3178 lines
81 KiB
Python
3178 lines
81 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
"""Unit conversion utilities"""
|
||
|
from __future__ import annotations
|
||
|
import re
|
||
|
import numpy as np
|
||
|
from . import notation
|
||
|
from ..util.exceptions import ParameterError
|
||
|
from ..util.decorators import vectorize
|
||
|
from typing import Any, Callable, Dict, Iterable, Optional, Sized, Union, overload
|
||
|
from .._typing import (
|
||
|
_IterableLike,
|
||
|
_FloatLike_co,
|
||
|
_SequenceLike,
|
||
|
_ScalarOrSequence,
|
||
|
_IntLike_co,
|
||
|
)
|
||
|
|
||
|
__all__ = [
|
||
|
"frames_to_samples",
|
||
|
"frames_to_time",
|
||
|
"samples_to_frames",
|
||
|
"samples_to_time",
|
||
|
"time_to_samples",
|
||
|
"time_to_frames",
|
||
|
"blocks_to_samples",
|
||
|
"blocks_to_frames",
|
||
|
"blocks_to_time",
|
||
|
"note_to_hz",
|
||
|
"note_to_midi",
|
||
|
"midi_to_hz",
|
||
|
"midi_to_note",
|
||
|
"hz_to_note",
|
||
|
"hz_to_midi",
|
||
|
"hz_to_mel",
|
||
|
"hz_to_octs",
|
||
|
"hz_to_fjs",
|
||
|
"mel_to_hz",
|
||
|
"octs_to_hz",
|
||
|
"A4_to_tuning",
|
||
|
"tuning_to_A4",
|
||
|
"fft_frequencies",
|
||
|
"cqt_frequencies",
|
||
|
"mel_frequencies",
|
||
|
"tempo_frequencies",
|
||
|
"fourier_tempo_frequencies",
|
||
|
"A_weighting",
|
||
|
"B_weighting",
|
||
|
"C_weighting",
|
||
|
"D_weighting",
|
||
|
"Z_weighting",
|
||
|
"frequency_weighting",
|
||
|
"multi_frequency_weighting",
|
||
|
"samples_like",
|
||
|
"times_like",
|
||
|
"midi_to_svara_h",
|
||
|
"midi_to_svara_c",
|
||
|
"note_to_svara_h",
|
||
|
"note_to_svara_c",
|
||
|
"hz_to_svara_h",
|
||
|
"hz_to_svara_c",
|
||
|
]
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def frames_to_samples(
|
||
|
frames: _IntLike_co, *, hop_length: int = 512, n_fft: Optional[int] = None
|
||
|
) -> np.integer[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def frames_to_samples(
|
||
|
frames: _SequenceLike[_IntLike_co],
|
||
|
*,
|
||
|
hop_length: int = 512,
|
||
|
n_fft: Optional[int] = None,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
def frames_to_samples(
|
||
|
frames: _ScalarOrSequence[_IntLike_co],
|
||
|
*,
|
||
|
hop_length: int = 512,
|
||
|
n_fft: Optional[int] = None,
|
||
|
) -> Union[np.integer[Any], np.ndarray]:
|
||
|
"""Convert frame indices to audio sample indices.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frames : number or np.ndarray [shape=(n,)]
|
||
|
frame index or vector of frame indices
|
||
|
hop_length : int > 0 [scalar]
|
||
|
number of samples between successive frames
|
||
|
n_fft : None or int > 0 [scalar]
|
||
|
Optional: length of the FFT window.
|
||
|
If given, time conversion will include an offset of ``n_fft // 2``
|
||
|
to counteract windowing effects when using a non-centered STFT.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
times : number or np.ndarray
|
||
|
time (in samples) of each given frame number::
|
||
|
|
||
|
times[i] = frames[i] * hop_length
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
frames_to_time : convert frame indices to time values
|
||
|
samples_to_frames : convert sample indices to frame indices
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> y, sr = librosa.load(librosa.ex('choice'))
|
||
|
>>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr)
|
||
|
>>> beat_samples = librosa.frames_to_samples(beats)
|
||
|
"""
|
||
|
offset = 0
|
||
|
if n_fft is not None:
|
||
|
offset = int(n_fft // 2)
|
||
|
|
||
|
return (np.asanyarray(frames) * hop_length + offset).astype(int)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def samples_to_frames(
|
||
|
samples: _IntLike_co, *, hop_length: int = ..., n_fft: Optional[int] = ...
|
||
|
) -> np.integer[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def samples_to_frames(
|
||
|
samples: _SequenceLike[_IntLike_co],
|
||
|
*,
|
||
|
hop_length: int = ...,
|
||
|
n_fft: Optional[int] = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def samples_to_frames(
|
||
|
samples: _ScalarOrSequence[_IntLike_co],
|
||
|
*,
|
||
|
hop_length: int = ...,
|
||
|
n_fft: Optional[int] = ...,
|
||
|
) -> Union[np.integer[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def samples_to_frames(
|
||
|
samples: _ScalarOrSequence[_IntLike_co],
|
||
|
*,
|
||
|
hop_length: int = 512,
|
||
|
n_fft: Optional[int] = None,
|
||
|
) -> Union[np.integer[Any], np.ndarray]:
|
||
|
"""Convert sample indices into STFT frames.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> # Get the frame numbers for every 256 samples
|
||
|
>>> librosa.samples_to_frames(np.arange(0, 22050, 256))
|
||
|
array([ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
|
||
|
7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
|
||
|
14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
|
||
|
21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
|
||
|
28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34,
|
||
|
35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41,
|
||
|
42, 42, 43])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
samples : int or np.ndarray [shape=(n,)]
|
||
|
sample index or vector of sample indices
|
||
|
|
||
|
hop_length : int > 0 [scalar]
|
||
|
number of samples between successive frames
|
||
|
|
||
|
n_fft : None or int > 0 [scalar]
|
||
|
Optional: length of the FFT window.
|
||
|
If given, time conversion will include an offset of ``- n_fft // 2``
|
||
|
to counteract windowing effects in STFT.
|
||
|
|
||
|
.. note:: This may result in negative frame indices.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frames : int or np.ndarray [shape=(n,), dtype=int]
|
||
|
Frame numbers corresponding to the given times::
|
||
|
|
||
|
frames[i] = floor( samples[i] / hop_length )
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
samples_to_time : convert sample indices to time values
|
||
|
frames_to_samples : convert frame indices to sample indices
|
||
|
"""
|
||
|
offset = 0
|
||
|
if n_fft is not None:
|
||
|
offset = int(n_fft // 2)
|
||
|
|
||
|
samples = np.asanyarray(samples)
|
||
|
return np.asarray(np.floor((samples - offset) // hop_length), dtype=int)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def frames_to_time(
|
||
|
frames: _IntLike_co,
|
||
|
*,
|
||
|
sr: float = ...,
|
||
|
hop_length: int = ...,
|
||
|
n_fft: Optional[int] = ...,
|
||
|
) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def frames_to_time(
|
||
|
frames: _SequenceLike[_IntLike_co],
|
||
|
*,
|
||
|
sr: float = ...,
|
||
|
hop_length: int = ...,
|
||
|
n_fft: Optional[int] = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def frames_to_time(
|
||
|
frames: _ScalarOrSequence[_IntLike_co],
|
||
|
*,
|
||
|
sr: float = ...,
|
||
|
hop_length: int = ...,
|
||
|
n_fft: Optional[int] = ...,
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def frames_to_time(
|
||
|
frames: _ScalarOrSequence[_IntLike_co],
|
||
|
*,
|
||
|
sr: float = 22050,
|
||
|
hop_length: int = 512,
|
||
|
n_fft: Optional[int] = None,
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
"""Convert frame counts to time (seconds).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frames : np.ndarray [shape=(n,)]
|
||
|
frame index or vector of frame indices
|
||
|
sr : number > 0 [scalar]
|
||
|
audio sampling rate
|
||
|
hop_length : int > 0 [scalar]
|
||
|
number of samples between successive frames
|
||
|
n_fft : None or int > 0 [scalar]
|
||
|
Optional: length of the FFT window.
|
||
|
If given, time conversion will include an offset of ``n_fft // 2``
|
||
|
to counteract windowing effects when using a non-centered STFT.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
times : np.ndarray [shape=(n,)]
|
||
|
time (in seconds) of each given frame number::
|
||
|
|
||
|
times[i] = frames[i] * hop_length / sr
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
time_to_frames : convert time values to frame indices
|
||
|
frames_to_samples : convert frame indices to sample indices
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> y, sr = librosa.load(librosa.ex('choice'))
|
||
|
>>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr)
|
||
|
>>> beat_times = librosa.frames_to_time(beats, sr=sr)
|
||
|
"""
|
||
|
samples = frames_to_samples(frames, hop_length=hop_length, n_fft=n_fft)
|
||
|
|
||
|
return samples_to_time(samples, sr=sr)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def time_to_frames(
|
||
|
times: _FloatLike_co,
|
||
|
*,
|
||
|
sr: float = ...,
|
||
|
hop_length: int = ...,
|
||
|
n_fft: Optional[int] = ...,
|
||
|
) -> np.integer[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def time_to_frames(
|
||
|
times: _SequenceLike[_FloatLike_co],
|
||
|
*,
|
||
|
sr: float = ...,
|
||
|
hop_length: int = ...,
|
||
|
n_fft: Optional[int] = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def time_to_frames(
|
||
|
times: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
sr: float = ...,
|
||
|
hop_length: int = ...,
|
||
|
n_fft: Optional[int] = ...,
|
||
|
) -> Union[np.integer[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def time_to_frames(
|
||
|
times: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
sr: float = 22050,
|
||
|
hop_length: int = 512,
|
||
|
n_fft: Optional[int] = None,
|
||
|
) -> Union[np.integer[Any], np.ndarray]:
|
||
|
"""Convert time stamps into STFT frames.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
times : np.ndarray [shape=(n,)]
|
||
|
time (in seconds) or vector of time values
|
||
|
|
||
|
sr : number > 0 [scalar]
|
||
|
audio sampling rate
|
||
|
|
||
|
hop_length : int > 0 [scalar]
|
||
|
number of samples between successive frames
|
||
|
|
||
|
n_fft : None or int > 0 [scalar]
|
||
|
Optional: length of the FFT window.
|
||
|
If given, time conversion will include an offset of ``- n_fft // 2``
|
||
|
to counteract windowing effects in STFT.
|
||
|
|
||
|
.. note:: This may result in negative frame indices.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frames : np.ndarray [shape=(n,), dtype=int]
|
||
|
Frame numbers corresponding to the given times::
|
||
|
|
||
|
frames[i] = floor( times[i] * sr / hop_length )
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
frames_to_time : convert frame indices to time values
|
||
|
time_to_samples : convert time values to sample indices
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get the frame numbers for every 100ms
|
||
|
|
||
|
>>> librosa.time_to_frames(np.arange(0, 1, 0.1),
|
||
|
... sr=22050, hop_length=512)
|
||
|
array([ 0, 4, 8, 12, 17, 21, 25, 30, 34, 38])
|
||
|
"""
|
||
|
samples = time_to_samples(times, sr=sr)
|
||
|
|
||
|
return samples_to_frames(samples, hop_length=hop_length, n_fft=n_fft)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def time_to_samples(times: _FloatLike_co, *, sr: float = ...) -> np.integer[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def time_to_samples(
|
||
|
times: _SequenceLike[_FloatLike_co], *, sr: float = ...
