4389 lines
136 KiB
Python
4389 lines
136 KiB
Python
|
# Note: The first part of this file can be modified in place, but the latter
|
||
|
# part is autogenerated by the boilerplate.py script.
|
||
|
|
||
|
"""
|
||
|
`matplotlib.pyplot` is a state-based interface to matplotlib. It provides
|
||
|
an implicit, MATLAB-like, way of plotting. It also opens figures on your
|
||
|
screen, and acts as the figure GUI manager.
|
||
|
|
||
|
pyplot is mainly intended for interactive plots and simple cases of
|
||
|
programmatic plot generation::
|
||
|
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
x = np.arange(0, 5, 0.1)
|
||
|
y = np.sin(x)
|
||
|
plt.plot(x, y)
|
||
|
|
||
|
The explicit object-oriented API is recommended for complex plots, though
|
||
|
pyplot is still usually used to create the figure and often the axes in the
|
||
|
figure. See `.pyplot.figure`, `.pyplot.subplots`, and
|
||
|
`.pyplot.subplot_mosaic` to create figures, and
|
||
|
:doc:`Axes API </api/axes_api>` for the plotting methods on an Axes::
|
||
|
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
x = np.arange(0, 5, 0.1)
|
||
|
y = np.sin(x)
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.plot(x, y)
|
||
|
|
||
|
|
||
|
See :ref:`api_interfaces` for an explanation of the tradeoffs between the
|
||
|
implicit and explicit interfaces.
|
||
|
"""
|
||
|
|
||
|
# fmt: off
|
||
|
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from contextlib import AbstractContextManager, ExitStack
|
||
|
from enum import Enum
|
||
|
import functools
|
||
|
import importlib
|
||
|
import inspect
|
||
|
import logging
|
||
|
import re
|
||
|
import sys
|
||
|
import threading
|
||
|
import time
|
||
|
from typing import cast, overload
|
||
|
|
||
|
from cycler import cycler
|
||
|
import matplotlib
|
||
|
import matplotlib.colorbar
|
||
|
import matplotlib.image
|
||
|
from matplotlib import _api
|
||
|
from matplotlib import ( # Re-exported for typing.
|
||
|
cm as cm, get_backend as get_backend, rcParams as rcParams, style as style)
|
||
|
from matplotlib import _pylab_helpers, interactive
|
||
|
from matplotlib import cbook
|
||
|
from matplotlib import _docstring
|
||
|
from matplotlib.backend_bases import (
|
||
|
FigureCanvasBase, FigureManagerBase, MouseButton)
|
||
|
from matplotlib.figure import Figure, FigureBase, figaspect
|
||
|
from matplotlib.gridspec import GridSpec, SubplotSpec
|
||
|
from matplotlib import rcsetup, rcParamsDefault, rcParamsOrig
|
||
|
from matplotlib.artist import Artist
|
||
|
from matplotlib.axes import Axes, Subplot # type: ignore
|
||
|
from matplotlib.projections import PolarAxes # type: ignore
|
||
|
from matplotlib import mlab # for detrend_none, window_hanning
|
||
|
from matplotlib.scale import get_scale_names
|
||
|
|
||
|
from matplotlib.cm import _colormaps
|
||
|
from matplotlib.cm import register_cmap # type: ignore
|
||
|
from matplotlib.colors import _color_sequences
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from typing import TYPE_CHECKING, cast
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from collections.abc import Callable, Hashable, Iterable, Sequence
|
||
|
import datetime
|
||
|
import pathlib
|
||
|
import os
|
||
|
from typing import Any, BinaryIO, Literal, TypeVar
|
||
|
from typing_extensions import ParamSpec
|
||
|
|
||
|
import PIL.Image
|
||
|
from numpy.typing import ArrayLike
|
||
|
|
||
|
from matplotlib.axis import Tick
|
||
|
from matplotlib.axes._base import _AxesBase
|
||
|
from matplotlib.backend_bases import RendererBase, Event
|
||
|
from matplotlib.cm import ScalarMappable
|
||
|
from matplotlib.contour import ContourSet, QuadContourSet
|
||
|
from matplotlib.collections import (
|
||
|
Collection,
|
||
|
LineCollection,
|
||
|
BrokenBarHCollection,
|
||
|
PolyCollection,
|
||
|
PathCollection,
|
||
|
EventCollection,
|
||
|
QuadMesh,
|
||
|
)
|
||
|
from matplotlib.colorbar import Colorbar
|
||
|
from matplotlib.colors import Colormap
|
||
|
from matplotlib.container import (
|
||
|
BarContainer,
|
||
|
ErrorbarContainer,
|
||
|
StemContainer,
|
||
|
)
|
||
|
from matplotlib.figure import SubFigure
|
||
|
from matplotlib.legend import Legend
|
||
|
from matplotlib.mlab import GaussianKDE
|
||
|
from matplotlib.image import AxesImage, FigureImage
|
||
|
from matplotlib.patches import FancyArrow, StepPatch, Wedge
|
||
|
from matplotlib.quiver import Barbs, Quiver, QuiverKey
|
||
|
from matplotlib.scale import ScaleBase
|
||
|
from matplotlib.transforms import Transform, Bbox
|
||
|
from matplotlib.typing import ColorType, LineStyleType, MarkerType, HashableList
|
||
|
from matplotlib.widgets import SubplotTool
|
||
|
|
||
|
_P = ParamSpec('_P')
|
||
|
_R = TypeVar('_R')
|
||
|
_T = TypeVar('_T')
|
||
|
|
||
|
|
||
|
# We may not need the following imports here:
|
||
|
from matplotlib.colors import Normalize
|
||
|
from matplotlib.lines import Line2D, AxLine
|
||
|
from matplotlib.text import Text, Annotation
|
||
|
from matplotlib.patches import Polygon, Rectangle, Circle, Arrow
|
||
|
from matplotlib.widgets import Button, Slider, Widget
|
||
|
|
||
|
from .ticker import (
|
||
|
TickHelper, Formatter, FixedFormatter, NullFormatter, FuncFormatter,
|
||
|
FormatStrFormatter, ScalarFormatter, LogFormatter, LogFormatterExponent,
|
||
|
LogFormatterMathtext, Locator, IndexLocator, FixedLocator, NullLocator,
|
||
|
LinearLocator, LogLocator, AutoLocator, MultipleLocator, MaxNLocator)
|
||
|
|
||
|
_log = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
# Explicit rename instead of import-as for typing's sake.
|
||
|
colormaps = _colormaps
|
||
|
color_sequences = _color_sequences
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def _copy_docstring_and_deprecators(
|
||
|
method: Any,
|
||
|
func: Literal[None] = None
|
||
|
) -> Callable[[Callable[_P, _R]], Callable[_P, _R]]: ...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def _copy_docstring_and_deprecators(
|
||
|
method: Any, func: Callable[_P, _R]) -> Callable[_P, _R]: ...
|
||
|
|
||
|
|
||
|
def _copy_docstring_and_deprecators(
|
||
|
method: Any,
|
||
|
func: Callable[_P, _R] | None = None
|
||
|
) -> Callable[[Callable[_P, _R]], Callable[_P, _R]] | Callable[_P, _R]:
|
||
|
if func is None:
|
||
|
return cast('Callable[[Callable[_P, _R]], Callable[_P, _R]]',
|
||
|
functools.partial(_copy_docstring_and_deprecators, method))
|
||
|
decorators: list[Callable[[Callable[_P, _R]], Callable[_P, _R]]] = [
|
||
|
_docstring.copy(method)
|
||
|
]
|
||
|
# Check whether the definition of *method* includes @_api.rename_parameter
|
||
|
# or @_api.make_keyword_only decorators; if so, propagate them to the
|
||
|
# pyplot wrapper as well.
|
||
|
while hasattr(method, "__wrapped__"):
|
||
|
potential_decorator = _api.deprecation.DECORATORS.get(method)
|
||
|
if potential_decorator:
|
||
|
decorators.append(potential_decorator)
|
||
|
method = method.__wrapped__
|
||
|
for decorator in decorators[::-1]:
|
||
|
func = decorator(func)
|
||
|
return func
|
||
|
|
||
|
|
||
|
## Global ##
|
||
|
|
||
|
|
||
|
# The state controlled by {,un}install_repl_displayhook().
|
||
|
_ReplDisplayHook = Enum("_ReplDisplayHook", ["NONE", "PLAIN", "IPYTHON"])
|
||
|
_REPL_DISPLAYHOOK = _ReplDisplayHook.NONE
|
||
|
|
||
|
|
||
|
def _draw_all_if_interactive() -> None:
|
||
|
if matplotlib.is_interactive():
|
||
|
draw_all()
|
||
|
|
||
|
|
||
|
def install_repl_displayhook() -> None:
|
||
|
"""
|
||
|
Connect to the display hook of the current shell.
|
||
|
|
||
|
The display hook gets called when the read-evaluate-print-loop (REPL) of
|
||
|
the shell has finished the execution of a command. We use this callback
|
||
|
to be able to automatically update a figure in interactive mode.
|
||
|
|
||
|
This works both with IPython and with vanilla python shells.
|
||
|
"""
|
||
|
global _REPL_DISPLAYHOOK
|
||
|
|
||
|
if _REPL_DISPLAYHOOK is _ReplDisplayHook.IPYTHON:
|
||
|
return
|
||
|
|
||
|
# See if we have IPython hooks around, if so use them.
|
||
|
# Use ``sys.modules.get(name)`` rather than ``name in sys.modules`` as
|
||
|
# entries can also have been explicitly set to None.
|
||
|
mod_ipython = sys.modules.get("IPython")
|
||
|
if not mod_ipython:
|
||
|
_REPL_DISPLAYHOOK = _ReplDisplayHook.PLAIN
|
||
|
return
|
||
|
ip = mod_ipython.get_ipython()
|
||
|
if not ip:
|
||
|
_REPL_DISPLAYHOOK = _ReplDisplayHook.PLAIN
|
||
|
return
|
||
|
|
||
|
ip.events.register("post_execute", _draw_all_if_interactive)
|
||
|
_REPL_DISPLAYHOOK = _ReplDisplayHook.IPYTHON
|
||
|
|
||
|
from IPython.core.pylabtools import backend2gui # type: ignore
|
||
|
# trigger IPython's eventloop integration, if available
|
||
|
ipython_gui_name = backend2gui.get(get_backend())
|
||
|
if ipython_gui_name:
|
||
|
ip.enable_gui(ipython_gui_name)
|
||
|
|
||
|
|
||
|
def uninstall_repl_displayhook() -> None:
|
||
|
"""Disconnect from the display hook of the current shell."""
