973 lines
33 KiB
Python
973 lines
33 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
"""Pitch-tracking and tuning estimation"""
|
||
|
|
||
|
import warnings
|
||
|
import numpy as np
|
||
|
import scipy
|
||
|
import numba
|
||
|
|
||
|
|
||
|
from .spectrum import _spectrogram
|
||
|
from . import convert
|
||
|
from .._cache import cache
|
||
|
from .. import util
|
||
|
from .. import sequence
|
||
|
from ..util.exceptions import ParameterError
|
||
|
from numpy.typing import ArrayLike
|
||
|
from typing import Any, Callable, Optional, Tuple, Union
|
||
|
from .._typing import _WindowSpec, _PadMode, _PadModeSTFT
|
||
|
|
||
|
__all__ = ["estimate_tuning", "pitch_tuning", "piptrack", "yin", "pyin"]
|
||
|
|
||
|
|
||
|
def estimate_tuning(
|
||
|
*,
|
||
|
y: Optional[np.ndarray] = None,
|
||
|
sr: float = 22050,
|
||
|
S: Optional[np.ndarray] = None,
|
||
|
n_fft: Optional[int] = 2048,
|
||
|
resolution: float = 0.01,
|
||
|
bins_per_octave: int = 12,
|
||
|
**kwargs: Any,
|
||
|
) -> float:
|
||
|
"""Estimate the tuning of an audio time series or spectrogram input.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : np.ndarray [shape=(..., n)] or None
|
||
|
audio signal. Multi-channel is supported..
|
||
|
sr : number > 0 [scalar]
|
||
|
audio sampling rate of ``y``
|
||
|
S : np.ndarray [shape=(..., d, t)] or None
|
||
|
magnitude or power spectrogram
|
||
|
n_fft : int > 0 [scalar] or None
|
||
|
number of FFT bins to use, if ``y`` is provided.
|
||
|
resolution : float in `(0, 1)`
|
||
|
Resolution of the tuning as a fraction of a bin.
|
||
|
0.01 corresponds to measurements in cents.
|
||
|
bins_per_octave : int > 0 [scalar]
|
||
|
How many frequency bins per octave
|
||
|
**kwargs : additional keyword arguments
|
||
|
Additional arguments passed to `piptrack`
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
tuning: float in `[-0.5, 0.5)`
|
||
|
estimated tuning deviation (fractions of a bin).
|
||
|
|
||
|
Note that if multichannel input is provided, a single tuning estimate is provided spanning all
|
||
|
channels.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
piptrack : Pitch tracking by parabolic interpolation
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
With time-series input
|
||
|
|
||
|
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
||
|
>>> librosa.estimate_tuning(y=y, sr=sr)
|
||
|
-0.08000000000000002
|
||
|
|
||
|
In tenths of a cent
|
||
|
|
||
|
>>> librosa.estimate_tuning(y=y, sr=sr, resolution=1e-3)
|
||
|
-0.016000000000000014
|
||
|
|
||
|
Using spectrogram input
|
||
|
|
||
|
>>> S = np.abs(librosa.stft(y))
|
||
|
>>> librosa.estimate_tuning(S=S, sr=sr)
|
||
|
-0.08000000000000002
|
||
|
|
||
|
Using pass-through arguments to `librosa.piptrack`
|
||
|
|
||
|
>>> librosa.estimate_tuning(y=y, sr=sr, n_fft=8192,
|
||
|
... fmax=librosa.note_to_hz('G#9'))
|
||
|
-0.08000000000000002
|
||
|
"""
|
||
|
pitch, mag = piptrack(y=y, sr=sr, S=S, n_fft=n_fft, **kwargs)
|
||
|
|
||
|
# Only count magnitude where frequency is > 0
|
||
|
pitch_mask = pitch > 0
|
||
|
|
||
|
if pitch_mask.any():
|
||
|
threshold = np.median(mag[pitch_mask])
|
||
|
else:
|
||
|
threshold = 0.0
|
||
|
|
||
|
return pitch_tuning(
|
||
|
pitch[(mag >= threshold) & pitch_mask],
|
||
|
resolution=resolution,
|
||
|
bins_per_octave=bins_per_octave,
|
||
|
)
|
||
|
|
||
|
|
||
|
def pitch_tuning(
|
||
|
frequencies: ArrayLike, *, resolution: float = 0.01, bins_per_octave: int = 12
|
||
|
) -> float:
|
||
|
"""Given a collection of pitches, estimate its tuning offset
|
||
|
(in fractions of a bin) relative to A440=440.0Hz.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
frequencies : array-like, float
|
||
|
A collection of frequencies detected in the signal.
|
||
|
See `piptrack`
|
||
|
resolution : float in `(0, 1)`
|
||
|
Resolution of the tuning as a fraction of a bin.
|
||
|
0.01 corresponds to cents.
|
||
|
bins_per_octave : int > 0 [scalar]
|
||
|
How many frequency bins per octave
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
tuning: float in `[-0.5, 0.5)`
|
||
|
estimated tuning deviation (fractions of a bin)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
estimate_tuning : Estimating tuning from time-series or spectrogram input
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> # Generate notes at +25 cents
|
||
|
>>> freqs = librosa.cqt_frequencies(n_bins=24, fmin=55, tuning=0.25)
|
||
|
>>> librosa.pitch_tuning(freqs)
|
||
|
0.25
|
||
|
|
||
|
>>> # Track frequencies from a real spectrogram
|
||
|
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
||
|
>>> freqs, times, mags = librosa.reassigned_spectrogram(y, sr=sr,
|
||
|
... fill_nan=True)
|
||
|
>>> # Select out pitches with high energy
|
||
|
>>> freqs = freqs[mags > np.median(mags)]
|
||
|
>>> librosa.pitch_tuning(freqs)
|
||
|
-0.07
|
||
|
"""
|
||
|
frequencies = np.atleast_1d(frequencies)
|
||
|
|
||
|
# Trim out any DC components
|
||
|
frequencies = frequencies[frequencies > 0]
|
||
|
|
||
|
if not np.any(frequencies):
|
||
|
warnings.warn(
|
||
|
"Trying to estimate tuning from empty frequency set.", stacklevel=2
|
||
|
)
|
||
|
return 0.0
|
||
|
|
||
|
# Compute the residual relative to the number of bins
|
||
|
residual = np.mod(bins_per_octave * convert.hz_to_octs(frequencies), 1.0)