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def time_to_samples(
|
||
|
times: _ScalarOrSequence[_FloatLike_co], *, sr: float = ...
|
||
|
) -> Union[np.integer[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def time_to_samples(
|
||
|
times: _ScalarOrSequence[_FloatLike_co], *, sr: float = 22050
|
||
|
) -> Union[np.integer[Any], np.ndarray]:
|
||
|
"""Convert timestamps (in seconds) to sample indices.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
times : number or np.ndarray
|
||
|
Time value or array of time values (in seconds)
|
||
|
sr : number > 0
|
||
|
Sampling rate
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
samples : int or np.ndarray [shape=times.shape, dtype=int]
|
||
|
Sample indices corresponding to values in ``times``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
time_to_frames : convert time values to frame indices
|
||
|
samples_to_time : convert sample indices to time values
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.time_to_samples(np.arange(0, 1, 0.1), sr=22050)
|
||
|
array([ 0, 2205, 4410, 6615, 8820, 11025, 13230, 15435,
|
||
|
17640, 19845])
|
||
|
"""
|
||
|
return (np.asanyarray(times) * sr).astype(int)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def samples_to_time(samples: _IntLike_co, *, sr: float = ...) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def samples_to_time(
|
||
|
samples: _SequenceLike[_IntLike_co], *, sr: float = ...
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def samples_to_time(
|
||
|
samples: _ScalarOrSequence[_IntLike_co], *, sr: float = ...
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def samples_to_time(
|
||
|
samples: _ScalarOrSequence[_IntLike_co], *, sr: float = 22050
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
"""Convert sample indices to time (in seconds).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
samples : np.ndarray
|
||
|
Sample index or array of sample indices
|
||
|
sr : number > 0
|
||
|
Sampling rate
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
times : np.ndarray [shape=samples.shape]
|
||
|
Time values corresponding to ``samples`` (in seconds)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
samples_to_frames : convert sample indices to frame indices
|
||
|
time_to_samples : convert time values to sample indices
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get timestamps corresponding to every 512 samples
|
||
|
|
||
|
>>> librosa.samples_to_time(np.arange(0, 22050, 512))
|
||
|
array([ 0. , 0.023, 0.046, 0.07 , 0.093, 0.116, 0.139,
|
||
|
0.163, 0.186, 0.209, 0.232, 0.255, 0.279, 0.302,
|
||
|
0.325, 0.348, 0.372, 0.395, 0.418, 0.441, 0.464,
|
||
|
0.488, 0.511, 0.534, 0.557, 0.58 , 0.604, 0.627,
|
||
|
0.65 , 0.673, 0.697, 0.72 , 0.743, 0.766, 0.789,
|
||
|
0.813, 0.836, 0.859, 0.882, 0.906, 0.929, 0.952,
|
||
|
0.975, 0.998])
|
||
|
"""
|
||
|
return np.asanyarray(samples) / float(sr)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def blocks_to_frames(blocks: _IntLike_co, *, block_length: int) -> np.integer[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def blocks_to_frames(
|
||
|
blocks: _SequenceLike[_IntLike_co], *, block_length: int
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def blocks_to_frames(
|
||
|
blocks: _ScalarOrSequence[_IntLike_co], *, block_length: int
|
||
|
) -> Union[np.integer[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def blocks_to_frames(
|
||
|
blocks: _ScalarOrSequence[_IntLike_co], *, block_length: int
|
||
|
) -> Union[np.integer[Any], np.ndarray]:
|
||
|
"""Convert block indices to frame indices
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
blocks : np.ndarray
|
||
|
Block index or array of block indices
|
||
|
block_length : int > 0
|
||
|
The number of frames per block
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frames : np.ndarray [shape=samples.shape, dtype=int]
|
||
|
The index or indices of frames corresponding to the beginning
|
||
|
of each provided block.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
blocks_to_samples
|
||
|
blocks_to_time
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get frame indices for each block in a stream
|
||
|
|
||
|
>>> filename = librosa.ex('brahms')
|
||
|
>>> sr = librosa.get_samplerate(filename)
|
||
|
>>> stream = librosa.stream(filename, block_length=16,
|
||
|
... frame_length=2048, hop_length=512)
|
||
|
>>> for n, y in enumerate(stream):
|
||
|
... n_frame = librosa.blocks_to_frames(n, block_length=16)
|
||
|
|
||
|
"""
|
||
|
return block_length * np.asanyarray(blocks)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def blocks_to_samples(
|
||
|
blocks: _IntLike_co, *, block_length: int, hop_length: int
|
||
|
) -> np.integer[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def blocks_to_samples(
|
||
|
blocks: _SequenceLike[_IntLike_co], *, block_length: int, hop_length: int
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def blocks_to_samples(
|
||
|
blocks: _ScalarOrSequence[_IntLike_co], *, block_length: int, hop_length: int
|
||
|
) -> Union[np.integer[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def blocks_to_samples(
|
||
|
blocks: _ScalarOrSequence[_IntLike_co], *, block_length: int, hop_length: int
|
||
|
) -> Union[np.integer[Any], np.ndarray]:
|
||
|
"""Convert block indices to sample indices
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
blocks : np.ndarray
|
||
|
Block index or array of block indices
|
||
|
block_length : int > 0
|
||
|
The number of frames per block
|
||
|
hop_length : int > 0
|
||
|
The number of samples to advance between frames
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
samples : np.ndarray [shape=samples.shape, dtype=int]
|
||
|
The index or indices of samples corresponding to the beginning
|
||
|
of each provided block.
|
||
|
|
||
|
Note that these correspond to the *first* sample index in
|
||
|
each block, and are not frame-centered.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
blocks_to_frames
|
||
|
blocks_to_time
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get sample indices for each block in a stream
|
||
|
|
||
|
>>> filename = librosa.ex('brahms')
|
||
|
>>> sr = librosa.get_samplerate(filename)
|
||
|
>>> stream = librosa.stream(filename, block_length=16,
|
||
|
... frame_length=2048, hop_length=512)
|
||
|
>>> for n, y in enumerate(stream):
|
||
|
... n_sample = librosa.blocks_to_samples(n, block_length=16,
|
||
|
... hop_length=512)
|
||
|
|
||
|
"""
|
||
|
frames = blocks_to_frames(blocks, block_length=block_length)
|
||
|
return frames_to_samples(frames, hop_length=hop_length)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def blocks_to_time(
|
||
|
blocks: _IntLike_co, *, block_length: int, hop_length: int, sr: int
|
||
|
) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def blocks_to_time(
|
||
|
blocks: _SequenceLike[_IntLike_co], *, block_length: int, hop_length: int, sr: int
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def blocks_to_time(
|
||
|
blocks: _ScalarOrSequence[_IntLike_co],
|
||
|
*,
|
||
|
block_length: int,
|
||
|
hop_length: int,
|
||
|
sr: int,
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def blocks_to_time(
|
||
|
blocks: _ScalarOrSequence[_IntLike_co],
|
||
|
*,
|
||
|
block_length: int,
|
||
|
hop_length: int,
|
||
|
sr: int,
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
"""Convert block indices to time (in seconds)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
blocks : np.ndarray
|
||
|
Block index or array of block indices
|
||
|
block_length : int > 0
|
||
|
The number of frames per block
|
||
|
hop_length : int > 0
|
||
|
The number of samples to advance between frames
|
||
|
sr : int > 0
|
||
|
The sampling rate (samples per second)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
times : np.ndarray [shape=samples.shape]
|
||
|
The time index or indices (in seconds) corresponding to the
|
||
|
beginning of each provided block.
|
||
|
|
||
|
Note that these correspond to the time of the *first* sample
|
||
|
in each block, and are not frame-centered.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
blocks_to_frames
|
||
|
blocks_to_samples
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get time indices for each block in a stream
|
||
|
|
||
|
>>> filename = librosa.ex('brahms')
|
||
|
>>> sr = librosa.get_samplerate(filename)
|
||
|
>>> stream = librosa.stream(filename, block_length=16,
|
||
|
... frame_length=2048, hop_length=512)
|
||
|
>>> for n, y in enumerate(stream):
|
||
|
... n_time = librosa.blocks_to_time(n, block_length=16,
|
||
|
... hop_length=512, sr=sr)
|
||
|
|
||
|
"""
|
||
|
samples = blocks_to_samples(
|
||
|
blocks, block_length=block_length, hop_length=hop_length
|
||
|
)
|
||
|
return samples_to_time(samples, sr=sr)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_hz(note: str, **kwargs: Any) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_hz(note: _IterableLike[str], **kwargs: Any) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_hz(
|
||
|
note: Union[str, _IterableLike[str], Iterable[str]], **kwargs: Any
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def note_to_hz(
|
||
|
note: Union[str, _IterableLike[str], Iterable[str]], **kwargs: Any
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
"""Convert one or more note names to frequency (Hz)
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> # Get the frequency of a note
|
||
|
>>> librosa.note_to_hz('C')
|
||
|
array([ 16.352])
|
||
|
>>> # Or multiple notes
|
||
|
>>> librosa.note_to_hz(['A3', 'A4', 'A5'])
|
||
|
array([ 220., 440., 880.])
|
||
|
>>> # Or notes with tuning deviations
|
||
|
>>> librosa.note_to_hz('C2-32', round_midi=False)
|
||
|
array([ 64.209])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
note : str or iterable of str
|
||
|
One or more note names to convert
|
||
|
**kwargs : additional keyword arguments
|
||
|
Additional parameters to `note_to_midi`
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frequencies : number or np.ndarray [shape=(len(note),)]
|
||
|
Array of frequencies (in Hz) corresponding to ``note``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
midi_to_hz
|
||
|
note_to_midi
|
||
|
hz_to_note
|
||
|
"""
|
||
|
return midi_to_hz(note_to_midi(note, **kwargs))
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_midi(note: str, *, round_midi: bool = ...) -> Union[float, int]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_midi(note: _IterableLike[str], *, round_midi: bool = ...) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_midi(
|
||
|
note: Union[str, _IterableLike[str], Iterable[str]], *, round_midi: bool = ...
|
||
|
) -> Union[float, int, np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def note_to_midi(
|
||
|
note: Union[str, _IterableLike[str], Iterable[str]], *, round_midi: bool = True
|
||
|
) -> Union[float, np.ndarray]:
|
||
|
"""Convert one or more spelled notes to MIDI number(s).
|
||
|
|
||
|
Notes may be spelled out with optional accidentals or octave numbers.
|
||
|
|
||
|
The leading note name is case-insensitive.
|
||
|
|
||
|
Sharps are indicated with ``#``, flats may be indicated with ``!`` or ``b``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
note : str or iterable of str
|
||
|
One or more note names.
|
||
|
round_midi : bool
|
||
|
- If ``True``, midi numbers are rounded to the nearest integer.
