ai-content-maker/.venv/Lib/site-packages/matplotlib/_layoutgrid.py

548 lines
21 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""
A layoutgrid is a nrows by ncols set of boxes, meant to be used by
`._constrained_layout`, each box is analogous to a subplotspec element of
a gridspec.
Each box is defined by left[ncols], right[ncols], bottom[nrows] and top[nrows],
and by two editable margins for each side. The main margin gets its value
set by the size of ticklabels, titles, etc on each axes that is in the figure.
The outer margin is the padding around the axes, and space for any
colorbars.
The "inner" widths and heights of these boxes are then constrained to be the
same (relative the values of `width_ratios[ncols]` and `height_ratios[nrows]`).
The layoutgrid is then constrained to be contained within a parent layoutgrid,
its column(s) and row(s) specified when it is created.
"""
import itertools
import kiwisolver as kiwi
import logging
import numpy as np
import matplotlib as mpl
import matplotlib.patches as mpatches
from matplotlib.transforms import Bbox
_log = logging.getLogger(__name__)
class LayoutGrid:
"""
Analogous to a gridspec, and contained in another LayoutGrid.
"""
def __init__(self, parent=None, parent_pos=(0, 0),
parent_inner=False, name='', ncols=1, nrows=1,
h_pad=None, w_pad=None, width_ratios=None,
height_ratios=None):
Variable = kiwi.Variable
self.parent_pos = parent_pos
self.parent_inner = parent_inner
self.name = name + seq_id()
if isinstance(parent, LayoutGrid):
self.name = f'{parent.name}.{self.name}'
self.nrows = nrows
self.ncols = ncols
self.height_ratios = np.atleast_1d(height_ratios)
if height_ratios is None:
self.height_ratios = np.ones(nrows)
self.width_ratios = np.atleast_1d(width_ratios)
if width_ratios is None:
self.width_ratios = np.ones(ncols)
sn = self.name + '_'
if not isinstance(parent, LayoutGrid):
# parent can be a rect if not a LayoutGrid
# allows specifying a rectangle to contain the layout.
self.solver = kiwi.Solver()
else:
parent.add_child(self, *parent_pos)
self.solver = parent.solver
# keep track of artist associated w/ this layout. Can be none
self.artists = np.empty((nrows, ncols), dtype=object)
self.children = np.empty((nrows, ncols), dtype=object)
self.margins = {}
self.margin_vals = {}
# all the boxes in each column share the same left/right margins:
for todo in ['left', 'right', 'leftcb', 'rightcb']:
# track the value so we can change only if a margin is larger
# than the current value
self.margin_vals[todo] = np.zeros(ncols)
sol = self.solver
self.lefts = [Variable(f'{sn}lefts[{i}]') for i in range(ncols)]
self.rights = [Variable(f'{sn}rights[{i}]') for i in range(ncols)]
for todo in ['left', 'right', 'leftcb', 'rightcb']:
self.margins[todo] = [Variable(f'{sn}margins[{todo}][{i}]')
for i in range(ncols)]
for i in range(ncols):
sol.addEditVariable(self.margins[todo][i], 'strong')
for todo in ['bottom', 'top', 'bottomcb', 'topcb']:
self.margins[todo] = np.empty((nrows), dtype=object)
self.margin_vals[todo] = np.zeros(nrows)
self.bottoms = [Variable(f'{sn}bottoms[{i}]') for i in range(nrows)]
self.tops = [Variable(f'{sn}tops[{i}]') for i in range(nrows)]
for todo in ['bottom', 'top', 'bottomcb', 'topcb']:
self.margins[todo] = [Variable(f'{sn}margins[{todo}][{i}]')
for i in range(nrows)]
for i in range(nrows):
sol.addEditVariable(self.margins[todo][i], 'strong')
