ai-content-maker/.venv/Lib/site-packages/librosa/core/notation.py

1008 lines
27 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Music notation utilities"""
import re
import numpy as np
from numba import jit
from .intervals import INTERVALS
from .._cache import cache
from ..util.exceptions import ParameterError
from typing import Dict, List, Union, overload
from ..util.decorators import vectorize
from .._typing import _ScalarOrSequence, _FloatLike_co, _SequenceLike
__all__ = [
"key_to_degrees",
"key_to_notes",
"mela_to_degrees",
"mela_to_svara",
"thaat_to_degrees",
"list_mela",
"list_thaat",
"fifths_to_note",
"interval_to_fjs",
]
THAAT_MAP = dict(
bilaval=[0, 2, 4, 5, 7, 9, 11],
khamaj=[0, 2, 4, 5, 7, 9, 10],
kafi=[0, 2, 3, 5, 7, 9, 10],
asavari=[0, 2, 3, 5, 7, 8, 10],
bhairavi=[0, 1, 3, 5, 7, 8, 10],
kalyan=[0, 2, 4, 6, 7, 9, 11],
marva=[0, 1, 4, 6, 7, 9, 11],
poorvi=[0, 1, 4, 6, 7, 8, 11],
todi=[0, 1, 3, 6, 7, 8, 11],
bhairav=[0, 1, 4, 5, 7, 8, 11],
)
# Enumeration will start from 1
MELAKARTA_MAP = {
k: i
for i, k in enumerate(
[
"kanakangi",
"ratnangi",
"ganamurthi",
"vanaspathi",
"manavathi",
"tanarupi",
"senavathi",
"hanumathodi",
"dhenuka",
"natakapriya",
"kokilapriya",
"rupavathi",
"gayakapriya",
"vakulabharanam",
"mayamalavagaula",
"chakravakom",
"suryakantham",
"hatakambari",
"jhankaradhwani",
"natabhairavi",
"keeravani",
"kharaharapriya",
"gaurimanohari",
"varunapriya",
"mararanjini",
"charukesi",
"sarasangi",
"harikambhoji",
"dheerasankarabharanam",
"naganandini",
"yagapriya",
"ragavardhini",
"gangeyabhushani",
"vagadheeswari",
"sulini",
"chalanatta",
"salagam",
"jalarnavam",
"jhalavarali",
"navaneetham",
"pavani",
"raghupriya",
"gavambodhi",
"bhavapriya",
"subhapanthuvarali",
"shadvidhamargini",
"suvarnangi",
"divyamani",
"dhavalambari",
"namanarayani",
"kamavardhini",
"ramapriya",
"gamanasrama",
"viswambhari",
"syamalangi",
"shanmukhapriya",
"simhendramadhyamam",
"hemavathi",
"dharmavathi",
"neethimathi",
"kanthamani",
"rishabhapriya",
"latangi",
"vachaspathi",
"mechakalyani",
"chitrambari",
"sucharitra",
"jyotisvarupini",
"dhatuvardhini",
"nasikabhushani",
"kosalam",
"rasikapriya",
],
1,
)
}
# Pre-compiled regular expressions for note and key parsing
NOTE_RE = re.compile(
r"^(?P<note>[A-Ga-g])"
r"(?P<accidental>[#♯𝄪b!♭𝄫♮]*)"
r"(?P<octave>[+-]?\d+)?"