|
||
|
- If ``False``, allow fractional midi numbers.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
midi : float or np.array
|
||
|
Midi note numbers corresponding to inputs.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ParameterError
|
||
|
If the input is not in valid note format
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
midi_to_note
|
||
|
note_to_hz
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.note_to_midi('C')
|
||
|
12
|
||
|
>>> librosa.note_to_midi('C#3')
|
||
|
49
|
||
|
>>> librosa.note_to_midi('C♯3') # Using Unicode sharp
|
||
|
49
|
||
|
>>> librosa.note_to_midi('C♭3') # Using Unicode flat
|
||
|
47
|
||
|
>>> librosa.note_to_midi('f4')
|
||
|
65
|
||
|
>>> librosa.note_to_midi('Bb-1')
|
||
|
10
|
||
|
>>> librosa.note_to_midi('A!8')
|
||
|
116
|
||
|
>>> librosa.note_to_midi('G𝄪6') # Double-sharp
|
||
|
93
|
||
|
>>> librosa.note_to_midi('B𝄫6') # Double-flat
|
||
|
93
|
||
|
>>> librosa.note_to_midi('C♭𝄫5') # Triple-flats also work
|
||
|
69
|
||
|
>>> # Lists of notes also work
|
||
|
>>> librosa.note_to_midi(['C', 'E', 'G'])
|
||
|
array([12, 16, 19])
|
||
|
"""
|
||
|
if not isinstance(note, str):
|
||
|
return np.array([note_to_midi(n, round_midi=round_midi) for n in note])
|
||
|
|
||
|
pitch_map: Dict[str, int] = {
|
||
|
"C": 0,
|
||
|
"D": 2,
|
||
|
"E": 4,
|
||
|
"F": 5,
|
||
|
"G": 7,
|
||
|
"A": 9,
|
||
|
"B": 11,
|
||
|
}
|
||
|
acc_map: Dict[str, int] = {
|
||
|
"#": 1,
|
||
|
"": 0,
|
||
|
"b": -1,
|
||
|
"!": -1,
|
||
|
"♯": 1,
|
||
|
"𝄪": 2,
|
||
|
"♭": -1,
|
||
|
"𝄫": -2,
|
||
|
"♮": 0,
|
||
|
}
|
||
|
|
||
|
match = notation.NOTE_RE.match(note)
|
||
|
|
||
|
if not match:
|
||
|
raise ParameterError(f"Improper note format: {note:s}")
|
||
|
|
||
|
pitch = match.group("note").upper()
|
||
|
offset = np.sum([acc_map[o] for o in match.group("accidental")])
|
||
|
octave = match.group("octave")
|
||
|
cents = match.group("cents")
|
||
|
|
||
|
if not octave:
|
||
|
octave = 0
|
||
|
else:
|
||
|
octave = int(octave)
|
||
|
|
||
|
if not cents:
|
||
|
cents = 0
|
||
|
else:
|
||
|
cents = int(cents) * 1e-2
|
||
|
|
||
|
note_value: float = 12 * (octave + 1) + pitch_map[pitch] + offset + cents
|
||
|
|
||
|
if round_midi:
|
||
|
return int(np.round(note_value))
|
||
|
else:
|
||
|
return note_value
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_note(
|
||
|
midi: _FloatLike_co,
|
||
|
*,
|
||
|
octave: bool = ...,
|
||
|
cents: bool = ...,
|
||
|
key: str = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> str:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_note(
|
||
|
midi: _SequenceLike[_FloatLike_co],
|
||
|
*,
|
||
|
octave: bool = ...,
|
||
|
cents: bool = ...,
|
||
|
key: str = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_note(
|
||
|
midi: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
octave: bool = ...,
|
||
|
cents: bool = ...,
|
||
|
key: str = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@vectorize(excluded=["octave", "cents", "key", "unicode"])
|
||
|
def midi_to_note(
|
||
|
midi: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
octave: bool = True,
|
||
|
cents: bool = False,
|
||
|
key: str = "C:maj",
|
||
|
unicode: bool = True,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
"""Convert one or more MIDI numbers to note strings.
|
||
|
|
||
|
MIDI numbers will be rounded to the nearest integer.
|
||
|
|
||
|
Notes will be of the format 'C0', 'C♯0', 'D0', ...
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.midi_to_note(0)
|
||
|
'C-1'
|
||
|
|
||
|
>>> librosa.midi_to_note(37)
|
||
|
'C♯2'
|
||
|
|
||
|
>>> librosa.midi_to_note(37, unicode=False)
|
||
|
'C#2'
|
||
|
|
||
|
>>> librosa.midi_to_note(-2)
|
||
|
'A♯-2'
|
||
|
|
||
|
>>> librosa.midi_to_note(104.7)
|
||
|
'A7'
|
||
|
|
||
|
>>> librosa.midi_to_note(104.7, cents=True)
|
||
|
'A7-30'
|
||
|
|
||
|
>>> librosa.midi_to_note(np.arange(12, 24)))
|
||
|
array(['C0', 'C♯0', 'D0', 'D♯0', 'E0', 'F0', 'F♯0', 'G0', 'G♯0', 'A0',
|
||
|
'A♯0', 'B0'], dtype='<U3')
|
||
|
|
||
|
Use a key signature to resolve enharmonic equivalences
|
||
|
|
||
|
>>> librosa.midi_to_note(range(12, 24), key='F:min')
|
||
|
array(['C0', 'D♭0', 'D0', 'E♭0', 'E0', 'F0', 'G♭0', 'G0', 'A♭0', 'A0',
|
||
|
'B♭0', 'B0'], dtype='<U3')
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
midi : int or iterable of int
|
||
|
Midi numbers to convert.
|
||
|
|
||
|
octave : bool
|
||
|
If True, include the octave number
|
||
|
|
||
|
cents : bool
|
||
|
If true, cent markers will be appended for fractional notes.
|
||
|
Eg, ``midi_to_note(69.3, cents=True) == 'A4+03'``
|
||
|
|
||
|
key : str
|
||
|
A key signature to use when resolving enharmonic equivalences.
|
||
|
|
||
|
unicode : bool
|
||
|
If ``True`` (default), accidentals will use Unicode notation: ♭ or ♯
|
||
|
|
||
|
If ``False``, accidentals will use ASCII-compatible notation: b or #
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
notes : str or np.ndarray of str
|
||
|
Strings describing each midi note.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ParameterError
|
||
|
if ``cents`` is True and ``octave`` is False
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
midi_to_hz
|
||
|
note_to_midi
|
||
|
hz_to_note
|
||
|
key_to_notes
|
||
|
"""
|
||
|
if cents and not octave:
|
||
|
raise ParameterError("Cannot encode cents without octave information.")
|
||
|
|
||
|
note_map = notation.key_to_notes(key=key, unicode=unicode)
|
||
|
|
||
|
# mypy does not understand vectorization, suppress type checks
|
||
|
note_num = int(np.round(midi)) # type: ignore
|
||
|
note_cents = int(100 * np.around(midi - note_num, 2)) # type: ignore
|
||
|
|
||
|
note = note_map[note_num % 12]
|
||
|
|
||
|
if octave:
|
||
|
note = "{:s}{:0d}".format(note, int(note_num / 12) - 1)
|
||
|
if cents:
|
||
|
note = f"{note:s}{note_cents:+02d}"
|
||
|
|
||
|
return note
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_hz(notes: _FloatLike_co) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_hz(notes: _SequenceLike[_FloatLike_co]) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_hz(
|
||
|
notes: _ScalarOrSequence[_FloatLike_co],
|
||
|
) -> Union[np.ndarray, np.floating[Any]]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def midi_to_hz(
|
||
|
notes: _ScalarOrSequence[_FloatLike_co],
|
||
|
) -> Union[np.ndarray, np.floating[Any]]:
|
||
|
"""Get the frequency (Hz) of MIDI note(s)
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.midi_to_hz(36)
|
||
|
65.406
|
||
|
|
||
|
>>> librosa.midi_to_hz(np.arange(36, 48))
|
||
|
array([ 65.406, 69.296, 73.416, 77.782, 82.407,
|
||
|
87.307, 92.499, 97.999, 103.826, 110. ,
|
||
|
116.541, 123.471])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
notes : int or np.ndarray [shape=(n,), dtype=int]
|
||
|
midi number(s) of the note(s)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frequency : number or np.ndarray [shape=(n,), dtype=float]
|
||
|
frequency (frequencies) of ``notes`` in Hz
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hz_to_midi
|
||
|
note_to_hz
|
||
|
"""
|
||
|
return 440.0 * (2.0 ** ((np.asanyarray(notes) - 69.0) / 12.0))
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_midi(frequencies: _FloatLike_co) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_midi(frequencies: _SequenceLike[_FloatLike_co]) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_midi(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co],
|
||
|
) -> Union[np.ndarray, np.floating[Any]]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def hz_to_midi(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co],
|
||
|
) -> Union[np.ndarray, np.floating[Any]]:
|
||
|
"""Get MIDI note number(s) for given frequencies
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.hz_to_midi(60)
|
||
|
34.506
|
||
|
>>> librosa.hz_to_midi([110, 220, 440])
|
||
|
array([ 45., 57., 69.])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : float or np.ndarray [shape=(n,), dtype=float]
|
||
|
frequencies to convert
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
note_nums : number or np.ndarray [shape=(n,), dtype=float]
|
||
|
MIDI notes to ``frequencies``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
midi_to_hz
|
||
|
note_to_midi
|
||
|
hz_to_note
|
||
|
"""
|
||
|
midi: np.ndarray = 12 * (np.log2(np.asanyarray(frequencies)) - np.log2(440.0)) + 69
|
||
|
return midi
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_note(frequencies: _FloatLike_co, **kwargs: Any) -> str:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_note(frequencies: _SequenceLike[_FloatLike_co], **kwargs: Any) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_note(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], **kwargs: Any
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def hz_to_note(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], **kwargs: Any
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
"""Convert one or more frequencies (in Hz) to the nearest note names.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : float or iterable of float
|
||
|
Input frequencies, specified in Hz
|
||
|
**kwargs : additional keyword arguments
|
||
|
Arguments passed through to `midi_to_note`
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
notes : str or np.ndarray of str
|
||
|
``notes[i]`` is the closest note name to ``frequency[i]``
|
||
|
(or ``frequency`` if the input is scalar)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hz_to_midi
|
||
|
midi_to_note
|
||
|
note_to_hz
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get a single note name for a frequency
|
||
|
|
||
|
>>> librosa.hz_to_note(440.0)
|
||
|
'A5'
|
||
|
|
||
|
Get multiple notes with cent deviation
|
||
|
|
||
|
>>> librosa.hz_to_note([32, 64], cents=True)
|
||
|
['C1-38', 'C2-38']
|
||
|
|
||
|
Get multiple notes, but suppress octave labels
|
||
|
|
||
|
>>> librosa.hz_to_note(440.0 * (2.0 ** np.linspace(0, 1, 12)),
|
||
|
... octave=False)
|
||
|
['A', 'A#', 'B', 'C', 'C#', 'D', 'E', 'F', 'F#', 'G', 'G#', 'A']
|
||
|
|
||
|
"""
|
||
|
return midi_to_note(hz_to_midi(frequencies), **kwargs)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_mel(frequencies: _FloatLike_co, *, htk: bool = ...) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_mel(
|
||
|
frequencies: _SequenceLike[_FloatLike_co], *, htk: bool = ...
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_mel(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, htk: bool = ...
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def hz_to_mel(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, htk: bool = False
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
"""Convert Hz to Mels
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.hz_to_mel(60)
|
||
|
0.9
|
||
|
>>> librosa.hz_to_mel([110, 220, 440])
|
||
|
array([ 1.65, 3.3 , 6.6 ])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : number or np.ndarray [shape=(n,)] , float
|
||
|
scalar or array of frequencies
|
||
|
htk : bool
|
||
|
use HTK formula instead of Slaney
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mels : number or np.ndarray [shape=(n,)]
|
||
|
input frequencies in Mels
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
mel_to_hz
|
||
|
"""
|
||
|
frequencies = np.asanyarray(frequencies)
|
||
|
|
||
|
if htk:
|
||
|
mels: np.ndarray = 2595.0 * np.log10(1.0 + frequencies / 700.0)
|
||
|
return mels
|
||
|
|
||
|
# Fill in the linear part
|
||
|
f_min = 0.0
|
||
|
f_sp = 200.0 / 3
|
||
|
|
||
|
mels = (frequencies - f_min) / f_sp
|
||
|
|
||
|
# Fill in the log-scale part
|
||
|
|
||
|
min_log_hz = 1000.0 # beginning of log region (Hz)
|
||
|
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
|
||
|
logstep = np.log(6.4) / 27.0 # step size for log region
|
||
|
|
||
|
if frequencies.ndim:
|
||
|
# If we have array data, vectorize
|
||
|
log_t = frequencies >= min_log_hz
|
||
|
mels[log_t] = min_log_mel + np.log(frequencies[log_t] / min_log_hz) / logstep
|
||
|
elif frequencies >= min_log_hz:
|
||
|
# If we have scalar data, heck directly
|
||
|
mels = min_log_mel + np.log(frequencies / min_log_hz) / logstep
|
||
|
|
||
|
return mels
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def mel_to_hz(mels: _FloatLike_co, *, htk: bool = ...) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def mel_to_hz(mels: _SequenceLike[_FloatLike_co], *, htk: bool = ...) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def mel_to_hz(
|
||
|
mels: _ScalarOrSequence[_FloatLike_co], *, htk: bool = ...