|
||
|
global _REPL_DISPLAYHOOK
|
||
|
if _REPL_DISPLAYHOOK is _ReplDisplayHook.IPYTHON:
|
||
|
from IPython import get_ipython # type: ignore
|
||
|
ip = get_ipython()
|
||
|
ip.events.unregister("post_execute", _draw_all_if_interactive)
|
||
|
_REPL_DISPLAYHOOK = _ReplDisplayHook.NONE
|
||
|
|
||
|
|
||
|
draw_all = _pylab_helpers.Gcf.draw_all
|
||
|
|
||
|
|
||
|
# Ensure this appears in the pyplot docs.
|
||
|
@_copy_docstring_and_deprecators(matplotlib.set_loglevel)
|
||
|
def set_loglevel(*args, **kwargs) -> None:
|
||
|
return matplotlib.set_loglevel(*args, **kwargs)
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(Artist.findobj)
|
||
|
def findobj(
|
||
|
o: Artist | None = None,
|
||
|
match: Callable[[Artist], bool] | type[Artist] | None = None,
|
||
|
include_self: bool = True
|
||
|
) -> list[Artist]:
|
||
|
if o is None:
|
||
|
o = gcf()
|
||
|
return o.findobj(match, include_self=include_self)
|
||
|
|
||
|
|
||
|
_backend_mod: type[matplotlib.backend_bases._Backend] | None = None
|
||
|
|
||
|
|
||
|
def _get_backend_mod() -> type[matplotlib.backend_bases._Backend]:
|
||
|
"""
|
||
|
Ensure that a backend is selected and return it.
|
||
|
|
||
|
This is currently private, but may be made public in the future.
|
||
|
"""
|
||
|
if _backend_mod is None:
|
||
|
# Use rcParams._get("backend") to avoid going through the fallback
|
||
|
# logic (which will (re)import pyplot and then call switch_backend if
|
||
|
# we need to resolve the auto sentinel)
|
||
|
switch_backend(rcParams._get("backend")) # type: ignore[attr-defined]
|
||
|
return cast(type[matplotlib.backend_bases._Backend], _backend_mod)
|
||
|
|
||
|
|
||
|
def switch_backend(newbackend: str) -> None:
|
||
|
"""
|
||
|
Set the pyplot backend.
|
||
|
|
||
|
Switching to an interactive backend is possible only if no event loop for
|
||
|
another interactive backend has started. Switching to and from
|
||
|
non-interactive backends is always possible.
|
||
|
|
||
|
If the new backend is different than the current backend then all open
|
||
|
Figures will be closed via ``plt.close('all')``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
newbackend : str
|
||
|
The case-insensitive name of the backend to use.
|
||
|
|
||
|
"""
|
||
|
global _backend_mod
|
||
|
# make sure the init is pulled up so we can assign to it later
|
||
|
import matplotlib.backends
|
||
|
|
||
|
if newbackend is rcsetup._auto_backend_sentinel:
|
||
|
current_framework = cbook._get_running_interactive_framework()
|
||
|
mapping = {'qt': 'qtagg',
|
||
|
'gtk3': 'gtk3agg',
|
||
|
'gtk4': 'gtk4agg',
|
||
|
'wx': 'wxagg',
|
||
|
'tk': 'tkagg',
|
||
|
'macosx': 'macosx',
|
||
|
'headless': 'agg'}
|
||
|
|
||
|
if current_framework in mapping:
|
||
|
candidates = [mapping[current_framework]]
|
||
|
else:
|
||
|
candidates = []
|
||
|
candidates += [
|
||
|
"macosx", "qtagg", "gtk4agg", "gtk3agg", "tkagg", "wxagg"]
|
||
|
|
||
|
# Don't try to fallback on the cairo-based backends as they each have
|
||
|
# an additional dependency (pycairo) over the agg-based backend, and
|
||
|
# are of worse quality.
|
||
|
for candidate in candidates:
|
||
|
try:
|
||
|
switch_backend(candidate)
|
||
|
except ImportError:
|
||
|
continue
|
||
|
else:
|
||
|
rcParamsOrig['backend'] = candidate
|
||
|
return
|
||
|
else:
|
||
|
# Switching to Agg should always succeed; if it doesn't, let the
|
||
|
# exception propagate out.
|
||
|
switch_backend("agg")
|
||
|
rcParamsOrig["backend"] = "agg"
|
||
|
return
|
||
|
# have to escape the switch on access logic
|
||
|
old_backend = dict.__getitem__(rcParams, 'backend')
|
||
|
|
||
|
module = importlib.import_module(cbook._backend_module_name(newbackend))
|
||
|
canvas_class = module.FigureCanvas
|
||
|
|
||
|
required_framework = canvas_class.required_interactive_framework
|
||
|
if required_framework is not None:
|
||
|
current_framework = cbook._get_running_interactive_framework()
|
||
|
if (current_framework and required_framework
|
||
|
and current_framework != required_framework):
|
||
|
raise ImportError(
|
||
|
"Cannot load backend {!r} which requires the {!r} interactive "
|
||
|
"framework, as {!r} is currently running".format(
|
||
|
newbackend, required_framework, current_framework))
|
||
|
|
||
|
# Load the new_figure_manager() and show() functions from the backend.
|
||
|
|
||
|
# Classically, backends can directly export these functions. This should
|
||
|
# keep working for backcompat.
|
||
|
new_figure_manager = getattr(module, "new_figure_manager", None)
|
||
|
show = getattr(module, "show", None)
|
||
|
|
||
|
# In that classical approach, backends are implemented as modules, but
|
||
|
# "inherit" default method implementations from backend_bases._Backend.
|
||
|
# This is achieved by creating a "class" that inherits from
|
||
|
# backend_bases._Backend and whose body is filled with the module globals.
|
||
|
class backend_mod(matplotlib.backend_bases._Backend):
|
||
|
locals().update(vars(module))
|
||
|
|
||
|
# However, the newer approach for defining new_figure_manager and
|
||
|
# show is to derive them from canvas methods. In that case, also
|
||
|
# update backend_mod accordingly; also, per-backend customization of
|
||
|
# draw_if_interactive is disabled.
|
||
|
if new_figure_manager is None:
|
||
|
|
||
|
def new_figure_manager_given_figure(num, figure):
|
||
|
return canvas_class.new_manager(figure, num)
|
||
|
|
||
|
def new_figure_manager(num, *args, FigureClass=Figure, **kwargs):
|
||
|
fig = FigureClass(*args, **kwargs)
|
||
|
return new_figure_manager_given_figure(num, fig)
|
||
|
|
||
|
def draw_if_interactive() -> None:
|
||
|
if matplotlib.is_interactive():
|
||
|
manager = _pylab_helpers.Gcf.get_active()
|
||
|
if manager:
|
||
|
manager.canvas.draw_idle()
|
||
|
|
||
|
backend_mod.new_figure_manager_given_figure = ( # type: ignore[method-assign]
|
||
|
new_figure_manager_given_figure)
|
||
|
backend_mod.new_figure_manager = ( # type: ignore[method-assign]
|
||
|
new_figure_manager)
|
||
|
backend_mod.draw_if_interactive = ( # type: ignore[method-assign]
|
||
|
draw_if_interactive)
|
||
|
|
||
|
# If the manager explicitly overrides pyplot_show, use it even if a global
|
||
|
# show is already present, as the latter may be here for backcompat.
|
||
|
manager_class = getattr(canvas_class, "manager_class", None)
|
||
|
# We can't compare directly manager_class.pyplot_show and FMB.pyplot_show because
|
||
|
# pyplot_show is a classmethod so the above constructs are bound classmethods, and
|
||
|
# thus always different (being bound to different classes). We also have to use
|
||
|
# getattr_static instead of vars as manager_class could have no __dict__.
|
||
|
manager_pyplot_show = inspect.getattr_static(manager_class, "pyplot_show", None)
|
||
|
base_pyplot_show = inspect.getattr_static(FigureManagerBase, "pyplot_show", None)
|
||
|
if (show is None
|
||
|
or (manager_pyplot_show is not None
|
||
|
and manager_pyplot_show != base_pyplot_show)):
|
||
|
if not manager_pyplot_show:
|
||
|
raise ValueError(
|
||
|
f"Backend {newbackend} defines neither FigureCanvas.manager_class nor "
|
||
|
f"a toplevel show function")
|
||
|
_pyplot_show = cast('Any', manager_class).pyplot_show
|
||
|
backend_mod.show = _pyplot_show # type: ignore[method-assign]
|
||
|
|
||
|
_log.debug("Loaded backend %s version %s.",
|
||
|
newbackend, backend_mod.backend_version)
|
||
|
|
||
|
rcParams['backend'] = rcParamsDefault['backend'] = newbackend
|
||
|
_backend_mod = backend_mod
|
||
|
for func_name in ["new_figure_manager", "draw_if_interactive", "show"]:
|
||
|
globals()[func_name].__signature__ = inspect.signature(
|
||
|
getattr(backend_mod, func_name))
|
||
|
|
||
|
# Need to keep a global reference to the backend for compatibility reasons.
|
||
|
# See https://github.com/matplotlib/matplotlib/issues/6092
|
||
|
matplotlib.backends.backend = newbackend # type: ignore[attr-defined]
|
||
|
|
||
|
if not cbook._str_equal(old_backend, newbackend):
|
||
|
if get_fignums():
|
||
|
_api.warn_deprecated("3.8", message=(
|
||
|
"Auto-close()ing of figures upon backend switching is deprecated since "
|
||
|
"%(since)s and will be removed %(removal)s. To suppress this warning, "
|
||
|
"explicitly call plt.close('all') first."))
|
||
|
close("all")
|
||
|
|
||
|
# Make sure the repl display hook is installed in case we become interactive.
|
||
|
install_repl_displayhook()
|
||
|
|
||
|
|
||
|
def _warn_if_gui_out_of_main_thread() -> None:
|
||
|
warn = False
|
||
|
canvas_class = cast(type[FigureCanvasBase], _get_backend_mod().FigureCanvas)
|
||
|
if canvas_class.required_interactive_framework:
|
||
|
if hasattr(threading, 'get_native_id'):
|
||
|
# This compares native thread ids because even if Python-level
|
||
|
# Thread objects match, the underlying OS thread (which is what
|
||
|
# really matters) may be different on Python implementations with
|
||
|
# green threads.
|
||
|
if threading.get_native_id() != threading.main_thread().native_id:
|
||
|
warn = True
|
||
|
else:
|
||
|
# Fall back to Python-level Thread if native IDs are unavailable,
|
||
|
# mainly for PyPy.
|
||
|
if threading.current_thread() is not threading.main_thread():
|
||
|
warn = True
|
||
|
if warn:
|
||
|
_api.warn_external(
|
||
|
"Starting a Matplotlib GUI outside of the main thread will likely "
|
||
|
"fail.")
