451 lines
16 KiB
Python
451 lines
16 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
"""Harmonic calculations for frequency representations"""
|
||
|
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
import scipy.interpolate
|
||
|
import scipy.signal
|
||
|
from ..util.exceptions import ParameterError
|
||
|
from ..util import is_unique
|
||
|
from numpy.typing import ArrayLike
|
||
|
from typing import Callable, Optional, Sequence
|
||
|
|
||
|
__all__ = ["salience", "interp_harmonics", "f0_harmonics"]
|
||
|
|
||
|
|
||
|
def salience(
|
||
|
S: np.ndarray,
|
||
|
*,
|
||
|
freqs: np.ndarray,
|
||
|
harmonics: Sequence[float],
|
||
|
weights: Optional[ArrayLike] = None,
|
||
|
aggregate: Optional[Callable] = None,
|
||
|
filter_peaks: bool = True,
|
||
|
fill_value: float = np.nan,
|
||
|
kind: str = "linear",
|
||
|
axis: int = -2,
|
||
|
) -> np.ndarray:
|
||
|
"""Harmonic salience function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
S : np.ndarray [shape=(..., d, n)]
|
||
|
input time frequency magnitude representation (e.g. STFT or CQT magnitudes).
|
||
|
Must be real-valued and non-negative.
|
||
|
|
||
|
freqs : np.ndarray, shape=(S.shape[axis]) or shape=S.shape
|
||
|
The frequency values corresponding to S's elements along the
|
||
|
chosen axis.
|
||
|
|
||
|
Frequencies can also be time-varying, e.g. as computed by
|
||
|
`reassigned_spectrogram`, in which case the shape should
|
||
|
match ``S``.
|
||
|
|
||
|
harmonics : list-like, non-negative
|
||
|
Harmonics to include in salience computation. The first harmonic (1)
|
||
|
corresponds to ``S`` itself. Values less than one (e.g., 1/2) correspond
|
||
|
to sub-harmonics.
|
||
|
|
||
|
weights : list-like
|
||
|
The weight to apply to each harmonic in the summation. (default:
|
||
|
uniform weights). Must be the same length as ``harmonics``.
|
||
|
|
||
|
aggregate : function
|
||
|
aggregation function (default: `np.average`)
|
||
|
|
||
|
If ``aggregate=np.average``, then a weighted average is
|
||
|
computed per-harmonic according to the specified weights.
|
||
|
For all other aggregation functions, all harmonics
|
||
|
are treated equally.
|
||
|
|
||
|
filter_peaks : bool
|
||
|
If true, returns harmonic summation only on frequencies of peak
|
||
|
magnitude. Otherwise returns harmonic summation over the full spectrum.
|
||
|
Defaults to True.
|
||
|
|
||
|
fill_value : float
|
||
|
The value to fill non-peaks in the output representation. (default:
|
||
|
`np.nan`) Only used if ``filter_peaks == True``.
|
||
|
|
||
|
kind : str
|
||
|
Interpolation type for harmonic estimation.
|
||
|
See `scipy.interpolate.interp1d`.
