item(
self,
collection_slug: str,
item_object_id: str,
*,
missing_ok: bool = False,
token: Optional[str] = None,
) -> None:
"""Delete an item from a collection.
Args:
collection_slug (`str`):
Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`.
item_object_id (`str`):
ID of the item in the collection. This is not the id of the item on the Hub (repo_id or paper id).
It must be retrieved from a [`CollectionItem`] object. Example: `collection.items[0]._id`.
missing_ok (`bool`, *optional*):
If `True`, do not raise an error if item doesn't exists.
token (`str`, *optional*):
Hugging Face token. Will default to the locally saved token if not provided.
Example:
```py
>>> from huggingface_hub import get_collection, delete_collection_item
# Get collection first
>>> collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026")
# Delete item based on its ID
>>> delete_collection_item(
... collection_slug="TheBloke/recent-models-64f9a55bb3115b4f513ec026",
... item_object_id=collection.items[-1].item_object_id,
... )
```
"""
r = get_session().delete(
f"{self.endpoint}/api/collections/{collection_slug}/items/{item_object_id}",
headers=self._build_hf_headers(token=token),
)
try:
hf_raise_for_status(r)
except HTTPError as err:
if missing_ok and err.response.status_code == 404:
# Item already deleted and `missing_ok=True`
return
else:
raise
##########################
# Manage access requests #
##########################
@validate_hf_hub_args
def list_pending_access_requests(
self, repo_id: str, *, repo_type: Optional[str] = None, token: Optional[str] = None
) -> List[AccessRequest]:
"""
Get pending access requests for a given gated repo.
A pending request means the user has requested access to the repo but the request has not been processed yet.
If the approval mode is automatic, this list should be empty. Pending requests can be accepted or rejected
using [`accept_access_request`] and [`reject_access_request`].
For more info about gated repos, see https://huggingface.co/docs/hub/models-gated.
Args:
repo_id (`str`):
The id of the repo to get access requests for.
repo_type (`str`, *optional*):
The type of the repo to get access requests for. Must be one of `model`, `dataset` or `space`.
Defaults to `model`.
token (`str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
Returns:
`List[AccessRequest]`: A list of [`AccessRequest`] objects. Each time contains a `username`, `email`,
`status` and `timestamp` attribute. If the gated repo has a custom form, the `fields` attribute will
be populated with user's answers.
Raises:
`HTTPError`:
HTTP 400 if the repo is not gated.
`HTTPError`:
HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write`
or `admin` role in the organization the repo belongs to or if you passed a `read` token.
Example:
```py
>>> from huggingface_hub import list_pending_access_requests, accept_access_request
# List pending requests
>>> requests = list_pending_access_requests("meta-llama/Llama-2-7b")
>>> len(requests)
411
>>> requests[0]
[
AccessRequest(
username='clem',
fullname='Clem 🤗',
email='***',
timestamp=datetime.datetime(2023, 11, 23, 18, 4, 53, 828000, tzinfo=datetime.timezone.utc),
status='pending',
fields=None,
),
...
]
# Accept Clem's request
>>> accept_access_request("meta-llama/Llama-2-7b", "clem")
```
"""
return self._list_access_requests(repo_id, "pending", repo_type=repo_type, token=token)
@validate_hf_hub_args
def list_accepted_access_requests(
self, repo_id: str, *, repo_type: Optional[str] = None, token: Optional[str] = None
) -> List[AccessRequest]:
"""
Get accepted access requests for a given gated repo.
An accepted request means the user has requested access to the repo and the request has been accepted. The user
can download any file of the repo. If the approval mode is automatic, this list should contains by default all
requests. Accepted requests can be cancelled or rejected at any time using [`cancel_access_request`] and
[`reject_access_request`]. A cancelled request will go back to the pending list while a rejected request will
go to the rejected list. In both cases, the user will lose access to the repo.
For more info about gated repos, see https://huggingface.co/docs/hub/models-gated.
Args:
repo_id (`str`):
The id of the repo to get access requests for.
repo_type (`str`, *optional*):
The type of the repo to get access requests for. Must be one of `model`, `dataset` or `space`.
Defaults to `model`.
token (`str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
Returns:
`List[AccessRequest]`: A list of [`AccessRequest`] objects. Each time contains a `username`, `email`,
`status` and `timestamp` attribute. If the gated repo has a custom form, the `fields` attribute will
be populated with user's answers.