|
||
|
|
||
|
|
||
|
# This function's signature is rewritten upon backend-load by switch_backend.
|
||
|
def new_figure_manager(*args, **kwargs):
|
||
|
"""Create a new figure manager instance."""
|
||
|
_warn_if_gui_out_of_main_thread()
|
||
|
return _get_backend_mod().new_figure_manager(*args, **kwargs)
|
||
|
|
||
|
|
||
|
# This function's signature is rewritten upon backend-load by switch_backend.
|
||
|
def draw_if_interactive(*args, **kwargs):
|
||
|
"""
|
||
|
Redraw the current figure if in interactive mode.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
End users will typically not have to call this function because the
|
||
|
the interactive mode takes care of this.
|
||
|
"""
|
||
|
return _get_backend_mod().draw_if_interactive(*args, **kwargs)
|
||
|
|
||
|
|
||
|
# This function's signature is rewritten upon backend-load by switch_backend.
|
||
|
def show(*args, **kwargs) -> None:
|
||
|
"""
|
||
|
Display all open figures.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
block : bool, optional
|
||
|
Whether to wait for all figures to be closed before returning.
|
||
|
|
||
|
If `True` block and run the GUI main loop until all figure windows
|
||
|
are closed.
|
||
|
|
||
|
If `False` ensure that all figure windows are displayed and return
|
||
|
immediately. In this case, you are responsible for ensuring
|
||
|
that the event loop is running to have responsive figures.
|
||
|
|
||
|
Defaults to True in non-interactive mode and to False in interactive
|
||
|
mode (see `.pyplot.isinteractive`).
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ion : Enable interactive mode, which shows / updates the figure after
|
||
|
every plotting command, so that calling ``show()`` is not necessary.
|
||
|
ioff : Disable interactive mode.
|
||
|
savefig : Save the figure to an image file instead of showing it on screen.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
**Saving figures to file and showing a window at the same time**
|
||
|
|
||
|
If you want an image file as well as a user interface window, use
|
||
|
`.pyplot.savefig` before `.pyplot.show`. At the end of (a blocking)
|
||
|
``show()`` the figure is closed and thus unregistered from pyplot. Calling
|
||
|
`.pyplot.savefig` afterwards would save a new and thus empty figure. This
|
||
|
limitation of command order does not apply if the show is non-blocking or
|
||
|
if you keep a reference to the figure and use `.Figure.savefig`.
|
||
|
|
||
|
**Auto-show in jupyter notebooks**
|
||
|
|
||
|
The jupyter backends (activated via ``%matplotlib inline``,
|
||
|
``%matplotlib notebook``, or ``%matplotlib widget``), call ``show()`` at
|
||
|
the end of every cell by default. Thus, you usually don't have to call it
|
||
|
explicitly there.
|
||
|
"""
|
||
|
_warn_if_gui_out_of_main_thread()
|
||
|
return _get_backend_mod().show(*args, **kwargs)
|
||
|
|
||
|
|
||
|
def isinteractive() -> bool:
|
||
|
"""
|
||
|
Return whether plots are updated after every plotting command.
|
||
|
|
||
|
The interactive mode is mainly useful if you build plots from the command
|
||
|
line and want to see the effect of each command while you are building the
|
||
|
figure.
|
||
|
|
||
|
In interactive mode:
|
||
|
|
||
|
- newly created figures will be shown immediately;
|
||
|
- figures will automatically redraw on change;
|
||
|
- `.pyplot.show` will not block by default.
|
||
|
|
||
|
In non-interactive mode:
|
||
|
|
||
|
- newly created figures and changes to figures will not be reflected until
|
||
|
explicitly asked to be;
|
||
|
- `.pyplot.show` will block by default.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ion : Enable interactive mode.
|
||
|
ioff : Disable interactive mode.
|
||
|
show : Show all figures (and maybe block).
|
||
|
pause : Show all figures, and block for a time.
|
||
|
"""
|
||
|
return matplotlib.is_interactive()
|
||
|
|
||
|
|
||
|
def ioff() -> ExitStack:
|
||
|
"""
|
||
|
Disable interactive mode.
|
||
|
|
||
|
See `.pyplot.isinteractive` for more details.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ion : Enable interactive mode.
|
||
|
isinteractive : Whether interactive mode is enabled.
|
||
|
show : Show all figures (and maybe block).
|
||
|
pause : Show all figures, and block for a time.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For a temporary change, this can be used as a context manager::
|
||
|
|
||
|
# if interactive mode is on
|
||
|
# then figures will be shown on creation
|
||
|
plt.ion()
|
||
|
# This figure will be shown immediately
|
||
|
fig = plt.figure()
|
||
|
|
||
|
with plt.ioff():
|
||
|
# interactive mode will be off
|
||
|
# figures will not automatically be shown
|
||
|
fig2 = plt.figure()
|
||
|
# ...
|
||
|
|
||
|
To enable optional usage as a context manager, this function returns a
|
||
|
`~contextlib.ExitStack` object, which is not intended to be stored or
|
||
|
accessed by the user.
|
||
|
"""
|
||
|
stack = ExitStack()
|
||
|
stack.callback(ion if isinteractive() else ioff)
|
||
|
matplotlib.interactive(False)
|
||
|
uninstall_repl_displayhook()
|
||
|
return stack
|
||
|
|
||
|
|
||
|
def ion() -> ExitStack:
|
||
|
"""
|
||
|
Enable interactive mode.
|
||
|
|
||
|
See `.pyplot.isinteractive` for more details.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ioff : Disable interactive mode.
|
||
|
isinteractive : Whether interactive mode is enabled.
|
||
|
show : Show all figures (and maybe block).
|
||
|
pause : Show all figures, and block for a time.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For a temporary change, this can be used as a context manager::
|
||
|
|
||
|
# if interactive mode is off
|
||
|
# then figures will not be shown on creation
|
||
|
plt.ioff()
|
||
|
# This figure will not be shown immediately
|
||
|
fig = plt.figure()
|
||
|
|
||
|
with plt.ion():
|
||
|
# interactive mode will be on
|
||
|
# figures will automatically be shown
|
||
|
fig2 = plt.figure()
|
||
|
# ...
|
||
|
|
||
|
To enable optional usage as a context manager, this function returns a
|
||
|
`~contextlib.ExitStack` object, which is not intended to be stored or
|
||
|
accessed by the user.
|
||
|
"""
|
||
|
stack = ExitStack()
|
||
|
stack.callback(ion if isinteractive() else ioff)
|
||
|
matplotlib.interactive(True)
|
||
|
install_repl_displayhook()
|
||
|
return stack
|
||
|
|
||
|
|
||
|
def pause(interval: float) -> None:
|
||
|
"""
|
||
|
Run the GUI event loop for *interval* seconds.
|
||
|
|
||
|
If there is an active figure, it will be updated and displayed before the
|
||
|
pause, and the GUI event loop (if any) will run during the pause.
|
||
|
|
||
|
This can be used for crude animation. For more complex animation use
|
||
|
:mod:`matplotlib.animation`.
|
||
|
|
||
|
If there is no active figure, sleep for *interval* seconds instead.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
matplotlib.animation : Proper animations
|
||
|
show : Show all figures and optional block until all figures are closed.
|
||
|
"""
|
||
|
manager = _pylab_helpers.Gcf.get_active()
|
||
|
if manager is not None:
|
||
|
canvas = manager.canvas
|
||
|
if canvas.figure.stale:
|
||
|
canvas.draw_idle()
|
||
|
show(block=False)
|
||
|
canvas.start_event_loop(interval)
|
||
|
else:
|
||
|
time.sleep(interval)
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(matplotlib.rc)
|
||
|
def rc(group: str, **kwargs) -> None:
|
||
|
matplotlib.rc(group, **kwargs)
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(matplotlib.rc_context)
|
||
|
def rc_context(
|
||
|
rc: dict[str, Any] | None = None,
|
||
|
fname: str | pathlib.Path | os.PathLike | None = None,
|
||
|
) -> AbstractContextManager[None]:
|
||
|
return matplotlib.rc_context(rc, fname)
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(matplotlib.rcdefaults)
|
||
|
def rcdefaults() -> None:
|
||
|
matplotlib.rcdefaults()
|
||
|
if matplotlib.is_interactive():
|
||
|
draw_all()
|
||
|
|
||
|
|
||
|
# getp/get/setp are explicitly reexported so that they show up in pyplot docs.
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(matplotlib.artist.getp)
|
||
|
def getp(obj, *args, **kwargs):
|
||
|
return matplotlib.artist.getp(obj, *args, **kwargs)
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(matplotlib.artist.get)
|
||
|
def get(obj, *args, **kwargs):
|
||
|
return matplotlib.artist.get(obj, *args, **kwargs)
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(matplotlib.artist.setp)
|
||
|
def setp(obj, *args, **kwargs):
|
||
|
return matplotlib.artist.setp(obj, *args, **kwargs)
|
||
|
|
||
|
|
||
|
def xkcd(
|
||
|
scale: float = 1, length: float = 100, randomness: float = 2
|
||
|
) -> ExitStack:
|
||
|
"""
|
||
|
Turn on `xkcd <https://xkcd.com/>`_ sketch-style drawing mode.
|
||
|
|
||
|
This will only have an effect on things drawn after this function is called.
|
||
|
|
||
|
For best results, install the `xkcd script <https://github.com/ipython/xkcd-font/>`_
|
||
|
font; xkcd fonts are not packaged with Matplotlib.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
scale : float, optional
|
||
|
The amplitude of the wiggle perpendicular to the source line.
|
||
|
length : float, optional
|
||
|
The length of the wiggle along the line.
|
||
|
randomness : float, optional
|
||
|
The scale factor by which the length is shrunken or expanded.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function works by a number of rcParams, so it will probably
|
||
|
override others you have set before.