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def mel_to_hz(
|
||
|
mels: _ScalarOrSequence[_FloatLike_co], *, htk: bool = False
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
"""Convert mel bin numbers to frequencies
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.mel_to_hz(3)
|
||
|
200.
|
||
|
|
||
|
>>> librosa.mel_to_hz([1,2,3,4,5])
|
||
|
array([ 66.667, 133.333, 200. , 266.667, 333.333])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mels : np.ndarray [shape=(n,)], float
|
||
|
mel bins to convert
|
||
|
htk : bool
|
||
|
use HTK formula instead of Slaney
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frequencies : np.ndarray [shape=(n,)]
|
||
|
input mels in Hz
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hz_to_mel
|
||
|
"""
|
||
|
mels = np.asanyarray(mels)
|
||
|
|
||
|
if htk:
|
||
|
return 700.0 * (10.0 ** (mels / 2595.0) - 1.0)
|
||
|
|
||
|
# Fill in the linear scale
|
||
|
f_min = 0.0
|
||
|
f_sp = 200.0 / 3
|
||
|
freqs = f_min + f_sp * mels
|
||
|
|
||
|
# And now the nonlinear scale
|
||
|
min_log_hz = 1000.0 # beginning of log region (Hz)
|
||
|
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
|
||
|
logstep = np.log(6.4) / 27.0 # step size for log region
|
||
|
|
||
|
if mels.ndim:
|
||
|
# If we have vector data, vectorize
|
||
|
log_t = mels >= min_log_mel
|
||
|
freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
|
||
|
elif mels >= min_log_mel:
|
||
|
# If we have scalar data, check directly
|
||
|
freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel))
|
||
|
|
||
|
return freqs
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_octs(
|
||
|
frequencies: _FloatLike_co, *, tuning: float = ..., bins_per_octave: int = ...
|
||
|
) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_octs(
|
||
|
frequencies: _SequenceLike[_FloatLike_co],
|
||
|
*,
|
||
|
tuning: float = ...,
|
||
|
bins_per_octave: int = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_octs(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
tuning: float = ...,
|
||
|
bins_per_octave: int = ...,
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def hz_to_octs(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
tuning: float = 0.0,
|
||
|
bins_per_octave: int = 12,
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
"""Convert frequencies (Hz) to (fractional) octave numbers.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.hz_to_octs(440.0)
|
||
|
4.
|
||
|
>>> librosa.hz_to_octs([32, 64, 128, 256])
|
||
|
array([ 0.219, 1.219, 2.219, 3.219])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : number >0 or np.ndarray [shape=(n,)] or float
|
||
|
scalar or vector of frequencies
|
||
|
tuning : float
|
||
|
Tuning deviation from A440 in (fractional) bins per octave.
|
||
|
bins_per_octave : int > 0
|
||
|
Number of bins per octave.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
octaves : number or np.ndarray [shape=(n,)]
|
||
|
octave number for each frequency
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
octs_to_hz
|
||
|
"""
|
||
|
A440 = 440.0 * 2.0 ** (tuning / bins_per_octave)
|
||
|
|
||
|
octs: np.ndarray = np.log2(np.asanyarray(frequencies) / (float(A440) / 16))
|
||
|
return octs
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def octs_to_hz(
|
||
|
octs: _FloatLike_co, *, tuning: float = ..., bins_per_octave: int = ...
|
||
|
) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def octs_to_hz(
|
||
|
octs: _SequenceLike[_FloatLike_co],
|
||
|
*,
|
||
|
tuning: float = ...,
|
||
|
bins_per_octave: int = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def octs_to_hz(
|
||
|
octs: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
tuning: float = ...,
|
||
|
bins_per_octave: int = ...,
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def octs_to_hz(
|
||
|
octs: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
tuning: float = 0.0,
|
||
|
bins_per_octave: int = 12,
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
"""Convert octaves numbers to frequencies.
|
||
|
|
||
|
Octaves are counted relative to A.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.octs_to_hz(1)
|
||
|
55.
|
||
|
>>> librosa.octs_to_hz([-2, -1, 0, 1, 2])
|
||
|
array([ 6.875, 13.75 , 27.5 , 55. , 110. ])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
octs : np.ndarray [shape=(n,)] or float
|
||
|
octave number for each frequency
|
||
|
tuning : float
|
||
|
Tuning deviation from A440 in (fractional) bins per octave.
|
||
|
bins_per_octave : int > 0
|
||
|
Number of bins per octave.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frequencies : number or np.ndarray [shape=(n,)]
|
||
|
scalar or vector of frequencies
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hz_to_octs
|
||
|
"""
|
||
|
A440 = 440.0 * 2.0 ** (tuning / bins_per_octave)
|
||
|
|
||
|
return (float(A440) / 16) * (2.0 ** np.asanyarray(octs))
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def A4_to_tuning(A4: _FloatLike_co, *, bins_per_octave: int = ...) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def A4_to_tuning(
|
||
|
A4: _SequenceLike[_FloatLike_co], *, bins_per_octave: int = ...
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def A4_to_tuning(
|
||
|
A4: _ScalarOrSequence[_FloatLike_co], *, bins_per_octave: int = ...
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def A4_to_tuning(
|
||
|
A4: _ScalarOrSequence[_FloatLike_co], *, bins_per_octave: int = 12
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
"""Convert a reference pitch frequency (e.g., ``A4=435``) to a tuning
|
||
|
estimation, in fractions of a bin per octave.
|
||
|
|
||
|
This is useful for determining the tuning deviation relative to
|
||
|
A440 of a given frequency, assuming equal temperament. By default,
|
||
|
12 bins per octave are used.
|
||
|
|
||
|
This method is the inverse of `tuning_to_A4`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The base case of this method in which A440 yields 0 tuning offset
|
||
|
from itself.
|
||
|
|
||
|
>>> librosa.A4_to_tuning(440.0)
|
||
|
0.
|
||
|
|
||
|
Convert a non-A440 frequency to a tuning offset relative
|
||
|
to A440 using the default of 12 bins per octave.
|
||
|
|
||
|
>>> librosa.A4_to_tuning(432.0)
|
||
|
-0.318
|
||
|
|
||
|
Convert two reference pitch frequencies to corresponding
|
||
|
tuning estimations at once, but using 24 bins per octave.
|
||
|
|
||
|
>>> librosa.A4_to_tuning([440.0, 444.0], bins_per_octave=24)
|
||
|
array([ 0., 0.313 ])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A4 : float or np.ndarray [shape=(n,), dtype=float]
|
||
|
Reference frequency(s) corresponding to A4.
|
||
|
bins_per_octave : int > 0
|
||
|
Number of bins per octave.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
tuning : float or np.ndarray [shape=(n,), dtype=float]
|
||
|
Tuning deviation from A440 in (fractional) bins per octave.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
tuning_to_A4
|
||
|
"""
|
||
|
tuning: np.ndarray = bins_per_octave * (np.log2(np.asanyarray(A4)) - np.log2(440.0))
|
||
|
return tuning
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def tuning_to_A4(
|
||
|
tuning: _FloatLike_co, *, bins_per_octave: int = ...
|
||
|
) -> np.floating[Any]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def tuning_to_A4(
|
||
|
tuning: _SequenceLike[_FloatLike_co], *, bins_per_octave: int = ...
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def tuning_to_A4(
|
||
|
tuning: _ScalarOrSequence[_FloatLike_co], *, bins_per_octave: int = ...
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def tuning_to_A4(
|
||
|
tuning: _ScalarOrSequence[_FloatLike_co], *, bins_per_octave: int = 12
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
"""Convert a tuning deviation (from 0) in fractions of a bin per
|
||
|
octave (e.g., ``tuning=-0.1``) to a reference pitch frequency
|
||
|
relative to A440.
|
||
|
|
||
|
This is useful if you are working in a non-A440 tuning system
|
||
|
to determine the reference pitch frequency given a tuning
|
||
|
offset and assuming equal temperament. By default, 12 bins per
|
||
|
octave are used.
|
||
|
|
||
|
This method is the inverse of `A4_to_tuning`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The base case of this method in which a tuning deviation of 0
|
||
|
gets us to our A440 reference pitch.
|
||
|
|
||
|
>>> librosa.tuning_to_A4(0.0)
|
||
|
440.
|
||
|
|
||
|
Convert a nonzero tuning offset to its reference pitch frequency.
|
||
|
|
||
|
>>> librosa.tuning_to_A4(-0.318)
|
||
|
431.992
|
||
|
|
||
|
Convert 3 tuning deviations at once to respective reference
|
||
|
pitch frequencies, using 36 bins per octave.
|
||
|
|
||
|
>>> librosa.tuning_to_A4([0.1, 0.2, -0.1], bins_per_octave=36)
|
||
|
array([ 440.848, 441.698 439.154])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tuning : float or np.ndarray [shape=(n,), dtype=float]
|
||
|
Tuning deviation from A440 in fractional bins per octave.
|
||
|
bins_per_octave : int > 0
|
||
|
Number of bins per octave.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A4 : float or np.ndarray [shape=(n,), dtype=float]
|
||
|
Reference frequency corresponding to A4.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
A4_to_tuning
|
||
|
"""
|
||
|
return 440.0 * 2.0 ** (np.asanyarray(tuning) / bins_per_octave)
|
||
|
|
||
|
|
||
|
def fft_frequencies(*, sr: float = 22050, n_fft: int = 2048) -> np.ndarray:
|
||
|
"""Alternative implementation of `np.fft.fftfreq`
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sr : number > 0 [scalar]
|
||
|
Audio sampling rate
|
||
|
n_fft : int > 0 [scalar]
|
||
|
FFT window size
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
freqs : np.ndarray [shape=(1 + n_fft/2,)]
|
||
|
Frequencies ``(0, sr/n_fft, 2*sr/n_fft, ..., sr/2)``
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.fft_frequencies(sr=22050, n_fft=16)
|
||
|
array([ 0. , 1378.125, 2756.25 , 4134.375,
|
||
|
5512.5 , 6890.625, 8268.75 , 9646.875, 11025. ])
|
||
|
"""
|
||
|
return np.fft.rfftfreq(n=n_fft, d=1.0 / sr)
|
||
|
|
||
|
|
||
|
def cqt_frequencies(
|
||
|
n_bins: int, *, fmin: float, bins_per_octave: int = 12, tuning: float = 0.0
|
||
|
) -> np.ndarray:
|
||
|
"""Compute the center frequencies of Constant-Q bins.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> # Get the CQT frequencies for 24 notes, starting at C2
|
||
|
>>> librosa.cqt_frequencies(24, fmin=librosa.note_to_hz('C2'))
|
||
|
array([ 65.406, 69.296, 73.416, 77.782, 82.407, 87.307,
|
||
|
92.499, 97.999, 103.826, 110. , 116.541, 123.471,
|
||
|
130.813, 138.591, 146.832, 155.563, 164.814, 174.614,
|
||
|
184.997, 195.998, 207.652, 220. , 233.082, 246.942])
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_bins : int > 0 [scalar]
|
||
|
Number of constant-Q bins
|
||
|
fmin : float > 0 [scalar]
|
||
|
Minimum frequency
|
||
|
bins_per_octave : int > 0 [scalar]
|
||
|
Number of bins per octave
|
||
|
tuning : float
|
||
|
Deviation from A440 tuning in fractional bins
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frequencies : np.ndarray [shape=(n_bins,)]
|
||
|
Center frequency for each CQT bin
|
||
|
"""
|
||
|
correction: float = 2.0 ** (float(tuning) / bins_per_octave)
|
||
|
frequencies: np.ndarray = 2.0 ** (
|
||
|
np.arange(0, n_bins, dtype=float) / bins_per_octave
|
||
|
)
|
||
|
|
||
|
return correction * fmin * frequencies
|
||
|
|
||
|
|
||
|
def mel_frequencies(
|
||
|
n_mels: int = 128, *, fmin: float = 0.0, fmax: float = 11025.0, htk: bool = False
|
||
|
) -> np.ndarray:
|
||
|
"""Compute an array of acoustic frequencies tuned to the mel scale.
|
||
|
|
||
|
The mel scale is a quasi-logarithmic function of acoustic frequency
|
||
|
designed such that perceptually similar pitch intervals (e.g. octaves)
|
||
|
appear equal in width over the full hearing range.