Raises:
`HTTPError`:
HTTP 400 if the repo is not gated.
`HTTPError`:
HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write`
or `admin` role in the organization the repo belongs to or if you passed a `read` token.
Example:
```py
>>> from huggingface_hub import list_accepted_access_requests
>>> requests = list_accepted_access_requests("meta-llama/Llama-2-7b")
>>> len(requests)
411
>>> requests[0]
[
AccessRequest(
username='clem',
fullname='Clem 🤗',
email='***',
timestamp=datetime.datetime(2023, 11, 23, 18, 4, 53, 828000, tzinfo=datetime.timezone.utc),
status='accepted',
fields=None,
),
...
]
```
"""
return self._list_access_requests(repo_id, "accepted", repo_type=repo_type, token=token)
@validate_hf_hub_args
def list_rejected_access_requests(
self, repo_id: str, *, repo_type: Optional[str] = None, token: Optional[str] = None
) -> List[AccessRequest]:
"""
Get rejected access requests for a given gated repo.
A rejected request means the user has requested access to the repo and the request has been explicitly rejected
by a repo owner (either you or another user from your organization). The user cannot download any file of the
repo. Rejected requests can be accepted or cancelled at any time using [`accept_access_request`] and
[`cancel_access_request`]. A cancelled request will go back to the pending list while an accepted request will
go to the accepted list.
For more info about gated repos, see https://huggingface.co/docs/hub/models-gated.
Args:
repo_id (`str`):
The id of the repo to get access requests for.
repo_type (`str`, *optional*):
The type of the repo to get access requests for. Must be one of `model`, `dataset` or `space`.
Defaults to `model`.
token (`str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
Returns:
`List[AccessRequest]`: A list of [`AccessRequest`] objects. Each time contains a `username`, `email`,
`status` and `timestamp` attribute. If the gated repo has a custom form, the `fields` attribute will
be populated with user's answers.
Raises:
`HTTPError`:
HTTP 400 if the repo is not gated.
`HTTPError`:
HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write`
or `admin` role in the organization the repo belongs to or if you passed a `read` token.
Example:
```py
>>> from huggingface_hub import list_rejected_access_requests
>>> requests = list_rejected_access_requests("meta-llama/Llama-2-7b")
>>> len(requests)
411
>>> requests[0]
[
AccessRequest(
username='clem',
fullname='Clem 🤗',
email='***',
timestamp=datetime.datetime(2023, 11, 23, 18, 4, 53, 828000, tzinfo=datetime.timezone.utc),
status='rejected',
fields=None,
),
...
]
```
"""
return self._list_access_requests(repo_id, "rejected", repo_type=repo_type, token=token)
def _list_access_requests(
self,
repo_id: str,
status: Literal["accepted", "rejected", "pending"],
repo_type: Optional[str] = None,
token: Optional[str] = None,
) -> List[AccessRequest]:
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}")
if repo_type is None:
repo_type = REPO_TYPE_MODEL
response = get_session().get(
f"{ENDPOINT}/api/{repo_type}s/{repo_id}/user-access-request/{status}",
headers=self._build_hf_headers(token=token),
)
hf_raise_for_status(response)
return [
AccessRequest(
username=request["user"]["user"],
fullname=request["user"]["fullname"],
email=request["user"]["email"],
status=request["status"],
timestamp=parse_datetime(request["timestamp"]),
fields=request.get("fields"), # only if custom fields in form
)
for request in response.json()
]
@validate_hf_hub_args
def cancel_access_request(
self, repo_id: str, user: str, *, repo_type: Optional[str] = None, token: Optional[str] = None
) -> None:
"""
Cancel an access request from a user for a given gated repo.
A cancelled request will go back to the pending list and the user will lose access to the repo.
For more info about gated repos, see https://huggingface.co/docs/hub/models-gated.
Args:
repo_id (`str`):
The id of the repo to cancel access request for.
user (`str`):
The username of the user which access request should be cancelled.
repo_type (`str`, *optional*):
The type of the repo to cancel access request for. Must be one of `model`, `dataset` or `space`.
Defaults to `model`.
token (`str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
Raises:
`HTTPError`:
HTTP 400 if the repo is not gated.
`HTTPError`:
HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write`
or `admin` role in the organization the repo belongs to or if you passed a `read` token.