# set these margins to zero by default. They will be edited as
# children are filled.
self.reset_margins()
self.add_constraints(parent)
self.h_pad = h_pad
self.w_pad = w_pad
def __repr__(self):
str = f'LayoutBox: {self.name:25s} {self.nrows}x{self.ncols},\n'
for i in range(self.nrows):
for j in range(self.ncols):
str += f'{i}, {j}: '\
f'L{self.lefts[j].value():1.3f}, ' \
f'B{self.bottoms[i].value():1.3f}, ' \
f'R{self.rights[j].value():1.3f}, ' \
f'T{self.tops[i].value():1.3f}, ' \
f'ML{self.margins["left"][j].value():1.3f}, ' \
f'MR{self.margins["right"][j].value():1.3f}, ' \
f'MB{self.margins["bottom"][i].value():1.3f}, ' \
f'MT{self.margins["top"][i].value():1.3f}, \n'
return str
def reset_margins(self):
"""
Reset all the margins to zero. Must do this after changing
figure size, for instance, because the relative size of the
axes labels etc changes.
"""
for todo in ['left', 'right', 'bottom', 'top',
'leftcb', 'rightcb', 'bottomcb', 'topcb']:
self.edit_margins(todo, 0.0)
def add_constraints(self, parent):
# define self-consistent constraints
self.hard_constraints()
# define relationship with parent layoutgrid:
self.parent_constraints(parent)
# define relative widths of the grid cells to each other
# and stack horizontally and vertically.
self.grid_constraints()
def hard_constraints(self):
"""
These are the redundant constraints, plus ones that make the
rest of the code easier.
"""
for i in range(self.ncols):
hc = [self.rights[i] >= self.lefts[i],
(self.rights[i] - self.margins['right'][i] -
self.margins['rightcb'][i] >=
self.lefts[i] - self.margins['left'][i] -
self.margins['leftcb'][i])
]
for c in hc:
self.solver.addConstraint(c | 'required')
for i in range(self.nrows):
hc = [self.tops[i] >= self.bottoms[i],
(self.tops[i] - self.margins['top'][i] -
self.margins['topcb'][i] >=
self.bottoms[i] - self.margins['bottom'][i] -
self.margins['bottomcb'][i])
]
for c in hc:
self.solver.addConstraint(c | 'required')
def add_child(self, child, i=0, j=0):
# np.ix_ returns the cross product of i and j indices
self.children[np.ix_(np.atleast_1d(i), np.atleast_1d(j))] = child
def parent_constraints(self, parent):
# constraints that are due to the parent...
# i.e. the first column's left is equal to the
# parent's left, the last column right equal to the
# parent's right...
if not isinstance(parent, LayoutGrid):
# specify a rectangle in figure coordinates
hc = [self.lefts[0] == parent[0],
self.rights[-1] == parent[0] + parent[2],
# top and bottom reversed order...
self.tops[0] == parent[1] + parent[3],
self.bottoms[-1] == parent[1]]
else:
rows, cols = self.parent_pos
rows = np.atleast_1d(rows)
cols = np.atleast_1d(cols)
left = parent.lefts[cols[0]]
right = parent.rights[cols[-1]]
top = parent.tops[rows[0]]
bottom = parent.bottoms[rows[-1]]
if self.parent_inner:
# the layout grid is contained inside the inner
# grid of the parent.
left += parent.margins['left'][cols[0]]
left += parent.margins['leftcb'][cols[0]]
right -= parent.margins['right'][cols[-1]]
right -= parent.margins['rightcb'][cols[-1]]
top -= parent.margins['top'][rows[0]]
top -= parent.margins['topcb'][rows[0]]
bottom += parent.margins['bottom'][rows[-1]]
bottom += parent.margins['bottomcb'][rows[-1]]
hc = [self.lefts[0] == left,
self.rights[-1] == right,
# from top to bottom
self.tops[0] == top,
self.bottoms[-1] == bottom]
for c in hc:
self.solver.addConstraint(c | 'required')
def grid_constraints(self):
# constrain the ratio of the inner part of the grids
# to be the same (relative to width_ratios)
# constrain widths:
w = (self.rights[0] - self.margins['right'][0] -
self.margins['rightcb'][0])
w = (w - self.lefts[0] - self.margins['left'][0] -
self.margins['leftcb'][0])
w0 = w / self.width_ratios[0]
# from left to right
for i in range(1, self.ncols):
w = (self.rights[i] - self.margins['right'][i] -
self.margins['rightcb'][i])
w = (w - self.lefts[i] - self.margins['left'][i] -
self.margins['leftcb'][i])
c = (w == w0 * self.width_ratios[i])
self.solver.addConstraint(c | 'strong')