|
||
|
|
||
|
If you want the effects of this function to be temporary, it can
|
||
|
be used as a context manager, for example::
|
||
|
|
||
|
with plt.xkcd():
|
||
|
# This figure will be in XKCD-style
|
||
|
fig1 = plt.figure()
|
||
|
# ...
|
||
|
|
||
|
# This figure will be in regular style
|
||
|
fig2 = plt.figure()
|
||
|
"""
|
||
|
# This cannot be implemented in terms of contextmanager() or rc_context()
|
||
|
# because this needs to work as a non-contextmanager too.
|
||
|
|
||
|
if rcParams['text.usetex']:
|
||
|
raise RuntimeError(
|
||
|
"xkcd mode is not compatible with text.usetex = True")
|
||
|
|
||
|
stack = ExitStack()
|
||
|
stack.callback(dict.update, rcParams, rcParams.copy()) # type: ignore
|
||
|
|
||
|
from matplotlib import patheffects
|
||
|
rcParams.update({
|
||
|
'font.family': ['xkcd', 'xkcd Script', 'Comic Neue', 'Comic Sans MS'],
|
||
|
'font.size': 14.0,
|
||
|
'path.sketch': (scale, length, randomness),
|
||
|
'path.effects': [
|
||
|
patheffects.withStroke(linewidth=4, foreground="w")],
|
||
|
'axes.linewidth': 1.5,
|
||
|
'lines.linewidth': 2.0,
|
||
|
'figure.facecolor': 'white',
|
||
|
'grid.linewidth': 0.0,
|
||
|
'axes.grid': False,
|
||
|
'axes.unicode_minus': False,
|
||
|
'axes.edgecolor': 'black',
|
||
|
'xtick.major.size': 8,
|
||
|
'xtick.major.width': 3,
|
||
|
'ytick.major.size': 8,
|
||
|
'ytick.major.width': 3,
|
||
|
})
|
||
|
|
||
|
return stack
|
||
|
|
||
|
|
||
|
## Figures ##
|
||
|
|
||
|
def figure(
|
||
|
# autoincrement if None, else integer from 1-N
|
||
|
num: int | str | Figure | SubFigure | None = None,
|
||
|
# defaults to rc figure.figsize
|
||
|
figsize: tuple[float, float] | None = None,
|
||
|
# defaults to rc figure.dpi
|
||
|
dpi: float | None = None,
|
||
|
*,
|
||
|
# defaults to rc figure.facecolor
|
||
|
facecolor: ColorType | None = None,
|
||
|
# defaults to rc figure.edgecolor
|
||
|
edgecolor: ColorType | None = None,
|
||
|
frameon: bool = True,
|
||
|
FigureClass: type[Figure] = Figure,
|
||
|
clear: bool = False,
|
||
|
**kwargs
|
||
|
) -> Figure:
|
||
|
"""
|
||
|
Create a new figure, or activate an existing figure.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
num : int or str or `.Figure` or `.SubFigure`, optional
|
||
|
A unique identifier for the figure.
|
||
|
|
||
|
If a figure with that identifier already exists, this figure is made
|
||
|
active and returned. An integer refers to the ``Figure.number``
|
||
|
attribute, a string refers to the figure label.
|
||
|
|
||
|
If there is no figure with the identifier or *num* is not given, a new
|
||
|
figure is created, made active and returned. If *num* is an int, it
|
||
|
will be used for the ``Figure.number`` attribute, otherwise, an
|
||
|
auto-generated integer value is used (starting at 1 and incremented
|
||
|
for each new figure). If *num* is a string, the figure label and the
|
||
|
window title is set to this value. If num is a ``SubFigure``, its
|
||
|
parent ``Figure`` is activated.
|
||
|
|
||
|
figsize : (float, float), default: :rc:`figure.figsize`
|
||
|
Width, height in inches.
|
||
|
|
||
|
dpi : float, default: :rc:`figure.dpi`
|
||
|
The resolution of the figure in dots-per-inch.
|
||
|
|
||
|
facecolor : color, default: :rc:`figure.facecolor`
|
||
|
The background color.
|
||
|
|
||
|
edgecolor : color, default: :rc:`figure.edgecolor`
|
||
|
The border color.
|
||
|
|
||
|
frameon : bool, default: True
|
||
|
If False, suppress drawing the figure frame.
|
||
|
|
||
|
FigureClass : subclass of `~matplotlib.figure.Figure`
|
||
|
If set, an instance of this subclass will be created, rather than a
|
||
|
plain `.Figure`.
|
||
|
|
||
|
clear : bool, default: False
|
||
|
If True and the figure already exists, then it is cleared.
|
||
|
|
||
|
layout : {'constrained', 'compressed', 'tight', 'none', `.LayoutEngine`, None}, \
|
||
|
default: None
|
||
|
The layout mechanism for positioning of plot elements to avoid
|
||
|
overlapping Axes decorations (labels, ticks, etc). Note that layout
|
||
|
managers can measurably slow down figure display.
|
||
|
|
||
|
- 'constrained': The constrained layout solver adjusts axes sizes
|
||
|
to avoid overlapping axes decorations. Can handle complex plot
|
||
|
layouts and colorbars, and is thus recommended.
|
||
|
|
||
|
See :ref:`constrainedlayout_guide`
|
||
|
for examples.
|
||
|
|
||
|
- 'compressed': uses the same algorithm as 'constrained', but
|
||
|
removes extra space between fixed-aspect-ratio Axes. Best for
|
||
|
simple grids of axes.
|
||
|
|
||
|
- 'tight': Use the tight layout mechanism. This is a relatively
|
||
|
simple algorithm that adjusts the subplot parameters so that
|
||
|
decorations do not overlap. See `.Figure.set_tight_layout` for
|
||
|
further details.
|
||
|
|
||
|
- 'none': Do not use a layout engine.
|
||
|
|
||
|
- A `.LayoutEngine` instance. Builtin layout classes are
|
||
|
`.ConstrainedLayoutEngine` and `.TightLayoutEngine`, more easily
|
||
|
accessible by 'constrained' and 'tight'. Passing an instance
|
||
|
allows third parties to provide their own layout engine.
|
||
|
|
||
|
If not given, fall back to using the parameters *tight_layout* and
|
||
|
*constrained_layout*, including their config defaults
|
||
|
:rc:`figure.autolayout` and :rc:`figure.constrained_layout.use`.
|
||
|
|
||
|
**kwargs
|
||
|
Additional keyword arguments are passed to the `.Figure` constructor.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.figure.Figure`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
A newly created figure is passed to the `~.FigureCanvasBase.new_manager`
|
||
|
method or the `new_figure_manager` function provided by the current
|
||
|
backend, which install a canvas and a manager on the figure.
|
||
|
|
||
|
Once this is done, :rc:`figure.hooks` are called, one at a time, on the
|
||
|
figure; these hooks allow arbitrary customization of the figure (e.g.,
|
||
|
attaching callbacks) or of associated elements (e.g., modifying the
|
||
|
toolbar). See :doc:`/gallery/user_interfaces/mplcvd` for an example of
|
||
|
toolbar customization.
|
||
|
|
||
|
If you are creating many figures, make sure you explicitly call
|
||
|
`.pyplot.close` on the figures you are not using, because this will
|
||
|
enable pyplot to properly clean up the memory.
|
||
|
|
||
|
`~matplotlib.rcParams` defines the default values, which can be modified
|
||
|
in the matplotlibrc file.
|
||
|
"""
|
||
|
if isinstance(num, FigureBase):
|
||
|
# type narrowed to `Figure | SubFigure` by combination of input and isinstance
|
||
|
if num.canvas.manager is None:
|
||
|
raise ValueError("The passed figure is not managed by pyplot")
|
||
|
_pylab_helpers.Gcf.set_active(num.canvas.manager)
|
||
|
return num.figure
|
||
|
|
||
|
allnums = get_fignums()
|
||
|
next_num = max(allnums) + 1 if allnums else 1
|
||
|
fig_label = ''
|
||
|
if num is None:
|
||
|
num = next_num
|
||
|
elif isinstance(num, str):
|
||
|
fig_label = num
|
||
|
all_labels = get_figlabels()
|
||
|
if fig_label not in all_labels:
|
||
|
if fig_label == 'all':
|
||
|
_api.warn_external("close('all') closes all existing figures.")
|
||
|
num = next_num
|
||
|
else:
|
||
|
inum = all_labels.index(fig_label)
|
||
|
num = allnums[inum]
|
||
|
else:
|
||
|
num = int(num) # crude validation of num argument
|
||
|
|
||
|
# Type of "num" has narrowed to int, but mypy can't quite see it
|
||
|
manager = _pylab_helpers.Gcf.get_fig_manager(num) # type: ignore[arg-type]
|
||
|
if manager is None:
|
||
|
max_open_warning = rcParams['figure.max_open_warning']
|
||
|
if len(allnums) == max_open_warning >= 1:
|
||
|
_api.warn_external(
|
||
|
f"More than {max_open_warning} figures have been opened. "
|
||
|
f"Figures created through the pyplot interface "
|
||
|
f"(`matplotlib.pyplot.figure`) are retained until explicitly "
|
||
|
f"closed and may consume too much memory. (To control this "
|
||
|
f"warning, see the rcParam `figure.max_open_warning`). "
|
||
|
f"Consider using `matplotlib.pyplot.close()`.",
|
||
|
RuntimeWarning)
|
||
|
|
||
|
manager = new_figure_manager(
|
||
|
num, figsize=figsize, dpi=dpi,
|
||
|
facecolor=facecolor, edgecolor=edgecolor, frameon=frameon,
|
||
|
FigureClass=FigureClass, **kwargs)
|
||
|
fig = manager.canvas.figure
|
||
|
if fig_label:
|
||
|
fig.set_label(fig_label)
|
||
|
|
||
|
for hookspecs in rcParams["figure.hooks"]:
|
||
|
module_name, dotted_name = hookspecs.split(":")
|
||
|
obj: Any = importlib.import_module(module_name)
|
||
|
for part in dotted_name.split("."):
|
||
|
obj = getattr(obj, part)
|
||
|
obj(fig)
|
||
|
|
||
|
_pylab_helpers.Gcf._set_new_active_manager(manager)
|
||
|
|
||
|
# make sure backends (inline) that we don't ship that expect this
|
||
|
# to be called in plotting commands to make the figure call show
|
||
|
# still work. There is probably a better way to do this in the
|
||
|
# FigureManager base class.
|
||
|
draw_if_interactive()
|
||
|
|
||
|
if _REPL_DISPLAYHOOK is _ReplDisplayHook.PLAIN:
|
||
|
fig.stale_callback = _auto_draw_if_interactive
|
||
|
|
||
|
if clear:
|
||
|
manager.canvas.figure.clear()
|
||
|
|
||
|
return manager.canvas.figure
|
||
|
|
||
|
|
||
|
def _auto_draw_if_interactive(fig, val):
|
||
|
"""
|
||
|
An internal helper function for making sure that auto-redrawing
|
||
|
works as intended in the plain python repl.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fig : Figure
|
||
|
A figure object which is assumed to be associated with a canvas
|
||
|
"""
|
||
|
if (val and matplotlib.is_interactive()
|
||
|
and not fig.canvas.is_saving()
|
||
|
and not fig.canvas._is_idle_drawing):
|
||
|
# Some artists can mark themselves as stale in the middle of drawing
|
||
|
# (e.g. axes position & tick labels being computed at draw time), but
|
||
|
# this shouldn't trigger a redraw because the current redraw will
|
||
|
# already take them into account.
|
||
|
with fig.canvas._idle_draw_cntx():
|
||
|
fig.canvas.draw_idle()
|
||
|
|
||
|
|
||
|
def gcf() -> Figure:
|
||
|
"""
|
||
|
Get the current figure.