|
||
|
|
||
|
Because the definition of the mel scale is conditioned by a finite number
|
||
|
of subjective psychoaoustical experiments, several implementations coexist
|
||
|
in the audio signal processing literature [#]_. By default, librosa replicates
|
||
|
the behavior of the well-established MATLAB Auditory Toolbox of Slaney [#]_.
|
||
|
According to this default implementation, the conversion from Hertz to mel is
|
||
|
linear below 1 kHz and logarithmic above 1 kHz. Another available implementation
|
||
|
replicates the Hidden Markov Toolkit [#]_ (HTK) according to the following formula::
|
||
|
|
||
|
mel = 2595.0 * np.log10(1.0 + f / 700.0).
|
||
|
|
||
|
The choice of implementation is determined by the ``htk`` keyword argument: setting
|
||
|
``htk=False`` leads to the Auditory toolbox implementation, whereas setting it ``htk=True``
|
||
|
leads to the HTK implementation.
|
||
|
|
||
|
.. [#] Umesh, S., Cohen, L., & Nelson, D. Fitting the mel scale.
|
||
|
In Proc. International Conference on Acoustics, Speech, and Signal Processing
|
||
|
(ICASSP), vol. 1, pp. 217-220, 1998.
|
||
|
|
||
|
.. [#] Slaney, M. Auditory Toolbox: A MATLAB Toolbox for Auditory
|
||
|
Modeling Work. Technical Report, version 2, Interval Research Corporation, 1998.
|
||
|
|
||
|
.. [#] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X.,
|
||
|
Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., & Woodland, P.
|
||
|
The HTK book, version 3.4. Cambridge University, March 2009.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hz_to_mel
|
||
|
mel_to_hz
|
||
|
librosa.feature.melspectrogram
|
||
|
librosa.feature.mfcc
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_mels : int > 0 [scalar]
|
||
|
Number of mel bins.
|
||
|
fmin : float >= 0 [scalar]
|
||
|
Minimum frequency (Hz).
|
||
|
fmax : float >= 0 [scalar]
|
||
|
Maximum frequency (Hz).
|
||
|
htk : bool
|
||
|
If True, use HTK formula to convert Hz to mel.
|
||
|
Otherwise (False), use Slaney's Auditory Toolbox.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bin_frequencies : ndarray [shape=(n_mels,)]
|
||
|
Vector of ``n_mels`` frequencies in Hz which are uniformly spaced on the Mel
|
||
|
axis.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.mel_frequencies(n_mels=40)
|
||
|
array([ 0. , 85.317, 170.635, 255.952,
|
||
|
341.269, 426.586, 511.904, 597.221,
|
||
|
682.538, 767.855, 853.173, 938.49 ,
|
||
|
1024.856, 1119.114, 1222.042, 1334.436,
|
||
|
1457.167, 1591.187, 1737.532, 1897.337,
|
||
|
2071.84 , 2262.393, 2470.47 , 2697.686,
|
||
|
2945.799, 3216.731, 3512.582, 3835.643,
|
||
|
4188.417, 4573.636, 4994.285, 5453.621,
|
||
|
5955.205, 6502.92 , 7101.009, 7754.107,
|
||
|
8467.272, 9246.028, 10096.408, 11025. ])
|
||
|
|
||
|
"""
|
||
|
# 'Center freqs' of mel bands - uniformly spaced between limits
|
||
|
min_mel = hz_to_mel(fmin, htk=htk)
|
||
|
max_mel = hz_to_mel(fmax, htk=htk)
|
||
|
|
||
|
mels = np.linspace(min_mel, max_mel, n_mels)
|
||
|
|
||
|
hz: np.ndarray = mel_to_hz(mels, htk=htk)
|
||
|
return hz
|
||
|
|
||
|
|
||
|
def tempo_frequencies(
|
||
|
n_bins: int, *, hop_length: int = 512, sr: float = 22050
|
||
|
) -> np.ndarray:
|
||
|
"""Compute the frequencies (in beats per minute) corresponding
|
||
|
to an onset auto-correlation or tempogram matrix.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_bins : int > 0
|
||
|
The number of lag bins
|
||
|
hop_length : int > 0
|
||
|
The number of samples between each bin
|
||
|
sr : number > 0
|
||
|
The audio sampling rate
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bin_frequencies : ndarray [shape=(n_bins,)]
|
||
|
vector of bin frequencies measured in BPM.
|
||
|
|
||
|
.. note:: ``bin_frequencies[0] = +np.inf`` corresponds to 0-lag
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get the tempo frequencies corresponding to a 384-bin (8-second) tempogram
|
||
|
|
||
|
>>> librosa.tempo_frequencies(384)
|
||
|
array([ inf, 2583.984, 1291.992, ..., 6.782,
|
||
|
6.764, 6.747])
|
||
|
"""
|
||
|
bin_frequencies = np.zeros(int(n_bins), dtype=np.float64)
|
||
|
|
||
|
bin_frequencies[0] = np.inf
|
||
|
bin_frequencies[1:] = 60.0 * sr / (hop_length * np.arange(1.0, n_bins))
|
||
|
|
||
|
return bin_frequencies
|
||
|
|
||
|
|
||
|
def fourier_tempo_frequencies(
|
||
|
*, sr: float = 22050, win_length: int = 384, hop_length: int = 512
|
||
|
) -> np.ndarray:
|
||
|
"""Compute the frequencies (in beats per minute) corresponding
|
||
|
to a Fourier tempogram matrix.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sr : number > 0
|
||
|
The audio sampling rate
|
||
|
win_length : int > 0
|
||
|
The number of frames per analysis window
|
||
|
hop_length : int > 0
|
||
|
The number of samples between each bin
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bin_frequencies : ndarray [shape=(win_length // 2 + 1 ,)]
|
||
|
vector of bin frequencies measured in BPM.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get the tempo frequencies corresponding to a 384-bin (8-second) tempogram
|
||
|
|
||
|
>>> librosa.fourier_tempo_frequencies(win_length=384)
|
||
|
array([ 0. , 0.117, 0.234, ..., 22.266, 22.383, 22.5 ])
|
||
|
"""
|
||
|
# sr / hop_length gets the frame rate
|
||
|
# multiplying by 60 turns frames / sec into frames / minute
|
||
|
return fft_frequencies(sr=sr * 60 / float(hop_length), n_fft=win_length)
|
||
|
|
||
|
|
||
|
# A-weighting should be capitalized: suppress the naming warning
|
||
|
@overload
|
||
|
def A_weighting(
|
||
|
frequencies: _FloatLike_co, *, min_db: Optional[float] = ...
|
||
|
) -> np.floating[Any]: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def A_weighting(
|
||
|
frequencies: _SequenceLike[_FloatLike_co], *, min_db: Optional[float] = ...
|
||
|
) -> np.ndarray: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def A_weighting(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = ...
|
||
|
) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
def A_weighting(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = -80.0
|
||
|
) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name
|
||
|
"""Compute the A-weighting of a set of frequencies.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : scalar or np.ndarray [shape=(n,)]
|
||
|
One or more frequencies (in Hz)
|
||
|
min_db : float [scalar] or None
|
||
|
Clip weights below this threshold.
|
||
|
If `None`, no clipping is performed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A_weighting : scalar or np.ndarray [shape=(n,)]
|
||
|
``A_weighting[i]`` is the A-weighting of ``frequencies[i]``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
perceptual_weighting
|
||
|
frequency_weighting
|
||
|
multi_frequency_weighting
|
||
|
B_weighting
|
||
|
C_weighting
|
||
|
D_weighting
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get the A-weighting for CQT frequencies
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1'))
|
||
|
>>> weights = librosa.A_weighting(freqs)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(freqs, weights)
|
||
|
>>> ax.set(xlabel='Frequency (Hz)',
|
||
|
... ylabel='Weighting (log10)',
|
||
|
... title='A-Weighting of CQT frequencies')
|
||
|
"""
|
||
|
f_sq = np.asanyarray(frequencies) ** 2.0
|
||
|
|
||
|
const = np.array([12194.217, 20.598997, 107.65265, 737.86223]) ** 2.0
|
||
|
weights: np.ndarray = 2.0 + 20.0 * (
|
||
|
np.log10(const[0])
|
||
|
+ 2 * np.log10(f_sq)
|
||
|
- np.log10(f_sq + const[0])
|
||
|
- np.log10(f_sq + const[1])
|
||
|
- 0.5 * np.log10(f_sq + const[2])
|
||
|
- 0.5 * np.log10(f_sq + const[3])
|
||
|
)
|
||
|
|
||
|
if min_db is None:
|
||
|
return weights
|
||
|
else:
|
||
|
return np.maximum(min_db, weights)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def B_weighting(
|
||
|
frequencies: _FloatLike_co, *, min_db: Optional[float] = ...
|
||
|
) -> np.floating[Any]: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def B_weighting(
|
||
|
frequencies: _SequenceLike[_FloatLike_co], *, min_db: Optional[float] = ...
|
||
|
) -> np.ndarray: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def B_weighting(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = ...
|
||
|
) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
def B_weighting(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = -80.0
|
||
|
) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name
|
||
|
"""Compute the B-weighting of a set of frequencies.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : scalar or np.ndarray [shape=(n,)]
|
||
|
One or more frequencies (in Hz)
|
||
|
min_db : float [scalar] or None
|
||
|
Clip weights below this threshold.
|
||
|
If `None`, no clipping is performed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
B_weighting : scalar or np.ndarray [shape=(n,)]
|
||
|
``B_weighting[i]`` is the B-weighting of ``frequencies[i]``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
perceptual_weighting
|
||
|
frequency_weighting
|
||
|
multi_frequency_weighting
|
||
|
A_weighting
|
||
|
C_weighting
|
||
|
D_weighting
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get the B-weighting for CQT frequencies
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1'))
|
||
|
>>> weights = librosa.B_weighting(freqs)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(freqs, weights)
|
||
|
>>> ax.set(xlabel='Frequency (Hz)',
|
||
|
... ylabel='Weighting (log10)',
|
||
|
... title='B-Weighting of CQT frequencies')
|
||
|
"""
|
||
|
f_sq = np.asanyarray(frequencies) ** 2.0
|
||
|
|
||
|
const = np.array([12194.217, 20.598997, 158.48932]) ** 2.0
|
||
|
weights: np.ndarray = 0.17 + 20.0 * (
|
||
|
np.log10(const[0])
|
||
|
+ 1.5 * np.log10(f_sq)
|
||
|
- np.log10(f_sq + const[0])
|
||
|
- np.log10(f_sq + const[1])
|
||
|
- 0.5 * np.log10(f_sq + const[2])
|
||
|
)
|
||
|
|
||
|
return weights if min_db is None else np.maximum(min_db, weights)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def C_weighting(
|
||
|
frequencies: _FloatLike_co, *, min_db: Optional[float] = ...
|
||
|
) -> np.floating[Any]: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def C_weighting(
|
||
|
frequencies: _SequenceLike[_FloatLike_co], *, min_db: Optional[float] = ...
|
||
|
) -> np.ndarray: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def C_weighting(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = ...
|
||
|
) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
def C_weighting(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = -80.0
|
||
|
) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name
|
||
|
"""Compute the C-weighting of a set of frequencies.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : scalar or np.ndarray [shape=(n,)]
|
||
|
One or more frequencies (in Hz)
|
||
|
min_db : float [scalar] or None
|
||
|
Clip weights below this threshold.