|
||
|
|
||
|
axis : int
|
||
|
The axis along which to compute harmonics
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
S_sal : np.ndarray
|
||
|
``S_sal`` will have the same shape as ``S``, and measure
|
||
|
the overall harmonic energy at each frequency.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
interp_harmonics
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> y, sr = librosa.load(librosa.ex('trumpet'), duration=3)
|
||
|
>>> S = np.abs(librosa.stft(y))
|
||
|
>>> freqs = librosa.fft_frequencies(sr=sr)
|
||
|
>>> harms = [1, 2, 3, 4]
|
||
|
>>> weights = [1.0, 0.5, 0.33, 0.25]
|
||
|
>>> S_sal = librosa.salience(S, freqs=freqs, harmonics=harms, weights=weights, fill_value=0)
|
||
|
>>> print(S_sal.shape)
|
||
|
(1025, 115)
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
|
||
|
>>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
|
||
|
... sr=sr, y_axis='log', x_axis='time', ax=ax[0])
|
||
|
>>> ax[0].set(title='Magnitude spectrogram')
|
||
|
>>> ax[0].label_outer()
|
||
|
>>> img = librosa.display.specshow(librosa.amplitude_to_db(S_sal,
|
||
|
... ref=np.max),
|
||
|
... sr=sr, y_axis='log', x_axis='time', ax=ax[1])
|
||
|
>>> ax[1].set(title='Salience spectrogram')
|
||
|
>>> fig.colorbar(img, ax=ax, format="%+2.0f dB")
|
||
|
"""
|
||
|
if aggregate is None:
|
||
|
aggregate = np.average
|
||
|
|
||
|
if weights is None:
|
||
|
weights = np.ones((len(harmonics),))
|
||
|
else:
|
||
|
weights = np.array(weights, dtype=float)
|
||
|
|
||
|
S_harm = interp_harmonics(S, freqs=freqs, harmonics=harmonics, kind=kind, axis=axis)
|
||
|
|
||
|
S_sal: np.ndarray
|
||
|
if aggregate is np.average:
|
||
|
S_sal = aggregate(S_harm, axis=axis - 1, weights=weights)
|
||
|
else:
|
||
|
S_sal = aggregate(S_harm, axis=axis - 1)
|
||
|
|
||
|
if filter_peaks:
|
||
|
S_peaks = scipy.signal.argrelmax(S, axis=axis)
|
||
|
S_out = np.empty(S.shape)
|
||
|
S_out.fill(fill_value)
|
||
|
S_out[S_peaks] = S_sal[S_peaks]
|
||
|
|
||
|
S_sal = S_out
|
||
|
|
||
|
return S_sal
|
||
|
|
||
|
|
||
|
def interp_harmonics(
|
||
|
x: np.ndarray,
|
||
|
*,
|
||
|
freqs: np.ndarray,
|
||
|
harmonics: ArrayLike,
|
||
|
kind: str = "linear",
|
||
|
fill_value: float = 0,
|
||
|
axis: int = -2,
|
||
|
) -> np.ndarray:
|
||
|
"""Compute the energy at harmonics of time-frequency representation.
|
||
|
|
||
|
Given a frequency-based energy representation such as a spectrogram
|
||
|
or tempogram, this function computes the energy at the chosen harmonics
|
||
|
of the frequency axis. (See examples below.)
|
||
|
The resulting harmonic array can then be used as input to a salience
|
||
|
computation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : np.ndarray
|
||
|
The input energy
|
||
|
freqs : np.ndarray, shape=(x.shape[axis]) or shape=x.shape
|
||
|
The frequency values corresponding to x's elements along the
|
||
|
chosen axis.
|
||
|
Frequencies can also be time-varying, e.g. as computed by
|
||
|
`reassigned_spectrogram`, in which case the shape should
|
||
|
match ``x``.
|
||
|
harmonics : list-like, non-negative
|
||
|
Harmonics to compute as ``harmonics[i] * freqs``.
|
||
|
The first harmonic (1) corresponds to ``freqs``.
|
||
|
Values less than one (e.g., 1/2) correspond to sub-harmonics.
|
||
|
kind : str
|
||
|
Interpolation type. See `scipy.interpolate.interp1d`.
|
||
|
fill_value : float
|
||
|
The value to fill when extrapolating beyond the observed
|
||
|
frequency range.
|
||
|
axis : int
|
||
|
The axis along which to compute harmonics
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x_harm : np.ndarray
|
||
|
``x_harm[i]`` will have the same shape as ``x``, and measure
|
||
|
the energy at the ``harmonics[i]`` harmonic of each frequency.