`HTTPError`:
HTTP 404 if the user does not exist on the Hub.
`HTTPError`:
HTTP 404 if the user access request cannot be found.
`HTTPError`:
HTTP 404 if the user access request is already in the pending list.
"""
self._handle_access_request(repo_id, user, "pending", repo_type=repo_type, token=token)
@validate_hf_hub_args
def accept_access_request(
self, repo_id: str, user: str, *, repo_type: Optional[str] = None, token: Optional[str] = None
) -> None:
"""
Accept an access request from a user for a given gated repo.
Once the request is accepted, the user will be able to download any file of the repo and access the community
tab. If the approval mode is automatic, you don't have to accept requests manually. An accepted request can be
cancelled or rejected at any time using [`cancel_access_request`] and [`reject_access_request`].
For more info about gated repos, see https://huggingface.co/docs/hub/models-gated.
Args:
repo_id (`str`):
The id of the repo to accept access request for.
user (`str`):
The username of the user which access request should be accepted.
repo_type (`str`, *optional*):
The type of the repo to accept access request for. Must be one of `model`, `dataset` or `space`.
Defaults to `model`.
token (`str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
Raises:
`HTTPError`:
HTTP 400 if the repo is not gated.
`HTTPError`:
HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write`
or `admin` role in the organization the repo belongs to or if you passed a `read` token.
`HTTPError`:
HTTP 404 if the user does not exist on the Hub.
`HTTPError`:
HTTP 404 if the user access request cannot be found.
`HTTPError`:
HTTP 404 if the user access request is already in the accepted list.
"""
self._handle_access_request(repo_id, user, "accepted", repo_type=repo_type, token=token)
@validate_hf_hub_args
def reject_access_request(
self, repo_id: str, user: str, *, repo_type: Optional[str] = None, token: Optional[str] = None
) -> None:
"""
Reject an access request from a user for a given gated repo.
A rejected request will go to the rejected list. The user cannot download any file of the repo. Rejected
requests can be accepted or cancelled at any time using [`accept_access_request`] and [`cancel_access_request`].
A cancelled request will go back to the pending list while an accepted request will go to the accepted list.
For more info about gated repos, see https://huggingface.co/docs/hub/models-gated.
Args:
repo_id (`str`):
The id of the repo to reject access request for.
user (`str`):
The username of the user which access request should be rejected.
repo_type (`str`, *optional*):
The type of the repo to reject access request for. Must be one of `model`, `dataset` or `space`.
Defaults to `model`.
token (`str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
Raises:
`HTTPError`:
HTTP 400 if the repo is not gated.
`HTTPError`:
HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write`
or `admin` role in the organization the repo belongs to or if you passed a `read` token.
`HTTPError`:
HTTP 404 if the user does not exist on the Hub.
`HTTPError`:
HTTP 404 if the user access request cannot be found.
`HTTPError`:
HTTP 404 if the user access request is already in the rejected list.
"""
self._handle_access_request(repo_id, user, "rejected", repo_type=repo_type, token=token)
@validate_hf_hub_args
def _handle_access_request(
self,
repo_id: str,
user: str,
status: Literal["accepted", "rejected", "pending"],
repo_type: Optional[str] = None,
token: Optional[str] = None,
) -> None:
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}")
if repo_type is None:
repo_type = REPO_TYPE_MODEL
response = get_session().post(
f"{ENDPOINT}/api/{repo_type}s/{repo_id}/user-access-request/handle",
headers=self._build_hf_headers(token=token),
json={"user": user, "status": status},
)
hf_raise_for_status(response)
@validate_hf_hub_args
def grant_access(
self, repo_id: str, user: str, *, repo_type: Optional[str] = None, token: Optional[str] = None
) -> None:
"""
Grant access to a user for a given gated repo.
Granting access don't require for the user to send an access request by themselves. The user is automatically
added to the accepted list meaning they can download the files You can revoke the granted access at any time
using [`cancel_access_request`] or [`reject_access_request`].
For more info about gated repos, see https://huggingface.co/docs/hub/models-gated.
Args:
repo_id (`str`):
The id of the repo to grant access to.
user (`str`):
The username of the user to grant access.
repo_type (`str`, *optional*):
The type of the repo to grant access to. Must be one of `model`, `dataset` or `space`.