|
||
|
|
||
|
If there is currently no figure on the pyplot figure stack, a new one is
|
||
|
created using `~.pyplot.figure()`. (To test whether there is currently a
|
||
|
figure on the pyplot figure stack, check whether `~.pyplot.get_fignums()`
|
||
|
is empty.)
|
||
|
"""
|
||
|
manager = _pylab_helpers.Gcf.get_active()
|
||
|
if manager is not None:
|
||
|
return manager.canvas.figure
|
||
|
else:
|
||
|
return figure()
|
||
|
|
||
|
|
||
|
def fignum_exists(num: int | str) -> bool:
|
||
|
"""Return whether the figure with the given id exists.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
num : int or str
|
||
|
A figure identifier.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
Whether or not a figure with id *num* exists.
|
||
|
"""
|
||
|
return (
|
||
|
_pylab_helpers.Gcf.has_fignum(num)
|
||
|
if isinstance(num, int)
|
||
|
else num in get_figlabels()
|
||
|
)
|
||
|
|
||
|
|
||
|
def get_fignums() -> list[int]:
|
||
|
"""Return a list of existing figure numbers."""
|
||
|
return sorted(_pylab_helpers.Gcf.figs)
|
||
|
|
||
|
|
||
|
def get_figlabels() -> list[Any]:
|
||
|
"""Return a list of existing figure labels."""
|
||
|
managers = _pylab_helpers.Gcf.get_all_fig_managers()
|
||
|
managers.sort(key=lambda m: m.num)
|
||
|
return [m.canvas.figure.get_label() for m in managers]
|
||
|
|
||
|
|
||
|
def get_current_fig_manager() -> FigureManagerBase | None:
|
||
|
"""
|
||
|
Return the figure manager of the current figure.
|
||
|
|
||
|
The figure manager is a container for the actual backend-depended window
|
||
|
that displays the figure on screen.
|
||
|
|
||
|
If no current figure exists, a new one is created, and its figure
|
||
|
manager is returned.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`.FigureManagerBase` or backend-dependent subclass thereof
|
||
|
"""
|
||
|
return gcf().canvas.manager
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(FigureCanvasBase.mpl_connect)
|
||
|
def connect(s: str, func: Callable[[Event], Any]) -> int:
|
||
|
return gcf().canvas.mpl_connect(s, func)
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(FigureCanvasBase.mpl_disconnect)
|
||
|
def disconnect(cid: int) -> None:
|
||
|
gcf().canvas.mpl_disconnect(cid)
|
||
|
|
||
|
|
||
|
def close(fig: None | int | str | Figure | Literal["all"] = None) -> None:
|
||
|
"""
|
||
|
Close a figure window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fig : None or int or str or `.Figure`
|
||
|
The figure to close. There are a number of ways to specify this:
|
||
|
|
||
|
- *None*: the current figure
|
||
|
- `.Figure`: the given `.Figure` instance
|
||
|
- ``int``: a figure number
|
||
|
- ``str``: a figure name
|
||
|
- 'all': all figures
|
||
|
|
||
|
"""
|
||
|
if fig is None:
|
||
|
manager = _pylab_helpers.Gcf.get_active()
|
||
|
if manager is None:
|
||
|
return
|
||
|
else:
|
||
|
_pylab_helpers.Gcf.destroy(manager)
|
||
|
elif fig == 'all':
|
||
|
_pylab_helpers.Gcf.destroy_all()
|
||
|
elif isinstance(fig, int):
|
||
|
_pylab_helpers.Gcf.destroy(fig)
|
||
|
elif hasattr(fig, 'int'):
|
||
|
# if we are dealing with a type UUID, we
|
||
|
# can use its integer representation
|
||
|
_pylab_helpers.Gcf.destroy(fig.int)
|
||
|
elif isinstance(fig, str):
|
||
|
all_labels = get_figlabels()
|
||
|
if fig in all_labels:
|
||
|
num = get_fignums()[all_labels.index(fig)]
|
||
|
_pylab_helpers.Gcf.destroy(num)
|
||
|
elif isinstance(fig, Figure):
|
||
|
_pylab_helpers.Gcf.destroy_fig(fig)
|
||
|
else:
|
||
|
raise TypeError("close() argument must be a Figure, an int, a string, "
|
||
|
"or None, not %s" % type(fig))
|
||
|
|
||
|
|
||
|
def clf() -> None:
|
||
|
"""Clear the current figure."""
|
||
|
gcf().clear()
|
||
|
|
||
|
|
||
|
def draw() -> None:
|
||
|
"""
|
||
|
Redraw the current figure.
|
||
|
|
||
|
This is used to update a figure that has been altered, but not
|
||
|
automatically re-drawn. If interactive mode is on (via `.ion()`), this
|
||
|
should be only rarely needed, but there may be ways to modify the state of
|
||
|
a figure without marking it as "stale". Please report these cases as bugs.
|
||
|
|
||
|
This is equivalent to calling ``fig.canvas.draw_idle()``, where ``fig`` is
|
||
|
the current figure.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
.FigureCanvasBase.draw_idle
|
||
|
.FigureCanvasBase.draw
|
||
|
"""
|
||
|
gcf().canvas.draw_idle()
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(Figure.savefig)
|
||
|
def savefig(*args, **kwargs) -> None:
|
||
|
fig = gcf()
|
||
|
# savefig default implementation has no return, so mypy is unhappy
|
||
|
# presumably this is here because subclasses can return?
|
||
|
res = fig.savefig(*args, **kwargs) # type: ignore[func-returns-value]
|
||
|
fig.canvas.draw_idle() # Need this if 'transparent=True', to reset colors.
|
||
|
return res
|
||
|
|
||
|
|
||
|
## Putting things in figures ##
|
||
|
|
||
|
|
||
|
def figlegend(*args, **kwargs) -> Legend:
|
||
|
return gcf().legend(*args, **kwargs)
|
||
|
if Figure.legend.__doc__:
|
||
|
figlegend.__doc__ = Figure.legend.__doc__ \
|
||
|
.replace(" legend(", " figlegend(") \
|
||
|
.replace("fig.legend(", "plt.figlegend(") \
|
||
|
.replace("ax.plot(", "plt.plot(")
|
||
|
|
||
|
|
||
|
## Axes ##
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def axes(
|
||
|
arg: None | tuple[float, float, float, float] = None,
|
||
|
**kwargs
|
||
|
) -> matplotlib.axes.Axes:
|
||
|
"""
|
||
|
Add an Axes to the current figure and make it the current Axes.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
plt.axes()
|
||
|
plt.axes(rect, projection=None, polar=False, **kwargs)
|
||
|
plt.axes(ax)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arg : None or 4-tuple
|
||
|
The exact behavior of this function depends on the type:
|
||
|
|
||
|
- *None*: A new full window Axes is added using
|
||
|
``subplot(**kwargs)``.
|
||
|
- 4-tuple of floats *rect* = ``(left, bottom, width, height)``.
|
||
|
A new Axes is added with dimensions *rect* in normalized
|
||
|
(0, 1) units using `~.Figure.add_axes` on the current figure.
|
||
|
|
||
|
projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', \
|
||
|
'polar', 'rectilinear', str}, optional
|
||
|
The projection type of the `~.axes.Axes`. *str* is the name of
|
||
|
a custom projection, see `~matplotlib.projections`. The default
|
||
|
None results in a 'rectilinear' projection.
|
||
|
|
||
|
polar : bool, default: False
|
||
|
If True, equivalent to projection='polar'.
|
||
|
|
||
|
sharex, sharey : `~matplotlib.axes.Axes`, optional
|
||
|
Share the x or y `~matplotlib.axis` with sharex and/or sharey.
|
||
|
The axis will have the same limits, ticks, and scale as the axis
|
||
|
of the shared Axes.
|
||
|
|
||
|
label : str
|
||
|
A label for the returned Axes.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~.axes.Axes`, or a subclass of `~.axes.Axes`
|
||
|
The returned axes class depends on the projection used. It is
|
||
|
`~.axes.Axes` if rectilinear projection is used and
|
||
|
`.projections.polar.PolarAxes` if polar projection is used.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
This method also takes the keyword arguments for
|
||
|
the returned Axes class. The keyword arguments for the
|
||
|
rectilinear Axes class `~.axes.Axes` can be found in
|
||
|
the following table but there might also be other keyword
|
||
|
arguments if another projection is used, see the actual Axes
|
||
|
class.
|
||
|
|
||
|
%(Axes:kwdoc)s
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
.Figure.add_axes
|
||
|
.pyplot.subplot
|
||
|
.Figure.add_subplot
|
||
|
.Figure.subplots
|
||
|
.pyplot.subplots
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
::
|
||
|
|
||
|
# Creating a new full window Axes
|
||
|
plt.axes()
|
||
|
|
||
|
# Creating a new Axes with specified dimensions and a grey background
|
||
|
plt.axes((left, bottom, width, height), facecolor='grey')
|
||
|
"""
|
||
|
fig = gcf()
|
||
|
pos = kwargs.pop('position', None)
|
||
|
if arg is None:
|
||
|
if pos is None:
|
||
|
return fig.add_subplot(**kwargs)
|
||
|
else:
|
||
|
return fig.add_axes(pos, **kwargs)
|
||
|
else:
|
||
|
return fig.add_axes(arg, **kwargs)
|
||
|
|
||
|
|
||
|
def delaxes(ax: matplotlib.axes.Axes | None = None) -> None:
|
||
|
"""
|
||
|
Remove an `~.axes.Axes` (defaulting to the current axes) from its figure.
|
||
|
"""
|
||
|
if ax is None:
|
||
|
ax = gca()
|
||
|
ax.remove()
|
||
|
|
||
|
|
||
|
def sca(ax: Axes) -> None:
|
||
|
"""
|
||
|
Set the current Axes to *ax* and the current Figure to the parent of *ax*.
|
||
|
"""
|
||
|
# Mypy sees ax.figure as potentially None,
|
||
|
# but if you are calling this, it won't be None
|
||
|
# Additionally the slight difference between `Figure` and `FigureBase` mypy catches
|
||
|
figure(ax.figure) # type: ignore[arg-type]
|
||
|
ax.figure.sca(ax) # type: ignore[union-attr]
|
||
|
|
||
|
|
||
|
def cla() -> None:
|
||
|
"""Clear the current axes."""
|
||
|
# Not generated via boilerplate.py to allow a different docstring.
|
||
|
return gca().cla()
|
||
|
|
||
|
|
||
|
## More ways of creating axes ##
|
||
|
|
||
|
@_docstring.dedent_interpd
|
||
|
def subplot(*args, **kwargs) -> Axes:
|
||
|
"""
|
||
|
Add an Axes to the current figure or retrieve an existing Axes.
|
||
|
|
||
|
This is a wrapper of `.Figure.add_subplot` which provides additional
|
||
|
behavior when working with the implicit API (see the notes section).