|
||
|
|
||
|
# Are we on the wrong side of the semitone?
|
||
|
# A residual of 0.95 is more likely to be a deviation of -0.05
|
||
|
# from the next tone up.
|
||
|
residual[residual >= 0.5] -= 1.0
|
||
|
|
||
|
bins = np.linspace(-0.5, 0.5, int(np.ceil(1.0 / resolution)) + 1)
|
||
|
|
||
|
counts, tuning = np.histogram(residual, bins)
|
||
|
|
||
|
# return the histogram peak
|
||
|
tuning_est: float = tuning[np.argmax(counts)]
|
||
|
return tuning_est
|
||
|
|
||
|
|
||
|
@cache(level=30)
|
||
|
def piptrack(
|
||
|
*,
|
||
|
y: Optional[np.ndarray] = None,
|
||
|
sr: float = 22050,
|
||
|
S: Optional[np.ndarray] = None,
|
||
|
n_fft: Optional[int] = 2048,
|
||
|
hop_length: Optional[int] = None,
|
||
|
fmin: float = 150.0,
|
||
|
fmax: float = 4000.0,
|
||
|
threshold: float = 0.1,
|
||
|
win_length: Optional[int] = None,
|
||
|
window: _WindowSpec = "hann",
|
||
|
center: bool = True,
|
||
|
pad_mode: _PadModeSTFT = "constant",
|
||
|
ref: Optional[Union[float, Callable]] = None,
|
||
|
) -> Tuple[np.ndarray, np.ndarray]:
|
||
|
"""Pitch tracking on thresholded parabolically-interpolated STFT.
|
||
|
|
||
|
This implementation uses the parabolic interpolation method described by [#]_.
|
||
|
|
||
|
.. [#] https://ccrma.stanford.edu/~jos/sasp/Sinusoidal_Peak_Interpolation.html
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : np.ndarray [shape=(..., n)] or None
|
||
|
audio signal. Multi-channel is supported..
|
||
|
|
||
|
sr : number > 0 [scalar]
|
||
|
audio sampling rate of ``y``
|
||
|
|
||
|
S : np.ndarray [shape=(..., d, t)] or None
|
||
|
magnitude or power spectrogram
|
||
|
|
||
|
n_fft : int > 0 [scalar] or None
|
||
|
number of FFT bins to use, if ``y`` is provided.
|
||
|
|
||
|
hop_length : int > 0 [scalar] or None
|
||
|
number of samples to hop
|
||
|
|
||
|
threshold : float in `(0, 1)`
|
||
|
A bin in spectrum ``S`` is considered a pitch when it is greater than
|
||
|
``threshold * ref(S)``.
|
||
|
|
||
|
By default, ``ref(S)`` is taken to be ``max(S, axis=0)`` (the maximum value in
|
||
|
each column).
|
||
|
|
||
|
fmin : float > 0 [scalar]
|
||
|
lower frequency cutoff.
|
||
|
|
||
|
fmax : float > 0 [scalar]
|
||
|
upper frequency cutoff.
|
||
|
|
||
|
win_length : int <= n_fft [scalar]
|
||
|
Each frame of audio is windowed by ``window``.
|
||
|
The window will be of length `win_length` and then padded
|
||
|
with zeros to match ``n_fft``.
|
||
|
|
||
|
If unspecified, defaults to ``win_length = n_fft``.
|
||
|
|
||
|
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
|
||
|
- a window specification (string, tuple, or number);
|
||
|
see `scipy.signal.get_window`
|
||
|
- a window function, such as `scipy.signal.windows.hann`
|
||
|
- a vector or array of length ``n_fft``
|
||
|
|
||
|
.. see also:: `filters.get_window`
|
||
|
|
||
|
center : boolean
|
||
|
- If ``True``, the signal ``y`` is padded so that frame
|
||
|
``t`` is centered at ``y[t * hop_length]``.
|
||
|
- If ``False``, then frame ``t`` begins at ``y[t * hop_length]``
|
||
|
|
||
|
pad_mode : string
|
||
|
If ``center=True``, the padding mode to use at the edges of the signal.
|
||
|
By default, STFT uses zero-padding.
|
||
|
|
||
|
See also: `np.pad`.
|
||
|
|
||
|
ref : scalar or callable [default=np.max]
|
||
|
If scalar, the reference value against which ``S`` is compared for determining
|
||
|
pitches.
|
||
|
|
||
|
If callable, the reference value is computed as ``ref(S, axis=0)``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pitches, magnitudes : np.ndarray [shape=(..., d, t)]
|
||
|
Where ``d`` is the subset of FFT bins within ``fmin`` and ``fmax``.
|
||
|
|
||
|
``pitches[..., f, t]`` contains instantaneous frequency at bin
|
||
|
``f``, time ``t``
|
||
|
|
||
|
``magnitudes[..., f, t]`` contains the corresponding magnitudes.
|
||
|
|
||
|
Both ``pitches`` and ``magnitudes`` take value 0 at bins
|
||
|
of non-maximal magnitude.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function caches at level 30.