|
||
|
If `None`, no clipping is performed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
C_weighting : scalar or np.ndarray [shape=(n,)]
|
||
|
``C_weighting[i]`` is the C-weighting of ``frequencies[i]``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
perceptual_weighting
|
||
|
frequency_weighting
|
||
|
multi_frequency_weighting
|
||
|
A_weighting
|
||
|
B_weighting
|
||
|
D_weighting
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get the C-weighting for CQT frequencies
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1'))
|
||
|
>>> weights = librosa.C_weighting(freqs)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(freqs, weights)
|
||
|
>>> ax.set(xlabel='Frequency (Hz)', ylabel='Weighting (log10)',
|
||
|
... title='C-Weighting of CQT frequencies')
|
||
|
"""
|
||
|
f_sq = np.asanyarray(frequencies) ** 2.0
|
||
|
|
||
|
const = np.array([12194.217, 20.598997]) ** 2.0
|
||
|
weights: np.ndarray = 0.062 + 20.0 * (
|
||
|
np.log10(const[0])
|
||
|
+ np.log10(f_sq)
|
||
|
- np.log10(f_sq + const[0])
|
||
|
- np.log10(f_sq + const[1])
|
||
|
)
|
||
|
|
||
|
return weights if min_db is None else np.maximum(min_db, weights)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def D_weighting(
|
||
|
frequencies: _FloatLike_co, *, min_db: Optional[float] = ...
|
||
|
) -> np.floating[Any]: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def D_weighting(
|
||
|
frequencies: _SequenceLike[_FloatLike_co], *, min_db: Optional[float] = ...
|
||
|
) -> np.ndarray: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def D_weighting(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = ...
|
||
|
) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
def D_weighting(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = -80.0
|
||
|
) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name
|
||
|
"""Compute the D-weighting of a set of frequencies.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : scalar or np.ndarray [shape=(n,)]
|
||
|
One or more frequencies (in Hz)
|
||
|
min_db : float [scalar] or None
|
||
|
Clip weights below this threshold.
|
||
|
If `None`, no clipping is performed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
D_weighting : scalar or np.ndarray [shape=(n,)]
|
||
|
``D_weighting[i]`` is the D-weighting of ``frequencies[i]``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
perceptual_weighting
|
||
|
frequency_weighting
|
||
|
multi_frequency_weighting
|
||
|
A_weighting
|
||
|
B_weighting
|
||
|
C_weighting
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get the D-weighting for CQT frequencies
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1'))
|
||
|
>>> weights = librosa.D_weighting(freqs)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(freqs, weights)
|
||
|
>>> ax.set(xlabel='Frequency (Hz)', ylabel='Weighting (log10)',
|
||
|
... title='D-Weighting of CQT frequencies')
|
||
|
"""
|
||
|
f_sq = np.asanyarray(frequencies) ** 2.0
|
||
|
|
||
|
const = np.array([8.3046305e-3, 1018.7, 1039.6, 3136.5, 3424, 282.7, 1160]) ** 2.0
|
||
|
weights: np.ndarray = 20.0 * (
|
||
|
0.5 * np.log10(f_sq)
|
||
|
- np.log10(const[0])
|
||
|
+ 0.5
|
||
|
* (
|
||
|
+np.log10((const[1] - f_sq) ** 2 + const[2] * f_sq)
|
||
|
- np.log10((const[3] - f_sq) ** 2 + const[4] * f_sq)
|
||
|
- np.log10(const[5] + f_sq)
|
||
|
- np.log10(const[6] + f_sq)
|
||
|
)
|
||
|
)
|
||
|
|
||
|
if min_db is None:
|
||
|
return weights
|
||
|
else:
|
||
|
return np.maximum(min_db, weights)
|
||
|
|
||
|
|
||
|
def Z_weighting(
|
||
|
frequencies: Sized, *, min_db: Optional[float] = None
|
||
|
) -> np.ndarray: # pylint: disable=invalid-name
|
||
|
"""Apply no weighting curve (aka Z-weighting).
|
||
|
|
||
|
This function behaves similarly to `A_weighting`, `B_weighting`, etc.,
|
||
|
but all frequencies are equally weighted.
|
||
|
An optional threshold `min_db` can still be used to clip energies.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : scalar or np.ndarray [shape=(n,)]
|
||
|
One or more frequencies (in Hz)
|
||
|
min_db : float [scalar] or None
|
||
|
Clip weights below this threshold.
|
||
|
If `None`, no clipping is performed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Z_weighting : scalar or np.ndarray [shape=(n,)]
|
||
|
``Z_weighting[i]`` is the Z-weighting of ``frequencies[i]``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
perceptual_weighting
|
||
|
frequency_weighting
|
||
|
multi_frequency_weighting
|
||
|
A_weighting
|
||
|
B_weighting
|
||
|
C_weighting
|
||
|
D_weighting
|
||
|
"""
|
||
|
weights = np.zeros(len(frequencies))
|
||
|
if min_db is None:
|
||
|
return weights
|
||
|
else:
|
||
|
return np.maximum(min_db, weights)
|
||
|
|
||
|
|
||
|
WEIGHTING_FUNCTIONS: Dict[
|
||
|
Optional[str], Callable[..., Union[np.floating[Any], np.ndarray]]
|
||
|
] = {
|
||
|
"A": A_weighting,
|
||
|
"B": B_weighting,
|
||
|
"C": C_weighting,
|
||
|
"D": D_weighting,
|
||
|
"Z": Z_weighting,
|
||
|
None: Z_weighting,
|
||
|
}
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def frequency_weighting(
|
||
|
frequencies: _FloatLike_co, *, kind: str = ..., **kwargs: Any
|
||
|
) -> np.floating[Any]: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def frequency_weighting(
|
||
|
frequencies: _SequenceLike[_FloatLike_co], *, kind: str = ..., **kwargs: Any
|
||
|
) -> np.ndarray: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def frequency_weighting(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, kind: str = ..., **kwargs: Any
|
||
|
) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name
|
||
|
...
|
||
|
|
||
|
|
||
|
def frequency_weighting(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co], *, kind: str = "A", **kwargs: Any
|
||
|
) -> Union[np.floating[Any], np.ndarray]:
|
||
|
"""Compute the weighting of a set of frequencies.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : scalar or np.ndarray [shape=(n,)]
|
||
|
One or more frequencies (in Hz)
|
||
|
kind : str in
|
||
|
The weighting kind. e.g. `'A'`, `'B'`, `'C'`, `'D'`, `'Z'`
|
||
|
**kwargs
|
||
|
Additional keyword arguments to A_weighting, B_weighting, etc.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
weighting : scalar or np.ndarray [shape=(n,)]
|
||
|
``weighting[i]`` is the weighting of ``frequencies[i]``
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
perceptual_weighting
|
||
|
multi_frequency_weighting
|
||
|
A_weighting
|
||
|
B_weighting
|
||
|
C_weighting
|
||
|
D_weighting
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get the A-weighting for CQT frequencies
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1'))
|
||
|
>>> weights = librosa.frequency_weighting(freqs, kind='A')
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(freqs, weights)
|
||
|
>>> ax.set(xlabel='Frequency (Hz)', ylabel='Weighting (log10)',
|
||
|
... title='A-Weighting of CQT frequencies')
|
||
|
"""
|
||
|
if isinstance(kind, str):
|
||
|
kind = kind.upper()
|
||
|
return WEIGHTING_FUNCTIONS[kind](frequencies, **kwargs)
|
||
|
|
||
|
|
||
|
def multi_frequency_weighting(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
kinds: Iterable[str] = "ZAC",
|
||
|
**kwargs: Any,
|
||
|
) -> np.ndarray:
|
||
|
"""Compute multiple weightings of a set of frequencies.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : scalar or np.ndarray [shape=(n,)]
|
||
|
One or more frequencies (in Hz)
|
||
|
kinds : list or tuple or str
|
||
|
An iterable of weighting kinds. e.g. `('Z', 'B')`, `'ZAD'`, `'C'`
|
||
|
**kwargs : keywords to pass to the weighting function.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
weighting : scalar or np.ndarray [shape=(len(kinds), n)]
|
||
|
``weighting[i, j]`` is the weighting of ``frequencies[j]``
|
||
|
using the curve determined by ``kinds[i]``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
perceptual_weighting
|
||
|
frequency_weighting
|
||
|
A_weighting
|
||
|
B_weighting
|
||
|
C_weighting
|
||
|
D_weighting
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get the A, B, C, D, and Z weightings for CQT frequencies
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1'))
|
||
|
>>> weightings = 'ABCDZ'
|
||
|
>>> weights = librosa.multi_frequency_weighting(freqs, kinds=weightings)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> for label, w in zip(weightings, weights):
|
||
|
... ax.plot(freqs, w, label=label)
|
||
|
>>> ax.set(xlabel='Frequency (Hz)', ylabel='Weighting (log10)',
|
||
|
... title='Weightings of CQT frequencies')
|
||
|
>>> ax.legend()
|
||
|
"""
|
||
|
return np.stack(
|
||
|
[frequency_weighting(frequencies, kind=k, **kwargs) for k in kinds], axis=0
|
||
|
)
|
||
|
|
||
|
|
||
|
def times_like(
|
||
|
X: Union[np.ndarray, float],
|
||
|
*,
|
||
|
sr: float = 22050,
|
||
|
hop_length: int = 512,
|
||
|
n_fft: Optional[int] = None,
|
||
|
axis: int = -1,
|
||
|
) -> np.ndarray:
|
||
|
"""Return an array of time values to match the time axis from a feature matrix.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : np.ndarray or scalar
|
||
|
- If ndarray, X is a feature matrix, e.g. STFT, chromagram, or mel spectrogram.
|
||
|
- If scalar, X represents the number of frames.
|
||
|
sr : number > 0 [scalar]
|
||
|
audio sampling rate
|
||
|
hop_length : int > 0 [scalar]
|
||
|
number of samples between successive frames
|
||
|
n_fft : None or int > 0 [scalar]
|
||
|
Optional: length of the FFT window.
|
||
|
If given, time conversion will include an offset of ``n_fft // 2``
|
||
|
to counteract windowing effects when using a non-centered STFT.
|
||
|
axis : int [scalar]
|
||
|
The axis representing the time axis of X.
|
||
|
By default, the last axis (-1) is taken.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
times : np.ndarray [shape=(n,)]
|
||
|
ndarray of times (in seconds) corresponding to each frame of X.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
samples_like :
|
||
|
Return an array of sample indices to match the time axis from a feature matrix.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Provide a feature matrix input:
|
||
|
|
||
|
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
||
|
>>> D = librosa.stft(y)
|
||
|
>>> times = librosa.times_like(D)
|
||
|
>>> times
|
||
|
array([0. , 0.023, ..., 5.294, 5.317])
|
||
|
|
||
|
Provide a scalar input:
|
||
|
|
||
|
>>> n_frames = 2647
|
||
|
>>> times = librosa.times_like(n_frames)
|
||
|
>>> times
|
||
|
array([ 0.00000000e+00, 2.32199546e-02, 4.64399093e-02, ...,
|
||
|
6.13935601e+01, 6.14167800e+01, 6.14400000e+01])
|
||
|
"""
|
||
|
samples = samples_like(X, hop_length=hop_length, n_fft=n_fft, axis=axis)
|
||
|
time: np.ndarray = samples_to_time(samples, sr=sr)
|
||
|
return time
|
||
|
|
||
|
|
||
|
def samples_like(
|
||
|
X: Union[np.ndarray, float],
|
||
|
*,
|
||
|
hop_length: int = 512,
|
||
|
n_fft: Optional[int] = None,
|
||
|
axis: int = -1,
|
||
|
) -> np.ndarray:
|
||
|
"""Return an array of sample indices to match the time axis from a feature matrix.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : np.ndarray or scalar
|
||
|
- If ndarray, X is a feature matrix, e.g. STFT, chromagram, or mel spectrogram.
|
||
|
- If scalar, X represents the number of frames.
|
||
|
hop_length : int > 0 [scalar]
|
||
|
number of samples between successive frames
|
||
|
n_fft : None or int > 0 [scalar]
|
||
|
Optional: length of the FFT window.
|
||
|
If given, time conversion will include an offset of ``n_fft // 2``
|
||
|
to counteract windowing effects when using a non-centered STFT.
|
||
|
axis : int [scalar]
|
||
|
The axis representing the time axis of ``X``.