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
subplot(nrows, ncols, index, **kwargs)
|
||
|
subplot(pos, **kwargs)
|
||
|
subplot(**kwargs)
|
||
|
subplot(ax)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
*args : int, (int, int, *index*), or `.SubplotSpec`, default: (1, 1, 1)
|
||
|
The position of the subplot described by one of
|
||
|
|
||
|
- Three integers (*nrows*, *ncols*, *index*). The subplot will take the
|
||
|
*index* position on a grid with *nrows* rows and *ncols* columns.
|
||
|
*index* starts at 1 in the upper left corner and increases to the
|
||
|
right. *index* can also be a two-tuple specifying the (*first*,
|
||
|
*last*) indices (1-based, and including *last*) of the subplot, e.g.,
|
||
|
``fig.add_subplot(3, 1, (1, 2))`` makes a subplot that spans the
|
||
|
upper 2/3 of the figure.
|
||
|
- A 3-digit integer. The digits are interpreted as if given separately
|
||
|
as three single-digit integers, i.e. ``fig.add_subplot(235)`` is the
|
||
|
same as ``fig.add_subplot(2, 3, 5)``. Note that this can only be used
|
||
|
if there are no more than 9 subplots.
|
||
|
- A `.SubplotSpec`.
|
||
|
|
||
|
projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', \
|
||
|
'polar', 'rectilinear', str}, optional
|
||
|
The projection type of the subplot (`~.axes.Axes`). *str* is the name
|
||
|
of a custom projection, see `~matplotlib.projections`. The default
|
||
|
None results in a 'rectilinear' projection.
|
||
|
|
||
|
polar : bool, default: False
|
||
|
If True, equivalent to projection='polar'.
|
||
|
|
||
|
sharex, sharey : `~matplotlib.axes.Axes`, optional
|
||
|
Share the x or y `~matplotlib.axis` with sharex and/or sharey. The
|
||
|
axis will have the same limits, ticks, and scale as the axis of the
|
||
|
shared axes.
|
||
|
|
||
|
label : str
|
||
|
A label for the returned axes.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~.axes.Axes`
|
||
|
|
||
|
The Axes of the subplot. The returned Axes can actually be an instance
|
||
|
of a subclass, such as `.projections.polar.PolarAxes` for polar
|
||
|
projections.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
This method also takes the keyword arguments for the returned axes
|
||
|
base class; except for the *figure* argument. The keyword arguments
|
||
|
for the rectilinear base class `~.axes.Axes` can be found in
|
||
|
the following table but there might also be other keyword
|
||
|
arguments if another projection is used.
|
||
|
|
||
|
%(Axes:kwdoc)s
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Creating a new Axes will delete any preexisting Axes that
|
||
|
overlaps with it beyond sharing a boundary::
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
# plot a line, implicitly creating a subplot(111)
|
||
|
plt.plot([1, 2, 3])
|
||
|
# now create a subplot which represents the top plot of a grid
|
||
|
# with 2 rows and 1 column. Since this subplot will overlap the
|
||
|
# first, the plot (and its axes) previously created, will be removed
|
||
|
plt.subplot(211)
|
||
|
|
||
|
If you do not want this behavior, use the `.Figure.add_subplot` method
|
||
|
or the `.pyplot.axes` function instead.
|
||
|
|
||
|
If no *kwargs* are passed and there exists an Axes in the location
|
||
|
specified by *args* then that Axes will be returned rather than a new
|
||
|
Axes being created.
|
||
|
|
||
|
If *kwargs* are passed and there exists an Axes in the location
|
||
|
specified by *args*, the projection type is the same, and the
|
||
|
*kwargs* match with the existing Axes, then the existing Axes is
|
||
|
returned. Otherwise a new Axes is created with the specified
|
||
|
parameters. We save a reference to the *kwargs* which we use
|
||
|
for this comparison. If any of the values in *kwargs* are
|
||
|
mutable we will not detect the case where they are mutated.
|
||
|
In these cases we suggest using `.Figure.add_subplot` and the
|
||
|
explicit Axes API rather than the implicit pyplot API.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
.Figure.add_subplot
|
||
|
.pyplot.subplots
|
||
|
.pyplot.axes
|
||
|
.Figure.subplots
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
::
|
||
|
|
||
|
plt.subplot(221)
|
||
|
|
||
|
# equivalent but more general
|
||
|
ax1 = plt.subplot(2, 2, 1)
|
||
|
|
||
|
# add a subplot with no frame
|
||
|
ax2 = plt.subplot(222, frameon=False)
|
||
|
|
||
|
# add a polar subplot
|
||
|
plt.subplot(223, projection='polar')
|
||
|
|
||
|
# add a red subplot that shares the x-axis with ax1
|
||
|
plt.subplot(224, sharex=ax1, facecolor='red')
|
||
|
|
||
|
# delete ax2 from the figure
|
||
|
plt.delaxes(ax2)
|
||
|
|
||
|
# add ax2 to the figure again
|
||
|
plt.subplot(ax2)
|
||
|
|
||
|
# make the first axes "current" again
|
||
|
plt.subplot(221)
|
||
|
|
||
|
"""
|
||
|
# Here we will only normalize `polar=True` vs `projection='polar'` and let
|
||
|
# downstream code deal with the rest.
|
||
|
unset = object()
|
||
|
projection = kwargs.get('projection', unset)
|
||
|
polar = kwargs.pop('polar', unset)
|
||
|
if polar is not unset and polar:
|
||
|
# if we got mixed messages from the user, raise
|
||
|
if projection is not unset and projection != 'polar':
|
||
|
raise ValueError(
|
||
|
f"polar={polar}, yet projection={projection!r}. "
|
||
|
"Only one of these arguments should be supplied."
|
||
|
)
|
||
|
kwargs['projection'] = projection = 'polar'
|
||
|
|
||
|
# if subplot called without arguments, create subplot(1, 1, 1)
|
||
|
if len(args) == 0:
|
||
|
args = (1, 1, 1)
|
||
|
|
||
|
# This check was added because it is very easy to type subplot(1, 2, False)
|
||
|
# when subplots(1, 2, False) was intended (sharex=False, that is). In most
|
||
|
# cases, no error will ever occur, but mysterious behavior can result
|
||
|
# because what was intended to be the sharex argument is instead treated as
|
||
|
# a subplot index for subplot()
|
||
|
if len(args) >= 3 and isinstance(args[2], bool):
|
||
|
_api.warn_external("The subplot index argument to subplot() appears "
|
||
|
"to be a boolean. Did you intend to use "
|
||
|
"subplots()?")
|
||
|
# Check for nrows and ncols, which are not valid subplot args:
|
||
|
if 'nrows' in kwargs or 'ncols' in kwargs:
|
||
|
raise TypeError("subplot() got an unexpected keyword argument 'ncols' "
|
||
|
"and/or 'nrows'. Did you intend to call subplots()?")
|
||
|
|
||
|
fig = gcf()
|
||
|
|
||
|
# First, search for an existing subplot with a matching spec.
|
||
|
key = SubplotSpec._from_subplot_args(fig, args)
|
||
|
|
||
|
for ax in fig.axes:
|
||
|
# If we found an Axes at the position, we can re-use it if the user passed no
|
||
|
# kwargs or if the axes class and kwargs are identical.
|
||
|
if (ax.get_subplotspec() == key
|
||
|
and (kwargs == {}
|
||
|
or (ax._projection_init
|
||
|
== fig._process_projection_requirements(**kwargs)))):
|
||
|
break
|
||
|
else:
|
||
|
# we have exhausted the known Axes and none match, make a new one!
|
||
|
ax = fig.add_subplot(*args, **kwargs)
|
||
|
|
||
|
fig.sca(ax)
|
||
|
|
||
|
return ax
|
||
|
|
||
|
|
||
|
def subplots(
|
||
|
nrows: int = 1, ncols: int = 1, *,
|
||
|
sharex: bool | Literal["none", "all", "row", "col"] = False,
|
||
|
sharey: bool | Literal["none", "all", "row", "col"] = False,
|
||
|
squeeze: bool = True,
|
||
|
width_ratios: Sequence[float] | None = None,
|
||
|
height_ratios: Sequence[float] | None = None,
|
||
|
subplot_kw: dict[str, Any] | None = None,
|
||
|
gridspec_kw: dict[str, Any] | None = None,
|
||
|
**fig_kw
|
||
|
) -> tuple[Figure, Any]:
|
||
|
"""
|
||
|
Create a figure and a set of subplots.
|
||
|
|
||
|
This utility wrapper makes it convenient to create common layouts of
|
||
|
subplots, including the enclosing figure object, in a single call.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nrows, ncols : int, default: 1
|
||
|
Number of rows/columns of the subplot grid.
|
||
|
|
||
|
sharex, sharey : bool or {'none', 'all', 'row', 'col'}, default: False
|
||
|
Controls sharing of properties among x (*sharex*) or y (*sharey*)
|
||
|
axes:
|
||
|
|
||
|
- True or 'all': x- or y-axis will be shared among all subplots.
|
||
|
- False or 'none': each subplot x- or y-axis will be independent.
|
||
|
- 'row': each subplot row will share an x- or y-axis.
|
||
|
- 'col': each subplot column will share an x- or y-axis.
|
||
|
|
||
|
When subplots have a shared x-axis along a column, only the x tick
|
||
|
labels of the bottom subplot are created. Similarly, when subplots
|
||
|
have a shared y-axis along a row, only the y tick labels of the first
|
||
|
column subplot are created. To later turn other subplots' ticklabels
|
||
|
on, use `~matplotlib.axes.Axes.tick_params`.
|
||
|
|
||
|
When subplots have a shared axis that has units, calling
|
||
|
`~matplotlib.axis.Axis.set_units` will update each axis with the
|
||
|
new units.
|
||
|
|
||
|
squeeze : bool, default: True
|
||
|
- If True, extra dimensions are squeezed out from the returned
|
||
|
array of `~matplotlib.axes.Axes`:
|
||
|
|
||
|
- if only one subplot is constructed (nrows=ncols=1), the
|
||
|
resulting single Axes object is returned as a scalar.
|
||
|
- for Nx1 or 1xM subplots, the returned object is a 1D numpy
|
||
|
object array of Axes objects.