r"(?P<cents>[+-]\d+)?$"
)
KEY_RE = re.compile(
r"^(?P<tonic>[A-Ga-g])" r"(?P<accidental>[#♯b!♭]?)" r":(?P<scale>(maj|min)(or)?)$"
)
def thaat_to_degrees(thaat: str) -> np.ndarray:
"""Construct the svara indices (degrees) for a given thaat
Parameters
----------
thaat : str
The name of the thaat
Returns
-------
indices : np.ndarray
A list of the seven svara indices (starting from 0=Sa)
contained in the specified thaat
See Also
--------
key_to_degrees
mela_to_degrees
list_thaat
Examples
--------
>>> librosa.thaat_to_degrees('bilaval')
array([ 0, 2, 4, 5, 7, 9, 11])
>>> librosa.thaat_to_degrees('todi')
array([ 0, 1, 3, 6, 7, 8, 11])
"""
return np.asarray(THAAT_MAP[thaat.lower()])
def mela_to_degrees(mela: Union[str, int]) -> np.ndarray:
"""Construct the svara indices (degrees) for a given melakarta raga
Parameters
----------
mela : str or int
Either the name or integer index ([1, 2, ..., 72]) of the melakarta raga
Returns
-------
degrees : np.ndarray
A list of the seven svara indices (starting from 0=Sa)
contained in the specified raga
See Also
--------
thaat_to_degrees
key_to_degrees
list_mela
Examples
--------
Melakarta #1 (kanakangi):
>>> librosa.mela_to_degrees(1)
array([0, 1, 2, 5, 7, 8, 9])
Or using a name directly:
>>> librosa.mela_to_degrees('kanakangi')
array([0, 1, 2, 5, 7, 8, 9])
"""
if isinstance(mela, str):
index = MELAKARTA_MAP[mela.lower()] - 1
elif 0 < mela <= 72:
index = mela - 1
else:
raise ParameterError(f"mela={mela} must be in range [1, 72]")
# always have Sa [0]
degrees = [0]
# Fill in Ri and Ga
lower = index % 36
if 0 <= lower < 6:
# Ri1, Ga1
degrees.extend([1, 2])
elif 6 <= lower < 12:
# Ri1, Ga2
degrees.extend([1, 3])
elif 12 <= lower < 18:
# Ri1, Ga3
degrees.extend([1, 4])
elif 18 <= lower < 24:
# Ri2, Ga2
degrees.extend([2, 3])
elif 24 <= lower < 30:
# Ri2, Ga3
degrees.extend([2, 4])
else:
# Ri3, Ga3
degrees.extend([3, 4])
# Determine Ma
if index < 36:
# Ma1
degrees.append(5)
else:
# Ma2
degrees.append(6)
# always have Pa [7]
degrees.append(7)
# Determine Dha and Ni
upper = index % 6
if upper == 0:
# Dha1, Ni1
degrees.extend([8, 9])
elif upper == 1:
# Dha1, Ni2
degrees.extend([8, 10])
elif upper == 2:
# Dha1, Ni3
degrees.extend([8, 11])
elif upper == 3:
# Dha2, Ni2
degrees.extend([9, 10])
elif upper == 4:
# Dha2, Ni3
degrees.extend([9, 11])
else:
# Dha3, Ni3
degrees.extend([10, 11])
return np.array(degrees)
@cache(level=10)
def mela_to_svara(
mela: Union[str, int], *, abbr: bool = True, unicode: bool = True
) -> List[str]:
"""Spell the Carnatic svara names for a given melakarta raga
This function exists to resolve enharmonic equivalences between
pitch classes:
- Ri2 / Ga1
- Ri3 / Ga2
- Dha2 / Ni1
- Dha3 / Ni2
For svara outside the raga, names are chosen to preserve orderings
so that all Ri precede all Ga, and all Dha precede all Ni.
Parameters
----------
mela : str or int
the name or numerical index of the melakarta raga
abbr : bool
If `True`, use single-letter svara names: S, R, G, ...
If `False`, use full names: Sa, Ri, Ga, ...
unicode : bool
If `True`, use unicode symbols for numberings, e.g., Ri\u2081
If `False`, use low-order ASCII, e.g., Ri1.
Returns
-------
svara : list of strings
The svara names for each of the 12 pitch classes.