|
||
|
|
||
|
One of ``S`` or ``y`` must be provided.
|
||
|
If ``S`` is not given, it is computed from ``y`` using
|
||
|
the default parameters of `librosa.stft`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Computing pitches from a waveform input
|
||
|
|
||
|
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
||
|
>>> pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
|
||
|
|
||
|
Or from a spectrogram input
|
||
|
|
||
|
>>> S = np.abs(librosa.stft(y))
|
||
|
>>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr)
|
||
|
|
||
|
Or with an alternate reference value for pitch detection, where
|
||
|
values above the mean spectral energy in each frame are counted as pitches
|
||
|
|
||
|
>>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr, threshold=1,
|
||
|
... ref=np.mean)
|
||
|
"""
|
||
|
# Check that we received an audio time series or STFT
|
||
|
S, n_fft = _spectrogram(
|
||
|
y=y,
|
||
|
S=S,
|
||
|
n_fft=n_fft,
|
||
|
hop_length=hop_length,
|
||
|
win_length=win_length,
|
||
|
window=window,
|
||
|
center=center,
|
||
|
pad_mode=pad_mode,
|
||
|
)
|
||
|
|
||
|
# Make sure we're dealing with magnitudes
|
||
|
S = np.abs(S)
|
||
|
|
||
|
# Truncate to feasible region
|
||
|
fmin = np.maximum(fmin, 0)
|
||
|
fmax = np.minimum(fmax, float(sr) / 2)
|
||
|
|
||
|
fft_freqs = convert.fft_frequencies(sr=sr, n_fft=n_fft)
|
||
|
|
||
|
# Do the parabolic interpolation everywhere,
|
||
|
# then figure out where the peaks are
|
||
|
# then restrict to the feasible range (fmin:fmax)
|
||
|
avg = np.gradient(S, axis=-2)
|
||
|
shift = _parabolic_interpolation(S, axis=-2)
|
||
|
# this will get us the interpolated peak value
|
||
|
dskew = 0.5 * avg * shift
|
||
|
|
||
|
# Pre-allocate output
|
||
|
pitches = np.zeros_like(S)
|
||
|
mags = np.zeros_like(S)
|
||
|
|
||
|
# Clip to the viable frequency range
|
||
|
freq_mask = (fmin <= fft_freqs) & (fft_freqs < fmax)
|
||
|
freq_mask = util.expand_to(freq_mask, ndim=S.ndim, axes=-2)
|
||
|
|
||
|
# Compute the column-wise local max of S after thresholding
|
||
|
# Find the argmax coordinates
|
||
|
if ref is None:
|
||
|
ref = np.max
|
||
|
|
||
|
if callable(ref):
|
||
|
ref_value = threshold * ref(S, axis=-2)
|
||
|
# Reinsert the frequency axis here, in case the callable doesn't
|
||
|
|
||
|
# support keepdims=True
|
||
|
ref_value = np.expand_dims(ref_value, -2)
|
||
|
else:
|
||
|
ref_value = np.abs(ref)
|
||
|
|
||
|
# Store pitch and magnitude
|
||
|
idx = np.nonzero(freq_mask & util.localmax(S * (S > ref_value), axis=-2))
|
||
|
pitches[idx] = (idx[-2] + shift[idx]) * float(sr) / n_fft
|
||
|
mags[idx] = S[idx] + dskew[idx]
|
||
|
|
||
|
return pitches, mags
|
||
|
|
||
|
|
||
|
def _cumulative_mean_normalized_difference(
|
||
|
y_frames: np.ndarray,
|
||
|
frame_length: int,
|
||
|
win_length: int,
|
||
|
min_period: int,
|
||
|
max_period: int,
|
||
|
) -> np.ndarray:
|
||
|
"""Cumulative mean normalized difference function (equation 8 in [#]_)
|
||
|
|
||
|
.. [#] De Cheveigné, Alain, and Hideki Kawahara.
|
||
|
"YIN, a fundamental frequency estimator for speech and music."
|
||
|
The Journal of the Acoustical Society of America 111.4 (2002): 1917-1930.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y_frames : np.ndarray [shape=(frame_length, n_frames)]
|
||
|
framed audio time series.
|
||
|
frame_length : int > 0 [scalar]
|
||
|
length of the frames in samples.
|
||
|
win_length : int > 0 [scalar]
|
||
|
length of the window for calculating autocorrelation in samples.
|
||
|
min_period : int > 0 [scalar]
|
||
|
minimum period.
|
||
|
max_period : int > 0 [scalar]
|
||
|
maximum period.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
yin_frames : np.ndarray [shape=(max_period-min_period+1,n_frames)]
|
||
|
Cumulative mean normalized difference function for each frame.
|
||
|
"""
|
||
|
# Autocorrelation.
|
||
|
a = np.fft.rfft(y_frames, frame_length, axis=-2)
|
||
|
b = np.fft.rfft(y_frames[..., win_length:0:-1, :], frame_length, axis=-2)
|
||
|
acf_frames = np.fft.irfft(a * b, frame_length, axis=-2)[..., win_length:, :]
|
||
|
acf_frames[np.abs(acf_frames) < 1e-6] = 0
|
||
|
|
||
|
# Energy terms.
|
||
|
energy_frames = np.cumsum(y_frames**2, axis=-2)
|
||
|
energy_frames = (
|
||
|
energy_frames[..., win_length:, :] - energy_frames[..., :-win_length, :]
|
||
|
)