|
||
|
- for NxM, subplots with N>1 and M>1 are returned as a 2D array.
|
||
|
|
||
|
- If False, no squeezing at all is done: the returned Axes object is
|
||
|
always a 2D array containing Axes instances, even if it ends up
|
||
|
being 1x1.
|
||
|
|
||
|
width_ratios : array-like of length *ncols*, optional
|
||
|
Defines the relative widths of the columns. Each column gets a
|
||
|
relative width of ``width_ratios[i] / sum(width_ratios)``.
|
||
|
If not given, all columns will have the same width. Equivalent
|
||
|
to ``gridspec_kw={'width_ratios': [...]}``.
|
||
|
|
||
|
height_ratios : array-like of length *nrows*, optional
|
||
|
Defines the relative heights of the rows. Each row gets a
|
||
|
relative height of ``height_ratios[i] / sum(height_ratios)``.
|
||
|
If not given, all rows will have the same height. Convenience
|
||
|
for ``gridspec_kw={'height_ratios': [...]}``.
|
||
|
|
||
|
subplot_kw : dict, optional
|
||
|
Dict with keywords passed to the
|
||
|
`~matplotlib.figure.Figure.add_subplot` call used to create each
|
||
|
subplot.
|
||
|
|
||
|
gridspec_kw : dict, optional
|
||
|
Dict with keywords passed to the `~matplotlib.gridspec.GridSpec`
|
||
|
constructor used to create the grid the subplots are placed on.
|
||
|
|
||
|
**fig_kw
|
||
|
All additional keyword arguments are passed to the
|
||
|
`.pyplot.figure` call.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fig : `.Figure`
|
||
|
|
||
|
ax : `~matplotlib.axes.Axes` or array of Axes
|
||
|
*ax* can be either a single `~.axes.Axes` object, or an array of Axes
|
||
|
objects if more than one subplot was created. The dimensions of the
|
||
|
resulting array can be controlled with the squeeze keyword, see above.
|
||
|
|
||
|
Typical idioms for handling the return value are::
|
||
|
|
||
|
# using the variable ax for single a Axes
|
||
|
fig, ax = plt.subplots()
|
||
|
|
||
|
# using the variable axs for multiple Axes
|
||
|
fig, axs = plt.subplots(2, 2)
|
||
|
|
||
|
# using tuple unpacking for multiple Axes
|
||
|
fig, (ax1, ax2) = plt.subplots(1, 2)
|
||
|
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
|
||
|
|
||
|
The names ``ax`` and pluralized ``axs`` are preferred over ``axes``
|
||
|
because for the latter it's not clear if it refers to a single
|
||
|
`~.axes.Axes` instance or a collection of these.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
.pyplot.figure
|
||
|
.pyplot.subplot
|
||
|
.pyplot.axes
|
||
|
.Figure.subplots
|
||
|
.Figure.add_subplot
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
::
|
||
|
|
||
|
# First create some toy data:
|
||
|
x = np.linspace(0, 2*np.pi, 400)
|
||
|
y = np.sin(x**2)
|
||
|
|
||
|
# Create just a figure and only one subplot
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.plot(x, y)
|
||
|
ax.set_title('Simple plot')
|
||
|
|
||
|
# Create two subplots and unpack the output array immediately
|
||
|
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
|
||
|
ax1.plot(x, y)
|
||
|
ax1.set_title('Sharing Y axis')
|
||
|
ax2.scatter(x, y)
|
||
|
|
||
|
# Create four polar axes and access them through the returned array
|
||
|
fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection="polar"))
|
||
|
axs[0, 0].plot(x, y)
|
||
|
axs[1, 1].scatter(x, y)
|
||
|
|
||
|
# Share a X axis with each column of subplots
|
||
|
plt.subplots(2, 2, sharex='col')
|
||
|
|
||
|
# Share a Y axis with each row of subplots
|
||
|
plt.subplots(2, 2, sharey='row')
|
||
|
|
||
|
# Share both X and Y axes with all subplots
|
||
|
plt.subplots(2, 2, sharex='all', sharey='all')
|
||
|
|
||
|
# Note that this is the same as
|
||
|
plt.subplots(2, 2, sharex=True, sharey=True)
|
||
|
|
||
|
# Create figure number 10 with a single subplot
|
||
|
# and clears it if it already exists.
|
||
|
fig, ax = plt.subplots(num=10, clear=True)
|
||
|
|
||
|
"""
|
||
|
fig = figure(**fig_kw)
|
||
|
axs = fig.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey,
|
||
|
squeeze=squeeze, subplot_kw=subplot_kw,
|
||
|
gridspec_kw=gridspec_kw, height_ratios=height_ratios,
|
||
|
width_ratios=width_ratios)
|
||
|
return fig, axs
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def subplot_mosaic(
|
||
|
mosaic: str,
|
||
|
*,
|
||
|
sharex: bool = ...,
|
||
|
sharey: bool = ...,
|
||
|
width_ratios: ArrayLike | None = ...,
|
||
|
height_ratios: ArrayLike | None = ...,
|
||
|
empty_sentinel: str = ...,
|
||
|
subplot_kw: dict[str, Any] | None = ...,
|
||
|
gridspec_kw: dict[str, Any] | None = ...,
|
||
|
per_subplot_kw: dict[str | tuple[str, ...], dict[str, Any]] | None = ...,
|
||
|
**fig_kw: Any
|
||
|
) -> tuple[Figure, dict[str, matplotlib.axes.Axes]]: ...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def subplot_mosaic(
|
||
|
mosaic: list[HashableList[_T]],
|
||
|
*,
|
||
|
sharex: bool = ...,
|
||
|
sharey: bool = ...,
|
||
|
width_ratios: ArrayLike | None = ...,
|
||
|
height_ratios: ArrayLike | None = ...,
|
||
|
empty_sentinel: _T = ...,
|
||
|
subplot_kw: dict[str, Any] | None = ...,
|
||
|
gridspec_kw: dict[str, Any] | None = ...,
|
||
|
per_subplot_kw: dict[_T | tuple[_T, ...], dict[str, Any]] | None = ...,
|
||
|
**fig_kw: Any
|
||
|
) -> tuple[Figure, dict[_T, matplotlib.axes.Axes]]: ...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def subplot_mosaic(
|
||
|
mosaic: list[HashableList[Hashable]],
|
||
|
*,
|
||
|
sharex: bool = ...,
|
||
|
sharey: bool = ...,
|
||
|
width_ratios: ArrayLike | None = ...,
|
||
|
height_ratios: ArrayLike | None = ...,
|
||
|
empty_sentinel: Any = ...,
|
||
|
subplot_kw: dict[str, Any] | None = ...,
|
||
|
gridspec_kw: dict[str, Any] | None = ...,
|
||
|
per_subplot_kw: dict[Hashable | tuple[Hashable, ...], dict[str, Any]] | None = ...,
|
||
|
**fig_kw: Any
|
||
|
) -> tuple[Figure, dict[Hashable, matplotlib.axes.Axes]]: ...
|
||
|
|
||
|
|
||
|
def subplot_mosaic(
|
||
|
mosaic: str | list[HashableList[_T]] | list[HashableList[Hashable]],
|
||
|
*,
|
||
|
sharex: bool = False,
|
||
|
sharey: bool = False,
|
||
|
width_ratios: ArrayLike | None = None,
|
||
|
height_ratios: ArrayLike | None = None,
|
||
|
empty_sentinel: Any = '.',
|
||
|
subplot_kw: dict[str, Any] | None = None,
|
||
|
gridspec_kw: dict[str, Any] | None = None,
|
||
|
per_subplot_kw: dict[str | tuple[str, ...], dict[str, Any]] |
|
||
|
dict[_T | tuple[_T, ...], dict[str, Any]] |
|
||
|
dict[Hashable | tuple[Hashable, ...], dict[str, Any]] | None = None,
|
||
|
**fig_kw: Any
|
||
|
) -> tuple[Figure, dict[str, matplotlib.axes.Axes]] | \
|
||
|
tuple[Figure, dict[_T, matplotlib.axes.Axes]] | \
|
||
|
tuple[Figure, dict[Hashable, matplotlib.axes.Axes]]:
|
||
|
"""
|
||
|
Build a layout of Axes based on ASCII art or nested lists.
|
||
|
|
||
|
This is a helper function to build complex GridSpec layouts visually.
|
||
|
|
||
|
See :ref:`mosaic`
|
||
|
for an example and full API documentation
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mosaic : list of list of {hashable or nested} or str
|
||
|
|
||
|
A visual layout of how you want your Axes to be arranged
|
||
|
labeled as strings. For example ::
|
||
|
|
||
|
x = [['A panel', 'A panel', 'edge'],
|
||
|
['C panel', '.', 'edge']]
|
||
|
|
||
|
produces 4 axes:
|
||
|
|
||
|
- 'A panel' which is 1 row high and spans the first two columns
|
||
|
- 'edge' which is 2 rows high and is on the right edge
|
||
|
- 'C panel' which in 1 row and 1 column wide in the bottom left
|
||
|
- a blank space 1 row and 1 column wide in the bottom center
|
||
|
|
||
|
Any of the entries in the layout can be a list of lists
|
||
|
of the same form to create nested layouts.
|
||
|
|
||
|
If input is a str, then it must be of the form ::
|
||
|
|
||
|
'''
|
||
|
AAE
|
||
|
C.E
|
||
|
'''
|
||
|
|
||
|
where each character is a column and each line is a row.
|
||
|
This only allows only single character Axes labels and does
|
||
|
not allow nesting but is very terse.
|
||
|
|
||
|
sharex, sharey : bool, default: False
|
||
|
If True, the x-axis (*sharex*) or y-axis (*sharey*) will be shared
|
||
|
among all subplots. In that case, tick label visibility and axis units
|
||
|
behave as for `subplots`. If False, each subplot's x- or y-axis will
|
||
|
be independent.
|
||
|
|
||
|
width_ratios : array-like of length *ncols*, optional
|
||
|
Defines the relative widths of the columns. Each column gets a
|
||
|
relative width of ``width_ratios[i] / sum(width_ratios)``.
|
||
|
If not given, all columns will have the same width. Convenience
|
||
|
for ``gridspec_kw={'width_ratios': [...]}``.
|
||
|
|
||
|
height_ratios : array-like of length *nrows*, optional
|
||
|
Defines the relative heights of the rows. Each row gets a
|
||
|
relative height of ``height_ratios[i] / sum(height_ratios)``.
|
||
|
If not given, all rows will have the same height. Convenience
|
||
|
for ``gridspec_kw={'height_ratios': [...]}``.