See Also
--------
key_to_notes
mela_to_degrees
list_mela
Examples
--------
Melakarta #1 (Kanakangi) uses R1, G1, D1, N1
>>> librosa.mela_to_svara(1)
['S', 'R₁', 'G₁', 'G₂', 'G₃', 'M₁', 'M₂', 'P', 'D₁', 'N₁', 'N₂', 'N₃']
#19 (Jhankaradhwani) uses R2 and G2 so the third svara are Ri:
>>> librosa.mela_to_svara(19)
['S', 'R₁', 'R₂', 'G₂', 'G₃', 'M₁', 'M₂', 'P', 'D₁', 'N₁', 'N₂', 'N₃']
#31 (Yagapriya) uses R3 and G3, so third and fourth svara are Ri:
>>> librosa.mela_to_svara(31)
['S', 'R₁', 'R₂', 'R₃', 'G₃', 'M₁', 'M₂', 'P', 'D₁', 'N₁', 'N₂', 'N₃']
#34 (Vagadheeswari) uses D2 and N2, so Ni1 becomes Dha2:
>>> librosa.mela_to_svara(34)
['S', 'R₁', 'R₂', 'R₃', 'G₃', 'M₁', 'M₂', 'P', 'D₁', 'D₂', 'N₂', 'N₃']
#36 (Chalanatta) uses D3 and N3, so Ni2 becomes Dha3:
>>> librosa.mela_to_svara(36)
['S', 'R₁', 'R₂', 'R₃', 'G₃', 'M₁', 'M₂', 'P', 'D₁', 'D₂', 'D₃', 'N₃']
# You can also query by raga name instead of index:
>>> librosa.mela_to_svara('chalanatta')
['S', 'R₁', 'R₂', 'R₃', 'G₃', 'M₁', 'M₂', 'P', 'D₁', 'D₂', 'D₃', 'N₃']
"""
# The following will be constant for all ragas
svara_map = [
"Sa",
"Ri\u2081",
"", # Ri2/Ga1
"", # Ri3/Ga2
"Ga\u2083",
"Ma\u2081",
"Ma\u2082",
"Pa",
"Dha\u2081",
"", # Dha2/Ni1
"", # Dha3/Ni2
"Ni\u2083",
]
if isinstance(mela, str):
mela_idx = MELAKARTA_MAP[mela.lower()] - 1
elif 0 < mela <= 72:
mela_idx = mela - 1
else:
raise ParameterError(f"mela={mela} must be in range [1, 72]")
# Determine Ri2/Ga1
lower = mela_idx % 36
if lower < 6:
# First six will have Ri1/Ga1
svara_map[2] = "Ga\u2081"
else:
# All others have either Ga2/Ga3
# So we'll call this Ri2
svara_map[2] = "Ri\u2082"
# Determine Ri3/Ga2
if lower < 30:
# First thirty should get Ga2
svara_map[3] = "Ga\u2082"
else:
# Only the last six have Ri3
svara_map[3] = "Ri\u2083"
upper = mela_idx % 6
# Determine Dha2/Ni1
if upper == 0:
# these are the only ones with Ni1
svara_map[9] = "Ni\u2081"
else:
# Everyone else has Dha2
svara_map[9] = "Dha\u2082"
# Determine Dha3/Ni2
if upper == 5:
# This one has Dha3
svara_map[10] = "Dha\u2083"
else:
# Everyone else has Ni2
svara_map[10] = "Ni\u2082"
if abbr:
t_abbr = str.maketrans({"a": "", "h": "", "i": ""})
svara_map = [s.translate(t_abbr) for s in svara_map]
if not unicode:
t_uni = str.maketrans({"\u2081": "1", "\u2082": "2", "\u2083": "3"})
svara_map = [s.translate(t_uni) for s in svara_map]
return list(svara_map)
def list_mela() -> Dict[str, int]:
"""List melakarta ragas by name and index.
Melakarta raga names are transcribed from [#]_, with the exception of #45
(subhapanthuvarali).
.. [#] Bhagyalekshmy, S. (1990).
Ragas in Carnatic music.
South Asia Books.
Returns
-------
mela_map : dict
A dictionary mapping melakarta raga names to indices (1, 2, ..., 72)
Examples
--------
>>> librosa.list_mela()
{'kanakangi': 1,
'ratnangi': 2,
'ganamurthi': 3,
'vanaspathi': 4,
...}
See Also
--------
mela_to_degrees
mela_to_svara
list_thaat
"""
return MELAKARTA_MAP.copy()
def list_thaat() -> List[str]:
"""List supported thaats by name.