|
||
|
energy_frames[np.abs(energy_frames) < 1e-6] = 0
|
||
|
|
||
|
# Difference function.
|
||
|
yin_frames = energy_frames[..., :1, :] + energy_frames - 2 * acf_frames
|
||
|
|
||
|
# Cumulative mean normalized difference function.
|
||
|
yin_numerator = yin_frames[..., min_period : max_period + 1, :]
|
||
|
# broadcast this shape to have leading ones
|
||
|
tau_range = util.expand_to(
|
||
|
np.arange(1, max_period + 1), ndim=yin_frames.ndim, axes=-2
|
||
|
)
|
||
|
|
||
|
cumulative_mean = (
|
||
|
np.cumsum(yin_frames[..., 1 : max_period + 1, :], axis=-2) / tau_range
|
||
|
)
|
||
|
yin_denominator = cumulative_mean[..., min_period - 1 : max_period, :]
|
||
|
yin_frames: np.ndarray = yin_numerator / (
|
||
|
yin_denominator + util.tiny(yin_denominator)
|
||
|
)
|
||
|
return yin_frames
|
||
|
|
||
|
|
||
|
@numba.stencil # type: ignore
|
||
|
def _pi_stencil(x: np.ndarray) -> np.ndarray:
|
||
|
"""Stencil to compute local parabolic interpolation"""
|
||
|
a = x[1] + x[-1] - 2 * x[0]
|
||
|
b = (x[1] - x[-1]) / 2
|
||
|
|
||
|
if np.abs(b) >= np.abs(a):
|
||
|
# If this happens, we'll shift by more than 1 bin
|
||
|
# Suppressing types because mypy has no idea about stencils
|
||
|
return 0 # type: ignore
|
||
|
|
||
|
return -b / a # type: ignore
|
||
|
|
||
|
|
||
|
@numba.guvectorize(
|
||
|
["void(float32[:], float32[:])", "void(float64[:], float64[:])"],
|
||
|
"(n)->(n)",
|
||
|
cache=True,
|
||
|
nopython=True,
|
||
|
) # type: ignore
|
||
|
def _pi_wrapper(x: np.ndarray, y: np.ndarray) -> None: # pragma: no cover
|
||
|
"""Vectorized wrapper for the parabolic interpolation stencil"""
|
||
|
y[:] = _pi_stencil(x)
|
||
|
|
||
|
|
||
|
def _parabolic_interpolation(x: np.ndarray, *, axis: int = -2) -> np.ndarray:
|
||
|
"""Piecewise parabolic interpolation for yin and pyin.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : np.ndarray
|
||
|
array to interpolate
|
||
|
axis : int
|
||
|
axis along which to interpolate
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
parabolic_shifts : np.ndarray [shape=x.shape]
|
||
|
position of the parabola optima (relative to bin indices)
|
||
|
|
||
|
Note: the shift at bin `n` is determined as 0 if the estimated
|
||
|
optimum is outside the range `[n-1, n+1]`.
|
||
|
"""
|
||
|
# Rotate the target axis to the end
|
||
|
xi = x.swapaxes(-1, axis)
|
||
|
|
||
|
# Allocate the output array and rotate target axis
|
||
|
shifts = np.empty_like(x)
|
||
|
shiftsi = shifts.swapaxes(-1, axis)
|
||
|
|
||
|
# Call the vectorized stencil
|
||
|
_pi_wrapper(xi, shiftsi)
|
||
|
|
||
|
# Handle the edge condition not covered by the stencil
|
||
|
shiftsi[..., -1] = 0
|
||
|
shiftsi[..., 0] = 0
|
||
|
|
||
|
return shifts
|
||
|
|
||
|
|
||
|
def yin(
|
||
|
y: np.ndarray,
|
||
|
*,
|
||
|
fmin: float,
|
||
|
fmax: float,
|
||
|
sr: float = 22050,
|
||
|
frame_length: int = 2048,
|
||
|
win_length: Optional[int] = None,
|
||
|
hop_length: Optional[int] = None,
|
||
|
trough_threshold: float = 0.1,
|
||
|
center: bool = True,
|
||
|
pad_mode: _PadMode = "constant",
|
||
|
) -> np.ndarray:
|
||
|
"""Fundamental frequency (F0) estimation using the YIN algorithm.
|
||
|
|
||
|
YIN is an autocorrelation based method for fundamental frequency estimation [#]_.
|
||
|
First, a normalized difference function is computed over short (overlapping) frames of audio.
|
||
|
Next, the first minimum in the difference function below ``trough_threshold`` is selected as
|
||
|
an estimate of the signal's period.
|
||
|
Finally, the estimated period is refined using parabolic interpolation before converting
|
||
|
into the corresponding frequency.
|
||
|
|
||
|
.. [#] De Cheveigné, Alain, and Hideki Kawahara.
|
||
|
"YIN, a fundamental frequency estimator for speech and music."
|
||
|
The Journal of the Acoustical Society of America 111.4 (2002): 1917-1930.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : np.ndarray [shape=(..., n)]
|
||
|
audio time series. Multi-channel is supported..
|
||
|
fmin : number > 0 [scalar]
|
||
|
minimum frequency in Hertz.
|
||
|
The recommended minimum is ``librosa.note_to_hz('C2')`` (~65 Hz)
|
||
|
though lower values may be feasible.
|
||
|
fmax : number > fmin, <= sr/2 [scalar]
|
||
|
maximum frequency in Hertz.
|
||
|
The recommended maximum is ``librosa.note_to_hz('C7')`` (~2093 Hz)
|
||
|
though higher values may be feasible.
|
||
|
sr : number > 0 [scalar]
|
||
|
sampling rate of ``y`` in Hertz.
|
||
|
frame_length : int > 0 [scalar]
|
||
|
length of the frames in samples.