Defaults to `model`.
token (`str`, *optional*):
A valid authentication token (see https://huggingface.co/settings/token).
Raises:
`HTTPError`:
HTTP 400 if the repo is not gated.
`HTTPError`:
HTTP 400 if the user already has access to the repo.
`HTTPError`:
HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write`
or `admin` role in the organization the repo belongs to or if you passed a `read` token.
`HTTPError`:
HTTP 404 if the user does not exist on the Hub.
"""
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}")
if repo_type is None:
repo_type = REPO_TYPE_MODEL
response = get_session().post(
f"{ENDPOINT}/api/models/{repo_id}/user-access-request/grant",
headers=self._build_hf_headers(token=token),
json={"user": user},
)
hf_raise_for_status(response)
return response.json()
#############
# Internals #
#############
def _build_hf_headers(
self,
token: Optional[Union[bool, str]] = None,
is_write_action: bool = False,
library_name: Optional[str] = None,
library_version: Optional[str] = None,
user_agent: Union[Dict, str, None] = None,
) -> Dict[str, str]:
"""
Alias for [`build_hf_headers`] that uses the token from [`HfApi`] client
when `token` is not provided.
"""
if token is None:
# Cannot do `token = token or self.token` as token can be `False`.
token = self.token
return build_hf_headers(
token=token,
is_write_action=is_write_action,
library_name=library_name or self.library_name,
library_version=library_version or self.library_version,
user_agent=user_agent or self.user_agent,
headers=self.headers,
)
def _prepare_upload_folder_deletions(
self,
repo_id: str,
repo_type: Optional[str],
revision: Optional[str],
token: Optional[str],
path_in_repo: str,
delete_patterns: Optional[Union[List[str], str]],
) -> List[CommitOperationDelete]:
"""Generate the list of Delete operations for a commit to delete files from a repo.
List remote files and match them against the `delete_patterns` constraints. Returns a list of [`CommitOperationDelete`]
with the matching items.
Note: `.gitattributes` file is essential to make a repo work properly on the Hub. This file will always be
kept even if it matches the `delete_patterns` constraints.
"""
if delete_patterns is None:
# If no delete patterns, no need to list and filter remote files
return []
# List remote files
filenames = self.list_repo_files(repo_id=repo_id, revision=revision, repo_type=repo_type, token=token)
# Compute relative path in repo
if path_in_repo and path_in_repo not in (".", "./"):
path_in_repo = path_in_repo.strip("/") + "/" # harmonize
relpath_to_abspath = {
file[len(path_in_repo) :]: file for file in filenames if file.startswith(path_in_repo)
}
else:
relpath_to_abspath = {file: file for file in filenames}
# Apply filter on relative paths and return
return [
CommitOperationDelete(path_in_repo=relpath_to_abspath[relpath], is_folder=False)
for relpath in filter_repo_objects(relpath_to_abspath.keys(), allow_patterns=delete_patterns)
if relpath_to_abspath[relpath] != ".gitattributes"
]
def _prepare_upload_folder_additions(
folder_path: Union[str, Path],
path_in_repo: str,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
) -> List[CommitOperationAdd]:
"""Generate the list of Add operations for a commit to upload a folder.
Files not matching the `allow_patterns` (allowlist) and `ignore_patterns` (denylist)
constraints are discarded.
"""
folder_path = Path(folder_path).expanduser().resolve()
if not folder_path.is_dir():
raise ValueError(f"Provided path: '{folder_path}' is not a directory")
# List files from folder
relpath_to_abspath = {
path.relative_to(folder_path).as_posix(): path
for path in sorted(folder_path.glob("**/*")) # sorted to be deterministic
if path.is_file()
}
# Filter files and return
# Patterns are applied on the path relative to `folder_path`. `path_in_repo` is prefixed after the filtering.
prefix = f"{path_in_repo.strip('/')}/" if path_in_repo else ""
return [
CommitOperationAdd(
path_or_fileobj=relpath_to_abspath[relpath], # absolute path on disk
path_in_repo=prefix + relpath, # "absolute" path in repo
)
for relpath in filter_repo_objects(
relpath_to_abspath.keys(), allow_patterns=allow_patterns, ignore_patterns=ignore_patterns
)
]
def _parse_revision_from_pr_url(pr_url: str) -> str:
"""Safely parse revision number from a PR url.