Returns
-------
thaats : list
A list of supported thaats
Examples
--------
>>> librosa.list_thaat()
['bilaval',
'khamaj',
'kafi',
'asavari',
'bhairavi',
'kalyan',
'marva',
'poorvi',
'todi',
'bhairav']
See Also
--------
list_mela
thaat_to_degrees
"""
return list(THAAT_MAP.keys())
@cache(level=10)
def key_to_notes(key: str, *, unicode: bool = True) -> List[str]:
"""List all 12 note names in the chromatic scale, as spelled according to
a given key (major or minor).
This function exists to resolve enharmonic equivalences between different
spellings for the same pitch (e.g. C vs D), and is primarily useful when producing
human-readable outputs (e.g. plotting) for pitch content.
Note names are decided by the following rules:
1. If the tonic of the key has an accidental (sharp or flat), that accidental will be
used consistently for all notes.
2. If the tonic does not have an accidental, accidentals will be inferred to minimize
the total number used for diatonic scale degrees.
3. If there is a tie (e.g., in the case of C:maj vs A:min), sharps will be preferred.
Parameters
----------
key : string
Must be in the form TONIC:key. Tonic must be upper case (``CDEFGAB``),
key must be lower-case (``maj`` or ``min``).
Single accidentals (``b!`` for flat, or ``#♯`` for sharp) are supported.
Examples: ``C:maj, Db:min, A:min``.
unicode : bool
If ``True`` (default), use Unicode symbols (𝄪𝄫)for accidentals.
If ``False``, Unicode symbols will be mapped to low-order ASCII representations::
-> #, 𝄪 -> ##, ♭ -> b, 𝄫 -> bb
Returns
-------
notes : list
``notes[k]`` is the name for semitone ``k`` (starting from C)
under the given key. All chromatic notes (0 through 11) are
included.
See Also
--------
midi_to_note
Examples
--------
`C:maj` will use all sharps
>>> librosa.key_to_notes('C:maj')
['C', 'C♯', 'D', 'D♯', 'E', 'F', 'F♯', 'G', 'G♯', 'A', 'A♯', 'B']
`A:min` has the same notes
>>> librosa.key_to_notes('A:min')
['C', 'C♯', 'D', 'D♯', 'E', 'F', 'F♯', 'G', 'G♯', 'A', 'A♯', 'B']
`A:min` will use sharps, but spell note 0 (`C`) as `B`
>>> librosa.key_to_notes('A#:min')
['B♯', 'C♯', 'D', 'D♯', 'E', 'E♯', 'F♯', 'G', 'G♯', 'A', 'A♯', 'B']
`G:maj` will use a double-sharp to spell note 7 (`G`) as `F𝄪`:
>>> librosa.key_to_notes('G#:maj')
['B♯', 'C♯', 'D', 'D♯', 'E', 'E♯', 'F♯', 'F𝄪', 'G♯', 'A', 'A♯', 'B']
`F:min` will use double-flats
>>> librosa.key_to_notes('Fb:min')
['D𝄫', 'D♭', 'E𝄫', 'E♭', 'F♭', 'F', 'G♭', 'A𝄫', 'A♭', 'B𝄫', 'B♭', 'C♭']
"""
# Parse the key signature
match = KEY_RE.match(key)
if not match:
raise ParameterError(f"Improper key format: {key:s}")
pitch_map = {"C": 0, "D": 2, "E": 4, "F": 5, "G": 7, "A": 9, "B": 11}
acc_map = {"#": 1, "": 0, "b": -1, "!": -1, "": 1, "": -1}
tonic = match.group("tonic").upper()
accidental = match.group("accidental")
offset = acc_map[accidental]
scale = match.group("scale")[:3].lower()
# Determine major or minor
major = scale == "maj"
# calculate how many clockwise steps we are on CoF (== # sharps)
if major:
tonic_number = ((pitch_map[tonic] + offset) * 7) % 12
else:
tonic_number = ((pitch_map[tonic] + offset) * 7 + 9) % 12
# Decide if using flats or sharps
# Logic here is as follows:
# 1. respect the given notation for the tonic.
# Sharp tonics will always use sharps, likewise flats.
# 2. If no accidental in the tonic, try to minimize accidentals.
# 3. If there's a tie for accidentals, use sharp for major and flat for minor.
if offset < 0:
# use flats explicitly
use_sharps = False
elif offset > 0:
# use sharps explicitly
use_sharps = True
elif 0 <= tonic_number < 6:
use_sharps = True
elif tonic_number > 6:
use_sharps = False
# Basic note sequences for simple keys
notes_sharp = ["C", "C♯", "D", "D♯", "E", "F", "F♯", "G", "G♯", "A", "A♯", "B"]
notes_flat = ["C", "D♭", "D", "E♭", "E", "F", "G♭", "G", "A♭", "A", "B♭", "B"]
# These apply when we have >= 6 sharps
sharp_corrections = [
(5, "E♯"),
(0, "B♯"),
(7, "F𝄪"),
(2, "C𝄪"),
(9, "G𝄪"),
(4, "D𝄪"),
(11, "A𝄪"),
]
# These apply when we have >= 6 flats
flat_corrections = [
(11, "C♭"),
(4, "F♭"),
(9, "B𝄫"),
(2, "E𝄫"),
(7, "A𝄫"),
(0, "D𝄫"),
] # last would be (5, 'G𝄫')
# Apply a mod-12 correction to distinguish B#:maj from C:maj
n_sharps = tonic_number
if tonic_number == 0 and tonic == "B":
n_sharps = 12
if use_sharps:
# This will only execute if n_sharps >= 6
for n in range(0, n_sharps - 6 + 1):
index, name = sharp_corrections[n]
notes_sharp[index] = name
notes = notes_sharp
else:
n_flats = (12 - tonic_number) % 12
# This will only execute if tonic_number <= 6
for n in range(0, n_flats - 6 + 1):
index, name = flat_corrections[n]
notes_flat[index] = name
notes = notes_flat
# Finally, apply any unicode down-translation if necessary
if not unicode:
translations = str.maketrans({"": "#", "𝄪": "##", "": "b", "𝄫": "bb"})
notes = list(n.translate(translations) for n in notes)
return notes
def key_to_degrees(key: str) -> np.ndarray:
"""Construct the diatonic scale degrees for a given key.
Parameters
----------
key : str
Must be in the form TONIC:key. Tonic must be upper case (``CDEFGAB``),
key must be lower-case (``maj`` or ``min``).
Single accidentals (``b!`` for flat, or ``#♯`` for sharp) are supported.
Examples: ``C:maj, Db:min, A:min``.
Returns
-------
degrees : np.ndarray
An array containing the semitone numbers (0=C, 1=C#, ... 11=B)
for each of the seven scale degrees in the given key, starting
from the tonic.
See Also
--------
key_to_notes
Examples
--------
>>> librosa.key_to_degrees('C:maj')
array([ 0, 2, 4, 5, 7, 9, 11])
>>> librosa.key_to_degrees('C#:maj')
array([ 1, 3, 5, 6, 8, 10, 0])
>>> librosa.key_to_degrees('A:min')
array([ 9, 11, 0, 2, 4, 5, 7])
"""
notes = dict(
maj=np.array([0, 2, 4, 5, 7, 9, 11]), min=np.array([0, 2, 3, 5, 7, 8, 10])
)
match = KEY_RE.match(key)
if not match:
raise ParameterError(f"Improper key format: {key:s}")
pitch_map = {"C": 0, "D": 2, "E": 4, "F": 5, "G": 7, "A": 9, "B": 11}
acc_map = {"#": 1, "": 0, "b": -1, "!": -1, "": 1, "": -1}
tonic = match.group("tonic").upper()
accidental = match.group("accidental")
offset = acc_map[accidental]
scale = match.group("scale")[:3].lower()
return (notes[scale] + pitch_map[tonic] + offset) % 12
@cache(level=10)
def fifths_to_note(*, unison: str, fifths: int, unicode: bool = True) -> str:
"""Calculate the note name for a given number of perfect fifths
from a specified unison.
This function is primarily intended as a utility routine for
Functional Just System (FJS) notation conversions.
This function does not assume the "circle of fifths" or equal temperament,
so 12 fifths will not generally produce a note of the same pitch class
due to the accumulation of accidentals.