|
||
|
By default, ``frame_length=2048`` corresponds to a time scale of about 93 ms at
|
||
|
a sampling rate of 22050 Hz.
|
||
|
win_length : None or int > 0 [scalar]
|
||
|
length of the window for calculating autocorrelation in samples.
|
||
|
If ``None``, defaults to ``frame_length // 2``
|
||
|
hop_length : None or int > 0 [scalar]
|
||
|
number of audio samples between adjacent YIN predictions.
|
||
|
If ``None``, defaults to ``frame_length // 4``.
|
||
|
trough_threshold : number > 0 [scalar]
|
||
|
absolute threshold for peak estimation.
|
||
|
center : boolean
|
||
|
If ``True``, the signal `y` is padded so that frame
|
||
|
``D[:, t]`` is centered at `y[t * hop_length]`.
|
||
|
If ``False``, then ``D[:, t]`` begins at ``y[t * hop_length]``.
|
||
|
Defaults to ``True``, which simplifies the alignment of ``D`` onto a
|
||
|
time grid by means of ``librosa.core.frames_to_samples``.
|
||
|
pad_mode : string or function
|
||
|
If ``center=True``, this argument is passed to ``np.pad`` for padding
|
||
|
the edges of the signal ``y``. By default (``pad_mode="constant"``),
|
||
|
``y`` is padded on both sides with zeros.
|
||
|
If ``center=False``, this argument is ignored.
|
||
|
.. see also:: `np.pad`
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
f0: np.ndarray [shape=(..., n_frames)]
|
||
|
time series of fundamental frequencies in Hertz.
|
||
|
|
||
|
If multi-channel input is provided, f0 curves are estimated separately for each channel.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
librosa.pyin :
|
||
|
Fundamental frequency (F0) estimation using probabilistic YIN (pYIN).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Computing a fundamental frequency (F0) curve from an audio input
|
||
|
|
||
|
>>> y = librosa.chirp(fmin=440, fmax=880, duration=5.0)
|
||
|
>>> librosa.yin(y, fmin=440, fmax=880)
|
||
|
array([442.66354675, 441.95299983, 441.58010963, ...,
|
||
|
871.161732 , 873.99001454, 877.04297681])
|
||
|
"""
|
||
|
if fmin is None or fmax is None:
|
||
|
raise ParameterError('both "fmin" and "fmax" must be provided')
|
||
|
|
||
|
# Set the default window length if it is not already specified.
|
||
|
if win_length is None:
|
||
|
win_length = frame_length // 2
|
||
|
|
||
|
__check_yin_params(
|
||
|
sr=sr, fmax=fmax, fmin=fmin, frame_length=frame_length, win_length=win_length
|
||
|
)
|
||
|
|
||
|
# Set the default hop if it is not already specified.
|
||
|
if hop_length is None:
|
||
|
hop_length = frame_length // 4
|
||
|
|
||
|
# Check that audio is valid.
|
||
|
util.valid_audio(y, mono=False)
|
||
|
|
||
|
# Pad the time series so that frames are centered
|
||
|
if center:
|
||
|
padding = [(0, 0)] * y.ndim
|
||
|
padding[-1] = (frame_length // 2, frame_length // 2)
|
||
|
y = np.pad(y, padding, mode=pad_mode)
|
||
|
|
||
|
# Frame audio.
|
||
|
y_frames = util.frame(y, frame_length=frame_length, hop_length=hop_length)
|
||
|
|
||
|
# Calculate minimum and maximum periods
|
||
|
min_period = int(np.floor(sr / fmax))
|
||
|
max_period = min(int(np.ceil(sr / fmin)), frame_length - win_length - 1)
|
||
|
|
||
|
# Calculate cumulative mean normalized difference function.
|
||
|
yin_frames = _cumulative_mean_normalized_difference(
|
||
|
y_frames, frame_length, win_length, min_period, max_period
|
||
|
)
|
||
|
|
||
|
# Parabolic interpolation.
|
||
|
parabolic_shifts = _parabolic_interpolation(yin_frames)
|
||
|
|
||
|
# Find local minima.
|
||
|
is_trough = util.localmin(yin_frames, axis=-2)
|
||
|
is_trough[..., 0, :] = yin_frames[..., 0, :] < yin_frames[..., 1, :]
|
||
|
|
||
|
# Find minima below peak threshold.
|
||
|
is_threshold_trough = np.logical_and(is_trough, yin_frames < trough_threshold)
|
||
|
|
||
|
# Absolute threshold.
|
||
|
# "The solution we propose is to set an absolute threshold and choose the
|
||
|
# smallest value of tau that gives a minimum of d' deeper than
|
||
|
# this threshold. If none is found, the global minimum is chosen instead."
|
||
|
target_shape = list(yin_frames.shape)
|
||
|
target_shape[-2] = 1
|
||
|
|
||
|
global_min = np.argmin(yin_frames, axis=-2)
|
||
|
yin_period = np.argmax(is_threshold_trough, axis=-2)
|
||
|
|
||
|
global_min = global_min.reshape(target_shape)
|
||
|
yin_period = yin_period.reshape(target_shape)
|
||
|
|
||
|
no_trough_below_threshold = np.all(~is_threshold_trough, axis=-2, keepdims=True)
|
||
|
yin_period[no_trough_below_threshold] = global_min[no_trough_below_threshold]
|
||
|
|
||
|
# Refine peak by parabolic interpolation.
|
||
|
|
||
|
yin_period = (
|
||
|
min_period
|
||
|
+ yin_period
|
||
|
+ np.take_along_axis(parabolic_shifts, yin_period, axis=-2)
|
||
|
)[..., 0, :]