# constrain the grid cells to be directly next to each other.
c = (self.rights[i - 1] == self.lefts[i])
self.solver.addConstraint(c | 'strong')
# constrain heights:
h = self.tops[0] - self.margins['top'][0] - self.margins['topcb'][0]
h = (h - self.bottoms[0] - self.margins['bottom'][0] -
self.margins['bottomcb'][0])
h0 = h / self.height_ratios[0]
# from top to bottom:
for i in range(1, self.nrows):
h = (self.tops[i] - self.margins['top'][i] -
self.margins['topcb'][i])
h = (h - self.bottoms[i] - self.margins['bottom'][i] -
self.margins['bottomcb'][i])
c = (h == h0 * self.height_ratios[i])
self.solver.addConstraint(c | 'strong')
# constrain the grid cells to be directly above each other.
c = (self.bottoms[i - 1] == self.tops[i])
self.solver.addConstraint(c | 'strong')
# Margin editing: The margins are variable and meant to
# contain things of a fixed size like axes labels, tick labels, titles
# etc
def edit_margin(self, todo, size, cell):
"""
Change the size of the margin for one cell.
Parameters
----------
todo : string (one of 'left', 'right', 'bottom', 'top')
margin to alter.
size : float
Size of the margin. If it is larger than the existing minimum it
updates the margin size. Fraction of figure size.
cell : int
Cell column or row to edit.
"""
self.solver.suggestValue(self.margins[todo][cell], size)
self.margin_vals[todo][cell] = size
def edit_margin_min(self, todo, size, cell=0):
"""
Change the minimum size of the margin for one cell.
Parameters
----------
todo : string (one of 'left', 'right', 'bottom', 'top')
margin to alter.
size : float
Minimum size of the margin . If it is larger than the
existing minimum it updates the margin size. Fraction of
figure size.
cell : int
Cell column or row to edit.
"""
if size > self.margin_vals[todo][cell]:
self.edit_margin(todo, size, cell)
def edit_margins(self, todo, size):
"""
Change the size of all the margin of all the cells in the layout grid.
Parameters
----------
todo : string (one of 'left', 'right', 'bottom', 'top')
margin to alter.
size : float
Size to set the margins. Fraction of figure size.
"""
for i in range(len(self.margin_vals[todo])):
self.edit_margin(todo, size, i)
def edit_all_margins_min(self, todo, size):
"""
Change the minimum size of all the margin of all
the cells in the layout grid.
Parameters
----------
todo : {'left', 'right', 'bottom', 'top'}
The margin to alter.
size : float
Minimum size of the margin. If it is larger than the
existing minimum it updates the margin size. Fraction of
figure size.
"""
for i in range(len(self.margin_vals[todo])):
self.edit_margin_min(todo, size, i)
def edit_outer_margin_mins(self, margin, ss):
"""
Edit all four margin minimums in one statement.