|
||
|
A new dimension indexing harmonics will be inserted immediately
|
||
|
before ``axis``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scipy.interpolate.interp1d
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Estimate the harmonics of a time-averaged tempogram
|
||
|
|
||
|
>>> y, sr = librosa.load(librosa.ex('sweetwaltz'))
|
||
|
>>> # Compute the time-varying tempogram and average over time
|
||
|
>>> tempi = np.mean(librosa.feature.tempogram(y=y, sr=sr), axis=1)
|
||
|
>>> # We'll measure the first five harmonics
|
||
|
>>> harmonics = [1, 2, 3, 4, 5]
|
||
|
>>> f_tempo = librosa.tempo_frequencies(len(tempi), sr=sr)
|
||
|
>>> # Build the harmonic tensor; we only have one axis here (tempo)
|
||
|
>>> t_harmonics = librosa.interp_harmonics(tempi, freqs=f_tempo, harmonics=harmonics, axis=0)
|
||
|
>>> print(t_harmonics.shape)
|
||
|
(5, 384)
|
||
|
|
||
|
>>> # And plot the results
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> librosa.display.specshow(t_harmonics, x_axis='tempo', sr=sr, ax=ax)
|
||
|
>>> ax.set(yticks=np.arange(len(harmonics)),
|
||
|
... yticklabels=['{:.3g}'.format(_) for _ in harmonics],
|
||
|
... ylabel='Harmonic', xlabel='Tempo (BPM)')
|
||
|
|
||
|
We can also compute frequency harmonics for spectrograms.
|
||
|
To calculate sub-harmonic energy, use values < 1.
|
||
|
|
||
|
>>> y, sr = librosa.load(librosa.ex('trumpet'), duration=3)
|
||
|
>>> harmonics = [1./3, 1./2, 1, 2, 3, 4]
|
||
|
>>> S = np.abs(librosa.stft(y))
|
||
|
>>> fft_freqs = librosa.fft_frequencies(sr=sr)
|
||
|
>>> S_harm = librosa.interp_harmonics(S, freqs=fft_freqs, harmonics=harmonics, axis=0)
|
||
|
>>> print(S_harm.shape)
|
||
|
(6, 1025, 646)
|
||
|
|
||
|
>>> fig, ax = plt.subplots(nrows=3, ncols=2, sharex=True, sharey=True)
|
||
|
>>> for i, _sh in enumerate(S_harm):
|
||
|
... img = librosa.display.specshow(librosa.amplitude_to_db(_sh,
|
||
|
... ref=S.max()),
|
||
|
... sr=sr, y_axis='log', x_axis='time',
|
||
|
... ax=ax.flat[i])
|
||
|
... ax.flat[i].set(title='h={:.3g}'.format(harmonics[i]))
|
||
|
... ax.flat[i].label_outer()
|
||
|
>>> fig.colorbar(img, ax=ax, format="%+2.f dB")
|
||
|
"""
|
||
|
if freqs.ndim == 1 and len(freqs) == x.shape[axis]:
|
||
|
# Build the 1-D interpolator.
|
||
|
# All frames have a common domain, so we only need one interpolator here.
|
||
|
|
||
|
# First, verify that the input frequencies are unique
|
||
|
if not is_unique(freqs, axis=0):
|
||
|
warnings.warn(
|
||
|
"Frequencies are not unique. This may produce incorrect harmonic interpolations.",
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
|
||
|
f_interp = scipy.interpolate.interp1d(
|
||
|
freqs,
|
||
|
x,
|
||
|
axis=axis,
|
||
|
bounds_error=False,
|
||
|
copy=False,
|
||
|
kind=kind,
|
||
|
fill_value=fill_value,
|
||
|
)
|
||
|
|
||
|
# Set the interpolation points
|
||
|
f_out = np.multiply.outer(harmonics, freqs)
|
||
|
|
||
|
# Interpolate; suppress type checks
|
||
|
return f_interp(f_out) # type: ignore
|
||
|
|
||
|
elif freqs.shape == x.shape:
|
||
|
if not np.all(is_unique(freqs, axis=axis)):
|
||
|
warnings.warn(
|
||
|