|
||
|
|
||
|
# Convert period to fundamental frequency.
|
||
|
f0: np.ndarray = sr / yin_period
|
||
|
return f0
|
||
|
|
||
|
|
||
|
def pyin(
|
||
|
y: np.ndarray,
|
||
|
*,
|
||
|
fmin: float,
|
||
|
fmax: float,
|
||
|
sr: float = 22050,
|
||
|
frame_length: int = 2048,
|
||
|
win_length: Optional[int] = None,
|
||
|
hop_length: Optional[int] = None,
|
||
|
n_thresholds: int = 100,
|
||
|
beta_parameters: Tuple[float, float] = (2, 18),
|
||
|
boltzmann_parameter: float = 2,
|
||
|
resolution: float = 0.1,
|
||
|
max_transition_rate: float = 35.92,
|
||
|
switch_prob: float = 0.01,
|
||
|
no_trough_prob: float = 0.01,
|
||
|
fill_na: Optional[float] = np.nan,
|
||
|
center: bool = True,
|
||
|
pad_mode: _PadMode = "constant",
|
||
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||
|
"""Fundamental frequency (F0) estimation using probabilistic YIN (pYIN).
|
||
|
|
||
|
pYIN [#]_ is a modificatin of the YIN algorithm [#]_ for fundamental frequency (F0) estimation.
|
||
|
In the first step of pYIN, F0 candidates and their probabilities are computed using the YIN algorithm.
|
||
|
In the second step, Viterbi decoding is used to estimate the most likely F0 sequence and voicing flags.
|
||
|
|
||
|
.. [#] Mauch, Matthias, and Simon Dixon.
|
||
|
"pYIN: A fundamental frequency estimator using probabilistic threshold distributions."
|
||
|
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014.
|
||
|
|
||
|
.. [#] De Cheveigné, Alain, and Hideki Kawahara.
|
||
|
"YIN, a fundamental frequency estimator for speech and music."
|
||
|
The Journal of the Acoustical Society of America 111.4 (2002): 1917-1930.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
y : np.ndarray [shape=(..., n)]
|
||
|
audio time series. Multi-channel is supported.
|
||
|
fmin : number > 0 [scalar]
|
||
|
minimum frequency in Hertz.
|
||
|
The recommended minimum is ``librosa.note_to_hz('C2')`` (~65 Hz)
|
||
|
though lower values may be feasible.
|
||
|
fmax : number > fmin, <= sr/2 [scalar]
|
||
|
maximum frequency in Hertz.
|
||
|
The recommended maximum is ``librosa.note_to_hz('C7')`` (~2093 Hz)
|
||
|
though higher values may be feasible.
|
||
|
sr : number > 0 [scalar]
|
||
|
sampling rate of ``y`` in Hertz.
|
||
|
frame_length : int > 0 [scalar]
|
||
|
length of the frames in samples.
|
||
|
By default, ``frame_length=2048`` corresponds to a time scale of about 93 ms at
|
||
|
a sampling rate of 22050 Hz.
|
||
|
win_length : None or int > 0 [scalar]
|
||
|
length of the window for calculating autocorrelation in samples.
|
||
|
If ``None``, defaults to ``frame_length // 2``
|
||
|
hop_length : None or int > 0 [scalar]
|
||
|
number of audio samples between adjacent pYIN predictions.
|
||
|
If ``None``, defaults to ``frame_length // 4``.
|
||
|
n_thresholds : int > 0 [scalar]
|
||
|
number of thresholds for peak estimation.
|
||
|
beta_parameters : tuple
|
||
|
shape parameters for the beta distribution prior over thresholds.
|
||
|
boltzmann_parameter : number > 0 [scalar]
|
||
|
shape parameter for the Boltzmann distribution prior over troughs.
|
||
|
Larger values will assign more mass to smaller periods.
|
||
|
resolution : float in `(0, 1)`
|
||
|
Resolution of the pitch bins.
|
||
|
0.01 corresponds to cents.
|
||
|
max_transition_rate : float > 0
|
||
|
maximum pitch transition rate in octaves per second.
|
||
|
switch_prob : float in ``(0, 1)``
|
||
|
probability of switching from voiced to unvoiced or vice versa.
|
||
|
no_trough_prob : float in ``(0, 1)``
|
||
|
maximum probability to add to global minimum if no trough is below threshold.
|
||
|
fill_na : None, float, or ``np.nan``
|
||
|
default value for unvoiced frames of ``f0``.
|
||
|
If ``None``, the unvoiced frames will contain a best guess value.
|
||
|
center : boolean
|
||
|
If ``True``, the signal ``y`` is padded so that frame
|
||
|
``D[:, t]`` is centered at ``y[t * hop_length]``.
|
||
|
If ``False``, then ``D[:, t]`` begins at ``y[t * hop_length]``.
|
||
|
Defaults to ``True``, which simplifies the alignment of ``D`` onto a
|
||
|
time grid by means of ``librosa.core.frames_to_samples``.
|
||
|
pad_mode : string or function
|
||
|
If ``center=True``, this argument is passed to ``np.pad`` for padding
|
||
|
the edges of the signal ``y``. By default (``pad_mode="constant"``),
|
||
|
``y`` is padded on both sides with zeros.
|
||
|
If ``center=False``, this argument is ignored.
|
||
|
.. see also:: `np.pad`
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
f0: np.ndarray [shape=(..., n_frames)]
|
||
|
time series of fundamental frequencies in Hertz.
|
||
|
voiced_flag: np.ndarray [shape=(..., n_frames)]
|
||
|
time series containing boolean flags indicating whether a frame is voiced or not.
|
||
|
voiced_prob: np.ndarray [shape=(..., n_frames)]
|
||
|
time series containing the probability that a frame is voiced.