Parameters
----------
unison : str
The name of the starting (unison) note, e.g., 'C' or 'Bb'.
Unicode accidentals are supported.
fifths : integer
The number of perfect fifths to deviate from unison.
unicode : bool
If ``True`` (default), use Unicode symbols (𝄪𝄫)for accidentals.
If ``False``, accidentals will be encoded as low-order ASCII representations::
-> #, 𝄪 -> ##, ♭ -> b, 𝄫 -> bb
Returns
-------
note : str
The name of the requested note
Examples
--------
>>> librosa.fifths_to_note(unison='C', fifths=6)
'F♯'
>>> librosa.fifths_to_note(unison='G', fifths=-3)
'B♭'
>>> librosa.fifths_to_note(unison='Eb', fifths=11, unicode=False)
'G#'
"""
# Starting the circle of fifths at F makes accidentals easier to count
COFMAP = "FCGDAEB"
acc_map = {
"#": 1,
"": 0,
"b": -1,
"!": -1,
"": 1,
"𝄪": 2,
"": -1,
"𝄫": -2,
"": 0,
}
if unicode:
acc_map_inv = {1: "", 2: "𝄪", -1: "", -2: "𝄫", 0: ""}
else:
acc_map_inv = {1: "#", 2: "##", -1: "b", -2: "bb", 0: ""}
match = NOTE_RE.match(unison)
if not match:
raise ParameterError(f"Improper note format: {unison:s}")
# Find unison in the alphabet
pitch = match.group("note").upper()
# Find the number of accidentals to start from
offset = np.sum([acc_map[o] for o in match.group("accidental")])
# Find the raw target note
circle_idx = COFMAP.index(pitch)
raw_output = COFMAP[(circle_idx + fifths) % 7]
# Now how many accidentals have we accrued?
# Equivalently, count times we cross a B<->F boundary
acc_index = offset + (circle_idx + fifths) // 7
# Compress multiple-accidentals as needed
acc_str = acc_map_inv[np.sign(acc_index) * 2] * int(
abs(acc_index) // 2
) + acc_map_inv[np.sign(acc_index)] * int(abs(acc_index) % 2)
return raw_output + acc_str
@jit(nopython=True, nogil=True, cache=True)
def __o_fold(d):
"""Compute the octave-folded interval.
This maps intervals to the range [1, 2).
This is part of the FJS notation converter.
It is equivalent to the `red` function described in the FJS
documentation.
"""
return d * (2.0 ** -np.floor(np.log2(d)))
@jit(nopython=True, nogil=True, cache=True)
def __bo_fold(d):
"""Compute the balanced, octave-folded interval.
This maps intervals to the range [sqrt(2)/2, sqrt(2)).
This is part of the FJS notation converter.
It is equivalent to the `reb` function described in the FJS
documentation, but with a simpler implementation.
"""
return d * (2.0 ** -np.round(np.log2(d)))
@jit(nopython=True, nogil=True, cache=True)
def __fifth_search(interval, tolerance):
"""Accelerated helper function for finding the number of fifths
to get within tolerance of a given interval.
This implementation will give up after 32 fifths
"""
log_tolerance = np.abs(np.log2(tolerance))
for power in range(32):
for sign in [1, -1]:
if (
np.abs(np.log2(__bo_fold(interval / 3.0 ** (power * sign))))
<= log_tolerance
):
return power * sign
power += 1
return power
# Translation grids for superscripts and subscripts
SUPER_TRANS = str.maketrans("0123456789", "⁰¹²³⁴⁵⁶⁷⁸⁹")
SUB_TRANS = str.maketrans("0123456789", "₀₁₂₃₄₅₆₇₈₉")
@overload
def interval_to_fjs(
interval: _FloatLike_co,
*,
unison: str = ...,
tolerance: float = ...,
unicode: bool = ...,
) -> str:
...
@overload
def interval_to_fjs(
interval: _SequenceLike[_FloatLike_co],
*,
unison: str = ...,
tolerance: float = ...,
unicode: bool = ...,
) -> np.ndarray:
...