Example:
```py
>>> _parse_revision_from_pr_url("https://huggingface.co/bigscience/bloom/discussions/2")
"refs/pr/2"
```
"""
re_match = re.match(_REGEX_DISCUSSION_URL, pr_url)
if re_match is None:
raise RuntimeError(f"Unexpected response from the hub, expected a Pull Request URL but got: '{pr_url}'")
return f"refs/pr/{re_match[1]}"
api = HfApi()
whoami = api.whoami
get_token_permission = api.get_token_permission
list_models = api.list_models
model_info = api.model_info
list_datasets = api.list_datasets
dataset_info = api.dataset_info
list_spaces = api.list_spaces
space_info = api.space_info
repo_exists = api.repo_exists
revision_exists = api.revision_exists
file_exists = api.file_exists
repo_info = api.repo_info
list_repo_files = api.list_repo_files
list_repo_refs = api.list_repo_refs
list_repo_commits = api.list_repo_commits
list_files_info = api.list_files_info
list_repo_tree = api.list_repo_tree
get_paths_info = api.get_paths_info
list_metrics = api.list_metrics
get_model_tags = api.get_model_tags
get_dataset_tags = api.get_dataset_tags
create_commit = api.create_commit
create_repo = api.create_repo
delete_repo = api.delete_repo
update_repo_visibility = api.update_repo_visibility
super_squash_history = api.super_squash_history
move_repo = api.move_repo
upload_file = api.upload_file
upload_folder = api.upload_folder
delete_file = api.delete_file
delete_folder = api.delete_folder
create_commits_on_pr = api.create_commits_on_pr
preupload_lfs_files = api.preupload_lfs_files
create_branch = api.create_branch
delete_branch = api.delete_branch
create_tag = api.create_tag
delete_tag = api.delete_tag
get_full_repo_name = api.get_full_repo_name
# Safetensors helpers
get_safetensors_metadata = api.get_safetensors_metadata
parse_safetensors_file_metadata = api.parse_safetensors_file_metadata
# Background jobs
run_as_future = api.run_as_future
# Activity API
list_liked_repos = api.list_liked_repos
list_repo_likers = api.list_repo_likers
like = api.like
unlike = api.unlike
# Community API
get_discussion_details = api.get_discussion_details
get_repo_discussions = api.get_repo_discussions
create_discussion = api.create_discussion
create_pull_request = api.create_pull_request
change_discussion_status = api.change_discussion_status
comment_discussion = api.comment_discussion
edit_discussion_comment = api.edit_discussion_comment
rename_discussion = api.rename_discussion
merge_pull_request = api.merge_pull_request
# Space API
add_space_secret = api.add_space_secret
delete_space_secret = api.delete_space_secret
get_space_variables = api.get_space_variables
add_space_variable = api.add_space_variable
delete_space_variable = api.delete_space_variable
get_space_runtime = api.get_space_runtime
request_space_hardware = api.request_space_hardware
set_space_sleep_time = api.set_space_sleep_time
pause_space = api.pause_space
restart_space = api.restart_space
duplicate_space = api.duplicate_space
request_space_storage = api.request_space_storage
delete_space_storage = api.delete_space_storage
# Inference Endpoint API
list_inference_endpoints = api.list_inference_endpoints
create_inference_endpoint = api.create_inference_endpoint
get_inference_endpoint = api.get_inference_endpoint
update_inference_endpoint = api.update_inference_endpoint
delete_inference_endpoint = api.delete_inference_endpoint
pause_inference_endpoint = api.pause_inference_endpoint
resume_inference_endpoint = api.resume_inference_endpoint
scale_to_zero_inference_endpoint = api.scale_to_zero_inference_endpoint
# Collections API
get_collection = api.get_collection
list_collections = api.list_collections
create_collection = api.create_collection
update_collection_metadata = api.update_collection_metadata
delete_collection = api.delete_collection
add_collection_item = api.add_collection_item
update_collection_item = api.update_collection_item
delete_collection_item = api.delete_collection_item
delete_collection_item = api.delete_collection_item
# Access requests API
list_pending_access_requests = api.list_pending_access_requests
list_accepted_access_requests = api.list_accepted_access_requests
list_rejected_access_requests = api.list_rejected_access_requests
cancel_access_request = api.cancel_access_request
accept_access_request = api.accept_access_request
reject_access_request = api.reject_access_request
grant_access = api.grant_access