|
||
|
.. note:: If multi-channel input is provided, f0 and voicing are estimated separately for each channel.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
librosa.yin :
|
||
|
Fundamental frequency (F0) estimation using the YIN algorithm.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Computing a fundamental frequency (F0) curve from an audio input
|
||
|
|
||
|
>>> y, sr = librosa.load(librosa.ex('trumpet'))
|
||
|
>>> f0, voiced_flag, voiced_probs = librosa.pyin(y,
|
||
|
... fmin=librosa.note_to_hz('C2'),
|
||
|
... fmax=librosa.note_to_hz('C7'))
|
||
|
>>> times = librosa.times_like(f0)
|
||
|
|
||
|
Overlay F0 over a spectrogram
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> img = librosa.display.specshow(D, x_axis='time', y_axis='log', ax=ax)
|
||
|
>>> ax.set(title='pYIN fundamental frequency estimation')
|
||
|
>>> fig.colorbar(img, ax=ax, format="%+2.f dB")
|
||
|
>>> ax.plot(times, f0, label='f0', color='cyan', linewidth=3)
|
||
|
>>> ax.legend(loc='upper right')
|
||
|
"""
|
||
|
if fmin is None or fmax is None:
|
||
|
raise ParameterError('both "fmin" and "fmax" must be provided')
|
||
|
|
||
|
# Set the default window length if it is not already specified.
|
||
|
if win_length is None:
|
||
|
win_length = frame_length // 2
|
||
|
|
||
|
__check_yin_params(
|
||
|
sr=sr, fmax=fmax, fmin=fmin, frame_length=frame_length, win_length=win_length
|
||
|
)
|
||
|
|
||
|
# Set the default hop if it is not already specified.
|
||
|
if hop_length is None:
|
||
|
hop_length = frame_length // 4
|
||
|
|
||
|
# Check that audio is valid.
|
||
|
util.valid_audio(y, mono=False)
|
||
|
|
||
|
# Pad the time series so that frames are centered
|
||
|
if center:
|
||
|
padding = [(0, 0) for _ in y.shape]
|
||
|
padding[-1] = (frame_length // 2, frame_length // 2)
|
||
|
y = np.pad(y, padding, mode=pad_mode)
|
||
|
|
||
|
# Frame audio.
|
||
|
y_frames = util.frame(y, frame_length=frame_length, hop_length=hop_length)
|
||
|
|
||
|
# Calculate minimum and maximum periods
|
||
|
min_period = int(np.floor(sr / fmax))
|
||
|
max_period = min(int(np.ceil(sr / fmin)), frame_length - win_length - 1)
|
||
|
|
||
|
# Calculate cumulative mean normalized difference function.
|
||
|
yin_frames = _cumulative_mean_normalized_difference(
|
||
|
y_frames, frame_length, win_length, min_period, max_period
|
||
|
)
|
||
|
|
||
|
# Parabolic interpolation.
|
||
|
parabolic_shifts = _parabolic_interpolation(yin_frames)
|
||
|
|
||
|
# Find Yin candidates and probabilities.
|
||
|
# The implementation here follows the official pYIN software which
|
||
|
# differs from the method described in the paper.
|
||
|
# 1. Define the prior over the thresholds.
|
||
|
thresholds = np.linspace(0, 1, n_thresholds + 1)
|
||
|
beta_cdf = scipy.stats.beta.cdf(thresholds, beta_parameters[0], beta_parameters[1])
|
||
|
beta_probs = np.diff(beta_cdf)
|
||
|
|
||
|
n_bins_per_semitone = int(np.ceil(1.0 / resolution))
|
||
|
n_pitch_bins = int(np.floor(12 * n_bins_per_semitone * np.log2(fmax / fmin))) + 1
|
||
|
|
||
|
def _helper(a, b):
|
||
|
return __pyin_helper(
|
||
|
a,
|
||
|
b,
|
||
|
sr,
|
||
|
thresholds,
|
||
|
boltzmann_parameter,
|
||
|
beta_probs,
|
||
|
no_trough_prob,
|
||
|
min_period,
|
||
|
fmin,
|
||
|
n_pitch_bins,
|
||
|
n_bins_per_semitone,
|
||
|
)
|
||
|
|
||
|
helper = np.vectorize(_helper, signature="(f,t),(k,t)->(1,d,t),(j,t)")
|
||
|
observation_probs, voiced_prob = helper(yin_frames, parabolic_shifts)
|
||
|
|
||
|
# Construct transition matrix.
|
||
|
max_semitones_per_frame = round(max_transition_rate * 12 * hop_length / sr)
|
||
|
transition_width = max_semitones_per_frame * n_bins_per_semitone + 1
|
||
|
# Construct the within voicing transition probabilities
|
||
|
transition = sequence.transition_local(
|
||
|
n_pitch_bins, transition_width, window="triangle", wrap=False
|
||
|
)
|
||
|
|
||
|
# Include across voicing transition probabilities
|
||
|
t_switch = sequence.transition_loop(2, 1 - switch_prob)
|
||
|
transition = np.kron(t_switch, transition)
|
||
|
|
||
|
p_init = np.zeros(2 * n_pitch_bins)
|
||
|
p_init[n_pitch_bins:] = 1 / n_pitch_bins
|
||
|
|
||
|
states = sequence.viterbi(observation_probs, transition, p_init=p_init)