Parameters
----------
margin : dict
size of margins in a dict with keys 'left', 'right', 'bottom',
'top'
ss : SubplotSpec
defines the subplotspec these margins should be applied to
"""
self.edit_margin_min('left', margin['left'], ss.colspan.start)
self.edit_margin_min('leftcb', margin['leftcb'], ss.colspan.start)
self.edit_margin_min('right', margin['right'], ss.colspan.stop - 1)
self.edit_margin_min('rightcb', margin['rightcb'], ss.colspan.stop - 1)
# rows are from the top down:
self.edit_margin_min('top', margin['top'], ss.rowspan.start)
self.edit_margin_min('topcb', margin['topcb'], ss.rowspan.start)
self.edit_margin_min('bottom', margin['bottom'], ss.rowspan.stop - 1)
self.edit_margin_min('bottomcb', margin['bottomcb'],
ss.rowspan.stop - 1)
def get_margins(self, todo, col):
"""Return the margin at this position"""
return self.margin_vals[todo][col]
def get_outer_bbox(self, rows=0, cols=0):
"""
Return the outer bounding box of the subplot specs
given by rows and cols. rows and cols can be spans.
"""
rows = np.atleast_1d(rows)
cols = np.atleast_1d(cols)
bbox = Bbox.from_extents(
self.lefts[cols[0]].value(),
self.bottoms[rows[-1]].value(),
self.rights[cols[-1]].value(),
self.tops[rows[0]].value())
return bbox
def get_inner_bbox(self, rows=0, cols=0):
"""
Return the inner bounding box of the subplot specs
given by rows and cols. rows and cols can be spans.
"""
rows = np.atleast_1d(rows)
cols = np.atleast_1d(cols)
bbox = Bbox.from_extents(
(self.lefts[cols[0]].value() +
self.margins['left'][cols[0]].value() +
self.margins['leftcb'][cols[0]].value()),
(self.bottoms[rows[-1]].value() +
self.margins['bottom'][rows[-1]].value() +
self.margins['bottomcb'][rows[-1]].value()),
(self.rights[cols[-1]].value() -
self.margins['right'][cols[-1]].value() -
self.margins['rightcb'][cols[-1]].value()),
(self.tops[rows[0]].value() -
self.margins['top'][rows[0]].value() -
self.margins['topcb'][rows[0]].value())
)
return bbox
def get_bbox_for_cb(self, rows=0, cols=0):
"""
Return the bounding box that includes the
decorations but, *not* the colorbar...
"""
rows = np.atleast_1d(rows)
cols = np.atleast_1d(cols)
bbox = Bbox.from_extents(
(self.lefts[cols[0]].value() +
self.margins['leftcb'][cols[0]].value()),
(self.bottoms[rows[-1]].value() +
self.margins['bottomcb'][rows[-1]].value()),
(self.rights[cols[-1]].value() -
self.margins['rightcb'][cols[-1]].value()),
(self.tops[rows[0]].value() -
self.margins['topcb'][rows[0]].value())
)
return bbox
def get_left_margin_bbox(self, rows=0, cols=0):
"""
Return the left margin bounding box of the subplot specs
given by rows and cols. rows and cols can be spans.
"""
rows = np.atleast_1d(rows)
cols = np.atleast_1d(cols)
bbox = Bbox.from_extents(
(self.lefts[cols[0]].value() +
self.margins['leftcb'][cols[0]].value()),
(self.bottoms[rows[-1]].value()),
(self.lefts[cols[0]].value() +
self.margins['leftcb'][cols[0]].value() +
self.margins['left'][cols[0]].value()),
(self.tops[rows[0]].value()))
return bbox
def get_bottom_margin_bbox(self, rows=0, cols=0):
"""
Return the left margin bounding box of the subplot specs
given by rows and cols. rows and cols can be spans.
"""
rows = np.atleast_1d(rows)
cols = np.atleast_1d(cols)
bbox = Bbox.from_extents(
(self.lefts[cols[0]].value()),
(self.bottoms[rows[-1]].value() +
self.margins['bottomcb'][rows[-1]].value()),
(self.rights[cols[-1]].value()),
(self.bottoms[rows[-1]].value() +
self.margins['bottom'][rows[-1]].value() +
self.margins['bottomcb'][rows[-1]].value()
))
return bbox
def get_right_margin_bbox(self, rows=0, cols=0):
"""
Return the left margin bounding box of the subplot specs
given by rows and cols. rows and cols can be spans.
