ai-content-maker/.venv/Lib/site-packages/joblib/test/data/create_numpy_pickle.py

96 lines
3.4 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""
This script is used to generate test data for joblib/test/test_numpy_pickle.py
"""
import sys
import re
# pytest needs to be able to import this module even when numpy is
# not installed
try:
import numpy as np
except ImportError:
np = None
import joblib
def get_joblib_version(joblib_version=joblib.__version__):
"""Normalize joblib version by removing suffix.
>>> get_joblib_version('0.8.4')
'0.8.4'
>>> get_joblib_version('0.8.4b1')
'0.8.4'
>>> get_joblib_version('0.9.dev0')
'0.9'
"""
matches = [re.match(r'(\d+).*', each)
for each in joblib_version.split('.')]
return '.'.join([m.group(1) for m in matches if m is not None])
def write_test_pickle(to_pickle, args):
kwargs = {}
compress = args.compress
method = args.method
joblib_version = get_joblib_version()
py_version = '{0[0]}{0[1]}'.format(sys.version_info)
numpy_version = ''.join(np.__version__.split('.')[:2])
# The game here is to generate the right filename according to the options.
body = '_compressed' if (compress and method == 'zlib') else ''
if compress:
if method == 'zlib':
kwargs['compress'] = True
extension = '.gz'
else:
kwargs['compress'] = (method, 3)
extension = '.pkl.{}'.format(method)
if args.cache_size:
kwargs['cache_size'] = 0
body += '_cache_size'
else:
extension = '.pkl'
pickle_filename = 'joblib_{}{}_pickle_py{}_np{}{}'.format(
joblib_version, body, py_version, numpy_version, extension)
try:
joblib.dump(to_pickle, pickle_filename, **kwargs)
except Exception as e:
# With old python version (=< 3.3.), we can arrive there when
# dumping compressed pickle with LzmaFile.
print("Error: cannot generate file '{}' with arguments '{}'. "
"Error was: {}".format(pickle_filename, kwargs, e))
else:
print("File '{}' generated successfully.".format(pickle_filename))
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description="Joblib pickle data "
"generator.")
parser.add_argument('--cache_size', action="store_true",
help="Force creation of companion numpy "
"files for pickled arrays.")
parser.add_argument('--compress', action="store_true",
help="Generate compress pickles.")
parser.add_argument('--method', type=str, default='zlib',
choices=['zlib', 'gzip', 'bz2', 'xz', 'lzma', 'lz4'],
help="Set compression method.")
# We need to be specific about dtypes in particular endianness
# because the pickles can be generated on one architecture and
# the tests run on another one. See
# https://github.com/joblib/joblib/issues/279.
to_pickle = [np.arange(5, dtype=np.dtype('<i8')),
np.arange(5, dtype=np.dtype('<f8')),
np.array([1, 'abc', {'a': 1, 'b': 2}], dtype='O'),
# all possible bytes as a byte string
np.arange(256, dtype=np.uint8).tobytes(),
np.matrix([0, 1, 2], dtype=np.dtype('<i8')),
# unicode string with non-ascii chars
u"C'est l'\xe9t\xe9 !"]
write_test_pickle(to_pickle, parser.parse_args())