|
||
|
By default, the last axis (-1) is taken.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
samples : np.ndarray [shape=(n,)]
|
||
|
ndarray of sample indices corresponding to each frame of ``X``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
times_like :
|
||
|
Return an array of time values to match the time axis from a feature matrix.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Provide a feature matrix input:
|
||
|
|
||
|
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
||
|
>>> X = librosa.stft(y)
|
||
|
>>> samples = librosa.samples_like(X)
|
||
|
>>> samples
|
||
|
array([ 0, 512, ..., 116736, 117248])
|
||
|
|
||
|
Provide a scalar input:
|
||
|
|
||
|
>>> n_frames = 2647
|
||
|
>>> samples = librosa.samples_like(n_frames)
|
||
|
>>> samples
|
||
|
array([ 0, 512, 1024, ..., 1353728, 1354240, 1354752])
|
||
|
"""
|
||
|
# suppress type checks because mypy does not understand isscalar
|
||
|
if np.isscalar(X):
|
||
|
frames = np.arange(X) # type: ignore
|
||
|
else:
|
||
|
frames = np.arange(X.shape[axis]) # type: ignore
|
||
|
return frames_to_samples(frames, hop_length=hop_length, n_fft=n_fft)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_svara_h(
|
||
|
midi: _FloatLike_co,
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> str:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_svara_h(
|
||
|
midi: np.ndarray,
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_svara_h(
|
||
|
midi: Union[_FloatLike_co, np.ndarray],
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@vectorize(excluded=["Sa", "abbr", "octave", "unicode"])
|
||
|
def midi_to_svara_h(
|
||
|
midi: Union[_FloatLike_co, np.ndarray],
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
abbr: bool = True,
|
||
|
octave: bool = True,
|
||
|
unicode: bool = True,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
"""Convert MIDI numbers to Hindustani svara
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
midi : numeric or np.ndarray
|
||
|
The MIDI number or numbers to convert
|
||
|
|
||
|
Sa : number > 0
|
||
|
MIDI number of the reference Sa.
|
||
|
|
||
|
abbr : bool
|
||
|
If `True` (default) return abbreviated names ('S', 'r', 'R', 'g', 'G', ...)
|
||
|
|
||
|
If `False`, return long-form names ('Sa', 're', 'Re', 'ga', 'Ga', ...)
|
||
|
|
||
|
octave : bool
|
||
|
If `True`, decorate svara in neighboring octaves with over- or under-dots.
|
||
|
|
||
|
If `False`, ignore octave height information.
|
||
|
|
||
|
unicode : bool
|
||
|
If `True`, use unicode symbols to decorate octave information.
|
||
|
|
||
|
If `False`, use low-order ASCII (' and ,) for octave decorations.
|
||
|
|
||
|
This only takes effect if `octave=True`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
svara : str or np.ndarray of str
|
||
|
The svara corresponding to the given MIDI number(s)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hz_to_svara_h
|
||
|
note_to_svara_h
|
||
|
midi_to_svara_c
|
||
|
midi_to_note
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Convert a single midi number:
|
||
|
|
||
|
>>> librosa.midi_to_svara_h(65, Sa=60)
|
||
|
'm'
|
||
|
|
||
|
The first three svara with Sa at midi number 60:
|
||
|
|
||
|
>>> librosa.midi_to_svara_h([60, 61, 62], Sa=60)
|
||
|
array(['S', 'r', 'R'], dtype='<U1')
|
||
|
|
||
|
With Sa=67, midi 60-62 are in the octave below:
|
||
|
|
||
|
>>> librosa.midi_to_svara_h([60, 61, 62], Sa=67)
|
||
|
array(['ṃ', 'Ṃ', 'P̣'], dtype='<U2')
|
||
|
|
||
|
Or without unicode decoration:
|
||
|
|
||
|
>>> librosa.midi_to_svara_h([60, 61, 62], Sa=67, unicode=False)
|
||
|
array(['m,', 'M,', 'P,'], dtype='<U2')
|
||
|
|
||
|
Or going up an octave, with Sa=60, and using unabbreviated notes
|
||
|
|
||
|
>>> librosa.midi_to_svara_h([72, 73, 74], Sa=60, abbr=False)
|
||
|
array(['Ṡa', 'ṙe', 'Ṙe'], dtype='<U3')
|
||
|
"""
|
||
|
SVARA_MAP = [
|
||
|
"Sa",
|
||
|
"re",
|
||
|
"Re",
|
||
|
"ga",
|
||
|
"Ga",
|
||
|
"ma",
|
||
|
"Ma",
|
||
|
"Pa",
|
||
|
"dha",
|
||
|
"Dha",
|
||
|
"ni",
|
||
|
"Ni",
|
||
|
]
|
||
|
|
||
|
SVARA_MAP_SHORT = list(s[0] for s in SVARA_MAP)
|
||
|
|
||
|
# mypy does not understand vectorization
|
||
|
svara_num = int(np.round(midi - Sa)) # type: ignore
|
||
|
|
||
|
if abbr:
|
||
|
svara = SVARA_MAP_SHORT[svara_num % 12]
|
||
|
else:
|
||
|
svara = SVARA_MAP[svara_num % 12]
|
||
|
|
||
|
if octave:
|
||
|
if 24 > svara_num >= 12:
|
||
|
if unicode:
|
||
|
svara = svara[0] + "\u0307" + svara[1:]
|
||
|
else:
|
||
|
svara += "'"
|
||
|
elif -12 <= svara_num < 0:
|
||
|
if unicode:
|
||
|
svara = svara[0] + "\u0323" + svara[1:]
|
||
|
else:
|
||
|
svara += ","
|
||
|
|
||
|
return svara
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_svara_h(
|
||
|
frequencies: _FloatLike_co,
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> str:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_svara_h(
|
||
|
frequencies: _SequenceLike[_FloatLike_co],
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_svara_h(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def hz_to_svara_h(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
abbr: bool = True,
|
||
|
octave: bool = True,
|
||
|
unicode: bool = True,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
"""Convert frequencies (in Hz) to Hindustani svara
|
||
|
|
||
|
Note that this conversion assumes 12-tone equal temperament.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : positive number or np.ndarray
|
||
|
The frequencies (in Hz) to convert
|
||
|
|
||
|
Sa : positive number
|
||
|
Frequency (in Hz) of the reference Sa.
|
||
|
|
||
|
abbr : bool
|
||
|
If `True` (default) return abbreviated names ('S', 'r', 'R', 'g', 'G', ...)
|
||
|
|
||
|
If `False`, return long-form names ('Sa', 're', 'Re', 'ga', 'Ga', ...)
|
||
|
|
||
|
octave : bool
|
||
|
If `True`, decorate svara in neighboring octaves with over- or under-dots.
|
||
|
|
||
|
If `False`, ignore octave height information.
|
||
|
|
||
|
unicode : bool
|
||
|
If `True`, use unicode symbols to decorate octave information.
|
||
|
|
||
|
If `False`, use low-order ASCII (' and ,) for octave decorations.
|
||
|
|
||
|
This only takes effect if `octave=True`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
svara : str or np.ndarray of str
|
||
|
The svara corresponding to the given frequency/frequencies
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
midi_to_svara_h
|
||
|
note_to_svara_h
|
||
|
hz_to_svara_c
|
||
|
hz_to_note
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Convert Sa in three octaves:
|
||
|
|
||
|
>>> librosa.hz_to_svara_h([261/2, 261, 261*2], Sa=261)
|
||
|
['Ṣ', 'S', 'Ṡ']
|
||
|
|
||
|
Convert one octave worth of frequencies with full names:
|
||
|
|
||
|
>>> freqs = librosa.cqt_frequencies(n_bins=12, fmin=261)
|
||
|
>>> librosa.hz_to_svara_h(freqs, Sa=freqs[0], abbr=False)
|
||
|
['Sa', 're', 'Re', 'ga', 'Ga', 'ma', 'Ma', 'Pa', 'dha', 'Dha', 'ni', 'Ni']
|
||
|
"""
|
||
|
midis = hz_to_midi(frequencies)
|
||
|
return midi_to_svara_h(
|
||
|
midis, Sa=hz_to_midi(Sa), abbr=abbr, octave=octave, unicode=unicode
|
||
|
)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_svara_h(
|
||
|
notes: str, *, Sa: str, abbr: bool = ..., octave: bool = ..., unicode: bool = ...
|
||
|
) -> str:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_svara_h(
|
||
|
notes: _IterableLike[str],
|
||
|
*,
|
||
|
Sa: str,
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_svara_h(
|
||
|
notes: Union[str, _IterableLike[str]],
|
||
|
*,
|
||
|
Sa: str,
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def note_to_svara_h(
|
||
|
notes: Union[str, _IterableLike[str]],
|
||
|
*,
|
||
|
Sa: str,
|
||
|
abbr: bool = True,
|
||
|
octave: bool = True,
|
||
|
unicode: bool = True,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
"""Convert western notes to Hindustani svara
|
||
|
|
||
|
Note that this conversion assumes 12-tone equal temperament.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
notes : str or iterable of str
|
||
|
Notes to convert (e.g., `'C#'` or `['C4', 'Db4', 'D4']`
|
||
|
|
||
|
Sa : str
|
||
|
Note corresponding to Sa (e.g., `'C'` or `'C5'`).
|
||
|
|
||
|
If no octave information is provided, it will default to octave 0
|
||
|
(``C0`` ~= 16 Hz)
|
||
|
|
||
|
abbr : bool
|
||
|
If `True` (default) return abbreviated names ('S', 'r', 'R', 'g', 'G', ...)
|
||
|
|
||
|
If `False`, return long-form names ('Sa', 're', 'Re', 'ga', 'Ga', ...)
|
||
|
|
||
|
octave : bool
|
||
|
If `True`, decorate svara in neighboring octaves with over- or under-dots.
|
||
|
|
||
|
If `False`, ignore octave height information.
|
||
|
|
||
|
unicode : bool
|
||
|
If `True`, use unicode symbols to decorate octave information.
|
||
|
|
||
|
If `False`, use low-order ASCII (' and ,) for octave decorations.
|
||
|
|
||
|
This only takes effect if `octave=True`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
svara : str or np.ndarray of str
|
||
|
The svara corresponding to the given notes
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
midi_to_svara_h
|
||
|
hz_to_svara_h
|
||
|
note_to_svara_c
|
||
|
note_to_midi
|
||
|
note_to_hz
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.note_to_svara_h(['C4', 'G4', 'C5', 'G5'], Sa='C5')
|
||
|
['Ṣ', 'P̣', 'S', 'P']
|
||
|
"""
|
||
|
midis = note_to_midi(notes, round_midi=False)
|
||
|
|
||
|
return midi_to_svara_h(
|
||
|
midis, Sa=note_to_midi(Sa), abbr=abbr, octave=octave, unicode=unicode
|
||
|
)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_svara_c(
|
||
|
midi: _FloatLike_co,
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
mela: Union[int, str],
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> str:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_svara_c(
|
||
|
midi: np.ndarray,
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
mela: Union[int, str],
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def midi_to_svara_c(
|
||
|
midi: Union[float, np.ndarray],
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
mela: Union[int, str],
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
@vectorize(excluded=["Sa", "mela", "abbr", "octave", "unicode"]) # type: ignore
|
||
|
def midi_to_svara_c(
|
||
|
midi: Union[float, np.ndarray],
|
||
|
*,
|
||
|
Sa: _FloatLike_co,
|
||
|
mela: Union[int, str],
|
||
|
abbr: bool = True,
|
||
|
octave: bool = True,
|
||
|
unicode: bool = True,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
"""Convert MIDI numbers to Carnatic svara within a given melakarta raga
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
midi : numeric
|
||
|
The MIDI numbers to convert
|
||
|
|
||
|
Sa : number > 0
|
||
|
MIDI number of the reference Sa.
|
||
|
|
||
|
Default: 60 (261.6 Hz, `C4`)
|
||
|
|
||
|
mela : int or str
|
||
|
The name or index of the melakarta raga
|
||
|
|
||
|
abbr : bool
|
||
|
If `True` (default) return abbreviated names ('S', 'R1', 'R2', 'G1', 'G2', ...)