"""
rows = np.atleast_1d(rows)
cols = np.atleast_1d(cols)
bbox = Bbox.from_extents(
(self.rights[cols[-1]].value() -
self.margins['right'][cols[-1]].value() -
self.margins['rightcb'][cols[-1]].value()),
(self.bottoms[rows[-1]].value()),
(self.rights[cols[-1]].value() -
self.margins['rightcb'][cols[-1]].value()),
(self.tops[rows[0]].value()))
return bbox
def get_top_margin_bbox(self, rows=0, cols=0):
"""
Return the left margin bounding box of the subplot specs
given by rows and cols. rows and cols can be spans.
"""
rows = np.atleast_1d(rows)
cols = np.atleast_1d(cols)
bbox = Bbox.from_extents(
(self.lefts[cols[0]].value()),
(self.tops[rows[0]].value() -
self.margins['topcb'][rows[0]].value()),
(self.rights[cols[-1]].value()),
(self.tops[rows[0]].value() -
self.margins['topcb'][rows[0]].value() -
self.margins['top'][rows[0]].value()))
return bbox
def update_variables(self):
"""
Update the variables for the solver attached to this layoutgrid.
"""
self.solver.updateVariables()
_layoutboxobjnum = itertools.count()
def seq_id():
"""Generate a short sequential id for layoutbox objects."""
return '%06d' % next(_layoutboxobjnum)
def plot_children(fig, lg=None, level=0):
"""Simple plotting to show where boxes are."""
if lg is None:
_layoutgrids = fig.get_layout_engine().execute(fig)
lg = _layoutgrids[fig]
colors = mpl.rcParams["axes.prop_cycle"].by_key()["color"]
col = colors[level]
for i in range(lg.nrows):
for j in range(lg.ncols):
bb = lg.get_outer_bbox(rows=i, cols=j)
fig.add_artist(
mpatches.Rectangle(bb.p0, bb.width, bb.height, linewidth=1,
edgecolor='0.7', facecolor='0.7',
alpha=0.2, transform=fig.transFigure,
zorder=-3))
bbi = lg.get_inner_bbox(rows=i, cols=j)
fig.add_artist(
mpatches.Rectangle(bbi.p0, bbi.width, bbi.height, linewidth=2,
edgecolor=col, facecolor='none',
transform=fig.transFigure, zorder=-2))
bbi = lg.get_left_margin_bbox(rows=i, cols=j)
fig.add_artist(
mpatches.Rectangle(bbi.p0, bbi.width, bbi.height, linewidth=0,
edgecolor='none', alpha=0.2,
facecolor=[0.5, 0.7, 0.5],
transform=fig.transFigure, zorder=-2))
bbi = lg.get_right_margin_bbox(rows=i, cols=j)
fig.add_artist(
mpatches.Rectangle(bbi.p0, bbi.width, bbi.height, linewidth=0,
edgecolor='none', alpha=0.2,
facecolor=[0.7, 0.5, 0.5],
transform=fig.transFigure, zorder=-2))
bbi = lg.get_bottom_margin_bbox(rows=i, cols=j)
fig.add_artist(
mpatches.Rectangle(bbi.p0, bbi.width, bbi.height, linewidth=0,
edgecolor='none', alpha=0.2,
facecolor=[0.5, 0.5, 0.7],
transform=fig.transFigure, zorder=-2))
bbi = lg.get_top_margin_bbox(rows=i, cols=j)
fig.add_artist(
mpatches.Rectangle(bbi.p0, bbi.width, bbi.height, linewidth=0,
edgecolor='none', alpha=0.2,
facecolor=[0.7, 0.2, 0.7],
transform=fig.transFigure, zorder=-2))
for ch in lg.children.flat:
if ch is not None:
plot_children(fig, ch, level=level+1)