"Frequencies are not unique. This may produce incorrect harmonic interpolations.",
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
|
||
|
# If we have time-varying frequencies, then it must match exactly the shape of the input
|
||
|
|
||
|
# We'll define a frame-wise interpolator helper function that we will vectorize over
|
||
|
# the entire input array
|
||
|
def _f_interp(_a, _b):
|
||
|
interp = scipy.interpolate.interp1d(
|
||
|
_a, _b, bounds_error=False, copy=False, kind=kind, fill_value=fill_value
|
||
|
)
|
||
|
|
||
|
return interp(np.multiply.outer(_a, harmonics))
|
||
|
|
||
|
# Signature is expanding frequency into a new dimension
|
||
|
xfunc = np.vectorize(_f_interp, signature="(f),(f)->(f,h)")
|
||
|
|
||
|
# Rotate the vectorizing axis to the tail so that we get parallelism over frames
|
||
|
# Afterward, we're swapping (-1, axis-1) instead of (-1,axis)
|
||
|
# because a new dimension has been inserted
|
||
|
return ( # type: ignore
|
||
|
xfunc(freqs.swapaxes(axis, -1), x.swapaxes(axis, -1))
|
||
|
.swapaxes(
|
||
|
# Return the original target axis to its place
|
||
|
-2,
|
||
|
axis,
|
||
|
)
|
||
|
.swapaxes(
|
||
|
# Put the new harmonic axis directly in front of the target axis
|
||
|
-1,
|
||
|
axis - 1,
|
||
|
)
|
||
|
)
|
||
|
else:
|
||
|
raise ParameterError(
|
||
|
f"freqs.shape={freqs.shape} is incompatible with input shape={x.shape}"
|
||
|
)
|
||
|
|
||
|
|
||
|
def f0_harmonics(
|
||
|
x: np.ndarray,
|
||
|
*,
|
||
|
f0: np.ndarray,
|
||
|
freqs: np.ndarray,
|
||
|
harmonics: ArrayLike,
|
||
|
kind: str = "linear",
|
||
|
fill_value: float = 0,
|
||
|
axis: int = -2,
|
||
|
) -> np.ndarray:
|
||
|
"""Compute the energy at selected harmonics of a time-varying
|
||
|
fundamental frequency.
|
||
|
|
||
|
This function can be used to reduce a `frequency * time` representation
|
||
|
to a `harmonic * time` representation, effectively normalizing out for
|
||
|
the fundamental frequency. The result can be used as a representation
|
||
|
of timbre when f0 corresponds to pitch, or as a representation of
|
||
|
rhythm when f0 corresponds to tempo.
|
||
|
|
||
|
This function differs from `interp_harmonics`, which computes the
|
||
|
harmonics of *all* frequencies.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : np.ndarray [shape=(..., frequencies, n)]
|
||
|
The input array (e.g., STFT magnitudes)
|
||
|
f0 : np.ndarray [shape=(..., n)]
|
||
|
The fundamental frequency (f0) of each frame in the input
|
||
|
Shape should match ``x.shape[-1]``
|
||
|
freqs : np.ndarray, shape=(x.shape[axis]) or shape=x.shape
|
||
|
The frequency values corresponding to X's elements along the
|
||
|
chosen axis.
|
||
|
Frequencies can also be time-varying, e.g. as computed by
|
||
|
`reassigned_spectrogram`, in which case the shape should
|
||
|
match ``x``.
|
||
|
harmonics : list-like, non-negative
|
||
|
Harmonics to compute as ``harmonics[i] * f0``
|
||
|
Values less than one (e.g., 1/2) correspond to sub-harmonics.
|
||
|
kind : str
|
||
|
Interpolation type. See `scipy.interpolate.interp1d`.
|
||
|
fill_value : float
|
||
|
The value to fill when extrapolating beyond the observed
|
||
|
frequency range.