@overload
def interval_to_fjs(
interval: _ScalarOrSequence[_FloatLike_co],
*,
unison: str = ...,
tolerance: float = ...,
unicode: bool = ...,
) -> Union[str, np.ndarray]:
...
@vectorize(otypes="U", excluded=set(["unison", "tolerance", "unicode"]))
def interval_to_fjs(
interval: _ScalarOrSequence[_FloatLike_co],
*,
unison: str = "C",
tolerance: float = 65.0 / 63,
unicode: bool = True,
) -> Union[str, np.ndarray]:
"""Convert an interval to Functional Just System (FJS) notation.
See https://misotanni.github.io/fjs/en/index.html for a thorough overview
of the FJS notation system, and the examples below.
FJS conversion works by identifying a Pythagorean interval which is within
a specified tolerance of the target interval, which provides the core note
name. If the interval is derived from ratios other than perfect fifths,
then the remaining factors are encoded as superscripts for otonal
(increasing) intervals and subscripts for utonal (decreasing) intervals.
Parameters
----------
interval : float > 0 or iterable of floats
A (just) interval to notate in FJS.
unison : str
The name of the unison note (corresponding to `interval=1`).
tolerance : float
The tolerance threshold for identifying the core note name.
unicode : bool
If ``True`` (default), use Unicode symbols (𝄪𝄫)for accidentals,
and superscripts/subscripts for otonal and utonal accidentals.
If ``False``, accidentals will be encoded as low-order ASCII representations::
-> #, 𝄪 -> ##, ♭ -> b, 𝄫 -> bb
Otonal and utonal accidentals will be denoted by `^##` and `_##`
respectively (see examples below).
Raises
------
ParameterError
If the provided interval is not positive
If the provided interval cannot be identified with a
just intonation prime factorization.
Returns
-------
note_fjs : str or np.ndarray(dtype=str)
The interval(s) relative to the given unison in FJS notation.
Examples
--------
Pythagorean intervals appear as expected, with no otonal
or utonal extensions:
>>> librosa.interval_to_fjs(3/2, unison='C')
'G'
>>> librosa.interval_to_fjs(4/3, unison='F')
'B♭'
A ptolemaic major third will appear with an otonal '5':
>>> librosa.interval_to_fjs(5/4, unison='A')
'C♯⁵'
And a ptolemaic minor third will appear with utonal '5':
>>> librosa.interval_to_fjs(6/5, unison='A')
'C₅'
More complex intervals will have compound accidentals.
For example:
>>> librosa.interval_to_fjs(25/14, unison='F#')
'E²⁵₇'
>>> librosa.interval_to_fjs(25/14, unison='F#', unicode=False)
'E^25_7'
Array inputs are also supported:
>>> librosa.interval_to_fjs([3/2, 4/3, 5/3])
array(['G', 'F', 'A⁵'], dtype='<U2')
"""
# suppressing the type check here because mypy won't introspect through
# numpy vectorization
if interval <= 0: # type: ignore
raise ParameterError(f"Interval={interval} must be strictly positive")
# Find the approximate number of fifth-steps to get within tolerance
# of the target interval
fifths = __fifth_search(interval, tolerance)
# determine the base note name
note_name = fifths_to_note(unison=unison, fifths=fifths, unicode=unicode)
# Get the prime factor expansion from the interval table
try:
# Balance the interval into the octave for lookup
interval_b = __o_fold(interval)
powers = INTERVALS[np.around(interval_b, decimals=6)]
except KeyError as exc:
raise ParameterError(f"Unknown interval={interval}") from exc
# Ignore pythagorean spelling
powers = {p: powers[p] for p in powers if p > 3}
# Split into otonal and utonal accidentals
otonal = np.prod([p ** powers[p] for p in powers if powers[p] > 0])
utonal = np.prod([p ** -powers[p] for p in powers if powers[p] < 0])
suffix = ""
if otonal > 1:
if unicode:
suffix += f"{otonal:d}".translate(SUPER_TRANS)
else:
suffix += f"^{otonal}"
if utonal > 1:
if unicode:
suffix += f"{utonal:d}".translate(SUB_TRANS)
else:
suffix += f"_{utonal}"
return note_name + suffix