|
||
|
|
||
|
If `False`, return long-form names ('Sa', 'Ri1', 'Ri2', 'Ga1', 'Ga2', ...)
|
||
|
|
||
|
octave : bool
|
||
|
If `True`, decorate svara in neighboring octaves with over- or under-dots.
|
||
|
|
||
|
If `False`, ignore octave height information.
|
||
|
|
||
|
unicode : bool
|
||
|
If `True`, use unicode symbols to decorate octave information and subscript
|
||
|
numbers.
|
||
|
|
||
|
If `False`, use low-order ASCII (' and ,) for octave decorations.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
svara : str or np.ndarray of str
|
||
|
The svara corresponding to the given MIDI number(s)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hz_to_svara_c
|
||
|
note_to_svara_c
|
||
|
mela_to_degrees
|
||
|
mela_to_svara
|
||
|
list_mela
|
||
|
"""
|
||
|
svara_num = int(np.round(midi - Sa))
|
||
|
|
||
|
svara_map = notation.mela_to_svara(mela, abbr=abbr, unicode=unicode)
|
||
|
|
||
|
svara = svara_map[svara_num % 12]
|
||
|
|
||
|
if octave:
|
||
|
if 24 > svara_num >= 12:
|
||
|
if unicode:
|
||
|
svara = svara[0] + "\u0307" + svara[1:]
|
||
|
else:
|
||
|
svara += "'"
|
||
|
elif -12 <= svara_num < 0:
|
||
|
if unicode:
|
||
|
svara = svara[0] + "\u0323" + svara[1:]
|
||
|
else:
|
||
|
svara += ","
|
||
|
|
||
|
return svara
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_svara_c(
|
||
|
frequencies: float,
|
||
|
*,
|
||
|
Sa: float,
|
||
|
mela: Union[int, str],
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> str:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_svara_c(
|
||
|
frequencies: np.ndarray,
|
||
|
*,
|
||
|
Sa: float,
|
||
|
mela: Union[int, str],
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_svara_c(
|
||
|
frequencies: Union[float, np.ndarray],
|
||
|
*,
|
||
|
Sa: float,
|
||
|
mela: Union[int, str],
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def hz_to_svara_c(
|
||
|
frequencies: Union[float, np.ndarray],
|
||
|
*,
|
||
|
Sa: float,
|
||
|
mela: Union[int, str],
|
||
|
abbr: bool = True,
|
||
|
octave: bool = True,
|
||
|
unicode: bool = True,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
"""Convert frequencies (in Hz) to Carnatic svara
|
||
|
|
||
|
Note that this conversion assumes 12-tone equal temperament.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : positive number or np.ndarray
|
||
|
The frequencies (in Hz) to convert
|
||
|
|
||
|
Sa : positive number
|
||
|
Frequency (in Hz) of the reference Sa.
|
||
|
|
||
|
mela : int [1, 72] or string
|
||
|
The melakarta raga to use.
|
||
|
|
||
|
abbr : bool
|
||
|
If `True` (default) return abbreviated names ('S', 'R1', 'R2', 'G1', 'G2', ...)
|
||
|
|
||
|
If `False`, return long-form names ('Sa', 'Ri1', 'Ri2', 'Ga1', 'Ga2', ...)
|
||
|
|
||
|
octave : bool
|
||
|
If `True`, decorate svara in neighboring octaves with over- or under-dots.
|
||
|
|
||
|
If `False`, ignore octave height information.
|
||
|
|
||
|
unicode : bool
|
||
|
If `True`, use unicode symbols to decorate octave information.
|
||
|
|
||
|
If `False`, use low-order ASCII (' and ,) for octave decorations.
|
||
|
|
||
|
This only takes effect if `octave=True`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
svara : str or np.ndarray of str
|
||
|
The svara corresponding to the given frequency/frequencies
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
note_to_svara_c
|
||
|
midi_to_svara_c
|
||
|
hz_to_svara_h
|
||
|
hz_to_note
|
||
|
list_mela
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Convert Sa in three octaves:
|
||
|
|
||
|
>>> librosa.hz_to_svara_c([261/2, 261, 261*2], Sa=261, mela='kanakangi')
|
||
|
['Ṣ', 'S', 'Ṡ']
|
||
|
|
||
|
Convert one octave worth of frequencies using melakarta #36:
|
||
|
|
||
|
>>> freqs = librosa.cqt_frequencies(n_bins=12, fmin=261)
|
||
|
>>> librosa.hz_to_svara_c(freqs, Sa=freqs[0], mela=36)
|
||
|
['S', 'R₁', 'R₂', 'R₃', 'G₃', 'M₁', 'M₂', 'P', 'D₁', 'D₂', 'D₃', 'N₃']
|
||
|
"""
|
||
|
midis = hz_to_midi(frequencies)
|
||
|
return midi_to_svara_c(
|
||
|
midis, Sa=hz_to_midi(Sa), mela=mela, abbr=abbr, octave=octave, unicode=unicode
|
||
|
)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_svara_c(
|
||
|
notes: str,
|
||
|
*,
|
||
|
Sa: str,
|
||
|
mela: Union[str, int],
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> str:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_svara_c(
|
||
|
notes: _IterableLike[str],
|
||
|
*,
|
||
|
Sa: str,
|
||
|
mela: Union[str, int],
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def note_to_svara_c(
|
||
|
notes: Union[str, _IterableLike[str]],
|
||
|
*,
|
||
|
Sa: str,
|
||
|
mela: Union[str, int],
|
||
|
abbr: bool = ...,
|
||
|
octave: bool = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
...
|
||
|
|
||
|
|
||
|
def note_to_svara_c(
|
||
|
notes: Union[str, _IterableLike[str]],
|
||
|
*,
|
||
|
Sa: str,
|
||
|
mela: Union[str, int],
|
||
|
abbr: bool = True,
|
||
|
octave: bool = True,
|
||
|
unicode: bool = True,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
"""Convert western notes to Carnatic svara
|
||
|
|
||
|
Note that this conversion assumes 12-tone equal temperament.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
notes : str or iterable of str
|
||
|
Notes to convert (e.g., `'C#'` or `['C4', 'Db4', 'D4']`
|
||
|
|
||
|
Sa : str
|
||
|
Note corresponding to Sa (e.g., `'C'` or `'C5'`).
|
||
|
|
||
|
If no octave information is provided, it will default to octave 0
|
||
|
(``C0`` ~= 16 Hz)
|
||
|
|
||
|
mela : str or int [1, 72]
|
||
|
Melakarta raga name or index
|
||
|
|
||
|
abbr : bool
|
||
|
If `True` (default) return abbreviated names ('S', 'R1', 'R2', 'G1', 'G2', ...)
|
||
|
|
||
|
If `False`, return long-form names ('Sa', 'Ri1', 'Ri2', 'Ga1', 'Ga2', ...)
|
||
|
|
||
|
octave : bool
|
||
|
If `True`, decorate svara in neighboring octaves with over- or under-dots.
|
||
|
|
||
|
If `False`, ignore octave height information.
|
||
|
|
||
|
unicode : bool
|
||
|
If `True`, use unicode symbols to decorate octave information.
|
||
|
|
||
|
If `False`, use low-order ASCII (' and ,) for octave decorations.
|
||
|
|
||
|
This only takes effect if `octave=True`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
svara : str or np.ndarray of str
|
||
|
The svara corresponding to the given notes
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
midi_to_svara_c
|
||
|
hz_to_svara_c
|
||
|
note_to_svara_h
|
||
|
note_to_midi
|
||
|
note_to_hz
|
||
|
list_mela
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> librosa.note_to_svara_h(['C4', 'G4', 'C5', 'D5', 'G5'], Sa='C5', mela=1)
|
||
|
['Ṣ', 'P̣', 'S', 'G₁', 'P']
|
||
|
"""
|
||
|
midis = note_to_midi(notes, round_midi=False)
|
||
|
|
||
|
return midi_to_svara_c(
|
||
|
midis, Sa=note_to_midi(Sa), mela=mela, abbr=abbr, octave=octave, unicode=unicode
|
||
|
)
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_fjs(
|
||
|
frequencies: _FloatLike_co,
|
||
|
*,
|
||
|
fmin: Optional[float] = ...,
|
||
|
unison: Optional[str] = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> str:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def hz_to_fjs(
|
||
|
frequencies: _SequenceLike[_FloatLike_co],
|
||
|
*,
|
||
|
fmin: Optional[float] = ...,
|
||
|
unison: Optional[str] = ...,
|
||
|
unicode: bool = ...,
|
||
|
) -> np.ndarray:
|
||
|
...
|
||
|
|
||
|
|
||
|
def hz_to_fjs(
|
||
|
frequencies: _ScalarOrSequence[_FloatLike_co],
|
||
|
*,
|
||
|
fmin: Optional[float] = None,
|
||
|
unison: Optional[str] = None,
|
||
|
unicode: bool = False,
|
||
|
) -> Union[str, np.ndarray]:
|
||
|
"""Convert one or more frequencies (in Hz) from a just intonation
|
||
|
scale to notes in FJS notation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : float or iterable of float
|
||
|
Input frequencies, specified in Hz
|
||
|
fmin : float (optional)
|
||
|
The minimum frequency, corresponding to a unison note.
|
||
|
If not provided, it will be inferred as `min(frequencies)`
|
||
|
unison : str (optional)
|
||
|
The name of the unison note.
|
||
|
If not provided, it will be inferred as the scientific pitch
|
||
|
notation name of `fmin`, that is, `hz_to_note(fmin)`
|
||
|
unicode : bool
|
||
|
If `True`, then unicode symbols are used for accidentals.
|
||
|
If `False`, then low-order ASCII symbols are used for accidentals.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
notes : str or np.ndarray(dtype=str)
|
||
|
``notes[i]`` is the closest note name to ``frequency[i]``
|
||
|
(or ``frequency`` if the input is scalar)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hz_to_note
|
||
|
interval_to_fjs
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Get a single note name for a frequency, relative to A=55 Hz
|
||
|
|
||
|
>>> librosa.hz_to_fjs(66, fmin=55, unicode=True)
|
||
|
'C₅'
|
||
|
|
||
|
Get notation for a 5-limit frequency set starting at A=55
|
||
|
|
||
|
>>> freqs = librosa.interval_frequencies(24, intervals="ji5", fmin=55)
|
||
|
>>> freqs
|
||
|
array([ 55. , 58.667, 61.875, 66. , 68.75 , 73.333, 77.344,
|
||
|
82.5 , 88. , 91.667, 99. , 103.125, 110. , 117.333,
|
||
|
123.75 , 132. , 137.5 , 146.667, 154.687, 165. , 176. ,
|
||
|
183.333, 198. , 206.25 ])
|
||
|
>>> librosa.hz_to_fjs(freqs, unicode=True)
|
||
|
array(['A', 'B♭₅', 'B', 'C₅', 'C♯⁵', 'D', 'D♯⁵', 'E', 'F₅', 'F♯⁵', 'G₅',
|
||
|
'G♯⁵', 'A', 'B♭₅', 'B', 'C₅', 'C♯⁵', 'D', 'D♯⁵', 'E', 'F₅', 'F♯⁵',
|
||
|
'G₅', 'G♯⁵'], dtype='<U3')
|
||
|
|
||
|
"""
|
||
|
if fmin is None:
|
||
|
# mypy doesn't know that min can handle scalars
|
||
|
fmin = np.min(frequencies) # type: ignore
|
||
|
if unison is None:
|
||
|
unison = hz_to_note(fmin, octave=False, unicode=False)
|
||
|
|
||
|
if np.isscalar(frequencies):
|
||
|
# suppress type check - mypy does not understand scalar checks
|
||
|
intervals = frequencies / fmin # type: ignore
|
||
|
else:
|
||
|
intervals = np.asarray(frequencies) / fmin
|
||
|
|
||
|
# mypy does not understand vectorization
|
||
|
return notation.interval_to_fjs(intervals, unison=unison, unicode=unicode) # type: ignore
|