|
||
|
axis : int
|
||
|
The axis corresponding to frequency in ``x``
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
f0_harm : np.ndarray [shape=(..., len(harmonics), n)]
|
||
|
Interpolated energy at each specified harmonic of the fundamental
|
||
|
frequency for each time step.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
interp_harmonics
|
||
|
librosa.feature.tempogram_ratio
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This example estimates the fundamental (f0), and then extracts the first
|
||
|
12 harmonics
|
||
|
|
||
|
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
||
|
>>> f0, voicing, voicing_p = librosa.pyin(y=y, sr=sr, fmin=200, fmax=700)
|
||
|
>>> S = np.abs(librosa.stft(y))
|
||
|
>>> freqs = librosa.fft_frequencies(sr=sr)
|
||
|
>>> harmonics = np.arange(1, 13)
|
||
|
>>> f0_harm = librosa.f0_harmonics(S, freqs=freqs, f0=f0, harmonics=harmonics)
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax =plt.subplots(nrows=2, sharex=True)
|
||
|
>>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
|
||
|
... x_axis='time', y_axis='log', ax=ax[0])
|
||
|
>>> times = librosa.times_like(f0)
|
||
|
>>> for h in harmonics:
|
||
|
... ax[0].plot(times, h * f0, label=f"{h}*f0")
|
||
|
>>> ax[0].legend(ncols=4, loc='lower right')
|
||
|
>>> ax[0].label_outer()
|
||
|
>>> librosa.display.specshow(librosa.amplitude_to_db(f0_harm, ref=np.max),
|
||
|
... x_axis='time', ax=ax[1])
|
||
|
>>> ax[1].set_yticks(harmonics-1)
|
||
|
>>> ax[1].set_yticklabels(harmonics)
|
||
|
>>> ax[1].set(ylabel='Harmonics')
|
||
|
"""
|
||
|
result: np.ndarray
|
||
|
if freqs.ndim == 1 and len(freqs) == x.shape[axis]:
|
||
|
if not is_unique(freqs, axis=0):
|
||
|
warnings.warn(
|
||
|
"Frequencies are not unique. This may produce incorrect harmonic interpolations.",
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
|
||
|
# We have a fixed frequency grid
|
||
|
idx = np.isfinite(freqs)
|
||
|
|
||
|
def _f_interps(data, f):
|
||
|
interp = scipy.interpolate.interp1d(
|
||
|
freqs[idx],
|
||
|
data[idx],
|
||
|
axis=0,
|
||
|
bounds_error=False,
|
||
|
copy=False,
|
||
|
assume_sorted=False,
|
||
|
kind=kind,
|
||
|
fill_value=fill_value,
|
||
|
)
|
||
|
return interp(f)
|
||
|
|
||
|
xfunc = np.vectorize(_f_interps, signature="(f),(h)->(h)")
|
||
|
result = xfunc(x.swapaxes(axis, -1), np.multiply.outer(f0, harmonics)).swapaxes(
|
||
|
axis, -1
|
||
|
)
|
||
|
|
||
|
elif freqs.shape == x.shape:
|
||
|
if not np.all(is_unique(freqs, axis=axis)):
|
||
|
warnings.warn(
|
||
|
"Frequencies are not unique. This may produce incorrect harmonic interpolations.",
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
|
||
|
# We have a dynamic frequency grid, not so bad
|
||
|
def _f_interpd(data, frequencies, f):
|
||
|
idx = np.isfinite(frequencies)
|
||
|
interp = scipy.interpolate.interp1d(
|
||
|
frequencies[idx],
|
||
|
data[idx],
|
||
|
axis=0,
|
||
|
bounds_error=False,
|
||
|
copy=False,
|
||
|
assume_sorted=False,
|
||
|
kind=kind,
|
||
|
fill_value=fill_value,
|
||
|
)
|
||
|
return interp(f)
|
||
|
|
||
|
xfunc = np.vectorize(_f_interpd, signature="(f),(f),(h)->(h)")
|
||
|
result = xfunc(
|
||
|
x.swapaxes(axis, -1),
|
||
|
freqs.swapaxes(axis, -1),
|
||
|
np.multiply.outer(f0, harmonics),
|
||
|
).swapaxes(axis, -1)
|
||
|
|
||
|
else:
|
||
|
raise ParameterError(
|
||
|
f"freqs.shape={freqs.shape} is incompatible with input shape={x.shape}"
|
||
|
)
|
||
|
|
||
|
return np.nan_to_num(result, copy=False, nan=fill_value)
|