|
||
|
|
||
|
# Find f0 corresponding to each decoded pitch bin.
|
||
|
freqs = fmin * 2 ** (np.arange(n_pitch_bins) / (12 * n_bins_per_semitone))
|
||
|
f0 = freqs[states % n_pitch_bins]
|
||
|
voiced_flag = states < n_pitch_bins
|
||
|
|
||
|
if fill_na is not None:
|
||
|
f0[~voiced_flag] = fill_na
|
||
|
|
||
|
return f0[..., 0, :], voiced_flag[..., 0, :], voiced_prob[..., 0, :]
|
||
|
|
||
|
|
||
|
def __pyin_helper(
|
||
|
yin_frames,
|
||
|
parabolic_shifts,
|
||
|
sr,
|
||
|
thresholds,
|
||
|
boltzmann_parameter,
|
||
|
beta_probs,
|
||
|
no_trough_prob,
|
||
|
min_period,
|
||
|
fmin,
|
||
|
n_pitch_bins,
|
||
|
n_bins_per_semitone,
|
||
|
):
|
||
|
yin_probs = np.zeros_like(yin_frames)
|
||
|
|
||
|
for i, yin_frame in enumerate(yin_frames.T):
|
||
|
# 2. For each frame find the troughs.
|
||
|
is_trough = util.localmin(yin_frame)
|
||
|
|
||
|
is_trough[0] = yin_frame[0] < yin_frame[1]
|
||
|
(trough_index,) = np.nonzero(is_trough)
|
||
|
|
||
|
if len(trough_index) == 0:
|
||
|
continue
|
||
|
|
||
|
# 3. Find the troughs below each threshold.
|
||
|
# these are the local minima of the frame, could get them directly without the trough index
|
||
|
trough_heights = yin_frame[trough_index]
|
||
|
trough_thresholds = np.less.outer(trough_heights, thresholds[1:])
|
||
|
|
||
|
# 4. Define the prior over the troughs.
|
||
|
# Smaller periods are weighted more.
|
||
|
trough_positions = np.cumsum(trough_thresholds, axis=0) - 1
|
||
|
n_troughs = np.count_nonzero(trough_thresholds, axis=0)
|
||
|
|
||
|
trough_prior = scipy.stats.boltzmann.pmf(
|
||
|
trough_positions, boltzmann_parameter, n_troughs
|
||
|
)
|
||
|
|
||
|
trough_prior[~trough_thresholds] = 0
|
||
|
|
||
|
# 5. For each threshold add probability to global minimum if no trough is below threshold,
|
||
|
# else add probability to each trough below threshold biased by prior.
|
||
|
|
||
|
probs = trough_prior.dot(beta_probs)
|
||
|
|
||
|
global_min = np.argmin(trough_heights)
|
||
|
n_thresholds_below_min = np.count_nonzero(~trough_thresholds[global_min, :])
|
||
|
probs[global_min] += no_trough_prob * np.sum(
|
||
|
beta_probs[:n_thresholds_below_min]
|
||
|
)
|
||
|
|
||
|
yin_probs[trough_index, i] = probs
|
||
|
|
||
|
yin_period, frame_index = np.nonzero(yin_probs)
|
||
|
|
||
|
# Refine peak by parabolic interpolation.
|
||
|
period_candidates = min_period + yin_period
|
||
|
period_candidates = period_candidates + parabolic_shifts[yin_period, frame_index]
|
||
|
f0_candidates = sr / period_candidates
|
||
|
|
||
|
# Find pitch bin corresponding to each f0 candidate.
|
||
|
bin_index = 12 * n_bins_per_semitone * np.log2(f0_candidates / fmin)
|
||
|
bin_index = np.clip(np.round(bin_index), 0, n_pitch_bins).astype(int)
|
||
|
|
||
|
# Observation probabilities.
|
||
|
observation_probs = np.zeros((2 * n_pitch_bins, yin_frames.shape[1]))
|
||
|
observation_probs[bin_index, frame_index] = yin_probs[yin_period, frame_index]
|
||
|
|
||
|
voiced_prob = np.clip(
|
||
|
np.sum(observation_probs[:n_pitch_bins, :], axis=0, keepdims=True), 0, 1
|
||
|
)
|
||
|
observation_probs[n_pitch_bins:, :] = (1 - voiced_prob) / n_pitch_bins
|
||
|
|
||
|
return observation_probs[np.newaxis], voiced_prob
|
||
|
|
||
|
|
||
|
def __check_yin_params(
|
||
|
*, sr: float, fmax: float, fmin: float, frame_length: int, win_length: int
|
||
|
):
|
||
|
"""Check the feasibility of yin/pyin parameters against
|
||
|
the following conditions:
|
||
|
|
||
|
1. 0 < fmin < fmax <= sr/2
|
||
|
2. frame_length - win_length - 1 > sr/fmax
|
||
|
"""
|
||
|
if fmax > sr / 2:
|
||
|
raise ParameterError(f"fmax={fmax:.3f} cannot exceed Nyquist frequency {sr/2}")
|
||
|
if fmin >= fmax:
|
||
|
raise ParameterError(f"fmin={fmin:.3f} must be less than fmax={fmax:.3f}")
|
||
|
if fmin <= 0:
|
||
|
raise ParameterError(f"fmin={fmin:.3f} must be strictly positive")
|
||
|
|
||
|
if win_length >= frame_length:
|
||
|
raise ParameterError(
|
||
|
f"win_length={win_length} must be less than frame_length={frame_length}"
|
||
|
)
|
||
|
|
||
|
if frame_length - win_length - 1 <= sr // fmax:
|
||
|
fmax_feasible = sr / (frame_length - win_length - 1)
|
||
|
frame_length_feasible = int(np.ceil(sr/fmax) + win_length + 1)
|
||
|
raise ParameterError(
|
||
|
f"fmax={fmax:.3f} is too small for frame_length={frame_length}, win_length={win_length}, and sr={sr}. "
|
||
|
f"Either increase to fmax={fmax_feasible:.3f} or frame_length={frame_length_feasible}"
|
||
|
)
|