|
||
|
|
||
|
empty_sentinel : object, optional
|
||
|
Entry in the layout to mean "leave this space empty". Defaults
|
||
|
to ``'.'``. Note, if *layout* is a string, it is processed via
|
||
|
`inspect.cleandoc` to remove leading white space, which may
|
||
|
interfere with using white-space as the empty sentinel.
|
||
|
|
||
|
subplot_kw : dict, optional
|
||
|
Dictionary with keywords passed to the `.Figure.add_subplot` call
|
||
|
used to create each subplot. These values may be overridden by
|
||
|
values in *per_subplot_kw*.
|
||
|
|
||
|
per_subplot_kw : dict, optional
|
||
|
A dictionary mapping the Axes identifiers or tuples of identifiers
|
||
|
to a dictionary of keyword arguments to be passed to the
|
||
|
`.Figure.add_subplot` call used to create each subplot. The values
|
||
|
in these dictionaries have precedence over the values in
|
||
|
*subplot_kw*.
|
||
|
|
||
|
If *mosaic* is a string, and thus all keys are single characters,
|
||
|
it is possible to use a single string instead of a tuple as keys;
|
||
|
i.e. ``"AB"`` is equivalent to ``("A", "B")``.
|
||
|
|
||
|
.. versionadded:: 3.7
|
||
|
|
||
|
gridspec_kw : dict, optional
|
||
|
Dictionary with keywords passed to the `.GridSpec` constructor used
|
||
|
to create the grid the subplots are placed on.
|
||
|
|
||
|
**fig_kw
|
||
|
All additional keyword arguments are passed to the
|
||
|
`.pyplot.figure` call.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fig : `.Figure`
|
||
|
The new figure
|
||
|
|
||
|
dict[label, Axes]
|
||
|
A dictionary mapping the labels to the Axes objects. The order of
|
||
|
the axes is left-to-right and top-to-bottom of their position in the
|
||
|
total layout.
|
||
|
|
||
|
"""
|
||
|
fig = figure(**fig_kw)
|
||
|
ax_dict = fig.subplot_mosaic( # type: ignore[misc]
|
||
|
mosaic, # type: ignore[arg-type]
|
||
|
sharex=sharex, sharey=sharey,
|
||
|
height_ratios=height_ratios, width_ratios=width_ratios,
|
||
|
subplot_kw=subplot_kw, gridspec_kw=gridspec_kw,
|
||
|
empty_sentinel=empty_sentinel,
|
||
|
per_subplot_kw=per_subplot_kw, # type: ignore[arg-type]
|
||
|
)
|
||
|
return fig, ax_dict
|
||
|
|
||
|
|
||
|
def subplot2grid(
|
||
|
shape: tuple[int, int], loc: tuple[int, int],
|
||
|
rowspan: int = 1, colspan: int = 1,
|
||
|
fig: Figure | None = None,
|
||
|
**kwargs
|
||
|
) -> matplotlib.axes.Axes:
|
||
|
"""
|
||
|
Create a subplot at a specific location inside a regular grid.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
shape : (int, int)
|
||
|
Number of rows and of columns of the grid in which to place axis.
|
||
|
loc : (int, int)
|
||
|
Row number and column number of the axis location within the grid.
|
||
|
rowspan : int, default: 1
|
||
|
Number of rows for the axis to span downwards.
|
||
|
colspan : int, default: 1
|
||
|
Number of columns for the axis to span to the right.
|
||
|
fig : `.Figure`, optional
|
||
|
Figure to place the subplot in. Defaults to the current figure.
|
||
|
**kwargs
|
||
|
Additional keyword arguments are handed to `~.Figure.add_subplot`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~.axes.Axes`
|
||
|
|
||
|
The Axes of the subplot. The returned Axes can actually be an instance
|
||
|
of a subclass, such as `.projections.polar.PolarAxes` for polar
|
||
|
projections.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The following call ::
|
||
|
|
||
|
ax = subplot2grid((nrows, ncols), (row, col), rowspan, colspan)
|
||
|
|
||
|
is identical to ::
|
||
|
|
||
|
fig = gcf()
|
||
|
gs = fig.add_gridspec(nrows, ncols)
|
||
|
ax = fig.add_subplot(gs[row:row+rowspan, col:col+colspan])
|
||
|
"""
|
||
|
if fig is None:
|
||
|
fig = gcf()
|
||
|
rows, cols = shape
|
||
|
gs = GridSpec._check_gridspec_exists(fig, rows, cols)
|
||
|
subplotspec = gs.new_subplotspec(loc, rowspan=rowspan, colspan=colspan)
|
||
|
return fig.add_subplot(subplotspec, **kwargs)
|
||
|
|
||
|
|
||
|
def twinx(ax: matplotlib.axes.Axes | None = None) -> _AxesBase:
|
||
|
"""
|
||
|
Make and return a second axes that shares the *x*-axis. The new axes will
|
||
|
overlay *ax* (or the current axes if *ax* is *None*), and its ticks will be
|
||
|
on the right.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
:doc:`/gallery/subplots_axes_and_figures/two_scales`
|
||
|
"""
|
||
|
if ax is None:
|
||
|
ax = gca()
|
||
|
ax1 = ax.twinx()
|
||
|
return ax1
|
||
|
|
||
|
|
||
|
def twiny(ax: matplotlib.axes.Axes | None = None) -> _AxesBase:
|
||
|
"""
|
||
|
Make and return a second axes that shares the *y*-axis. The new axes will
|
||
|
overlay *ax* (or the current axes if *ax* is *None*), and its ticks will be
|
||
|
on the top.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
:doc:`/gallery/subplots_axes_and_figures/two_scales`
|
||
|
"""
|
||
|
if ax is None:
|
||
|
ax = gca()
|
||
|
ax1 = ax.twiny()
|
||
|
return ax1
|
||
|
|
||
|
|
||
|
def subplot_tool(targetfig: Figure | None = None) -> SubplotTool | None:
|
||
|
"""
|
||
|
Launch a subplot tool window for a figure.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`matplotlib.widgets.SubplotTool`
|
||
|
"""
|
||
|
if targetfig is None:
|
||
|
targetfig = gcf()
|
||
|
tb = targetfig.canvas.manager.toolbar # type: ignore[union-attr]
|
||
|
if hasattr(tb, "configure_subplots"): # toolbar2
|
||
|
from matplotlib.backend_bases import NavigationToolbar2
|
||
|
return cast(NavigationToolbar2, tb).configure_subplots()
|
||
|
elif hasattr(tb, "trigger_tool"): # toolmanager
|
||
|
from matplotlib.backend_bases import ToolContainerBase
|
||
|
cast(ToolContainerBase, tb).trigger_tool("subplots")
|
||
|
return None
|
||
|
else:
|
||
|
raise ValueError("subplot_tool can only be launched for figures with "
|
||
|
"an associated toolbar")
|
||
|
|
||
|
|
||
|
def box(on: bool | None = None) -> None:
|
||
|
"""
|
||
|
Turn the axes box on or off on the current axes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
on : bool or None
|
||
|
The new `~matplotlib.axes.Axes` box state. If ``None``, toggle
|
||
|
the state.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
:meth:`matplotlib.axes.Axes.set_frame_on`
|
||
|
:meth:`matplotlib.axes.Axes.get_frame_on`
|
||
|
"""
|
||
|
ax = gca()
|
||
|
if on is None:
|
||
|
on = not ax.get_frame_on()
|
||
|
ax.set_frame_on(on)
|
||
|
|
||
|
## Axis ##
|
||
|
|
||
|
|
||
|
def xlim(*args, **kwargs) -> tuple[float, float]:
|
||
|
"""
|
||
|
Get or set the x limits of the current axes.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
left, right = xlim() # return the current xlim
|
||
|
xlim((left, right)) # set the xlim to left, right
|
||
|
xlim(left, right) # set the xlim to left, right
|
||
|
|
||
|
If you do not specify args, you can pass *left* or *right* as kwargs,
|
||
|
i.e.::
|
||
|
|
||
|
xlim(right=3) # adjust the right leaving left unchanged
|
||
|
xlim(left=1) # adjust the left leaving right unchanged
|
||
|
|
||
|
Setting limits turns autoscaling off for the x-axis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
left, right
|
||
|
A tuple of the new x-axis limits.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Calling this function with no arguments (e.g. ``xlim()``) is the pyplot
|
||
|
equivalent of calling `~.Axes.get_xlim` on the current axes.
|
||
|
Calling this function with arguments is the pyplot equivalent of calling
|
||
|
`~.Axes.set_xlim` on the current axes. All arguments are passed though.
|
||
|
"""
|
||
|
ax = gca()
|
||
|
if not args and not kwargs:
|
||
|
return ax.get_xlim()
|
||
|
ret = ax.set_xlim(*args, **kwargs)
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def ylim(*args, **kwargs) -> tuple[float, float]:
|
||
|
"""
|
||
|
Get or set the y-limits of the current axes.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
bottom, top = ylim() # return the current ylim
|
||
|
ylim((bottom, top)) # set the ylim to bottom, top
|
||
|
ylim(bottom, top) # set the ylim to bottom, top
|
||
|
|
||
|
If you do not specify args, you can alternatively pass *bottom* or
|
||
|
*top* as kwargs, i.e.::
|
||
|
|
||
|
ylim(top=3) # adjust the top leaving bottom unchanged
|
||
|
ylim(bottom=1) # adjust the bottom leaving top unchanged
|
||
|
|
||
|
Setting limits turns autoscaling off for the y-axis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bottom, top
|
||
|
A tuple of the new y-axis limits.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Calling this function with no arguments (e.g. ``ylim()``) is the pyplot
|
||
|
equivalent of calling `~.Axes.get_ylim` on the current axes.
|
||
|
Calling this function with arguments is the pyplot equivalent of calling
|
||
|
`~.Axes.set_ylim` on the current axes. All arguments are passed though.
|
||
|
"""
|
||
|
ax = gca()
|
||
|
if not args and not kwargs:
|
||
|
return ax.get_ylim()
|
||
|
ret = ax.set_ylim(*args, **kwargs)
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def xticks(
|
||
|
ticks: ArrayLike | None = None,
|
||
|
labels: Sequence[str] | None = None,
|
||
|
*,
|
||
|
minor: bool = False,
|
||
|
**kwargs
|
||
|
) -> tuple[list[Tick] | np.ndarray, list[Text]]:
|
||
|
"""
|
||
|
Get or set the current tick locations and labels of the x-axis.
|
||
|
|
||
|
Pass no arguments to return the current values without modifying them.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ticks : array-like, optional
|
||
|
The list of xtick locations. Passing an empty list removes all xticks.
|
||
|
labels : array-like, optional
|
||
|
The labels to place at the given *ticks* locations. This argument can
|
||
|
only be passed if *ticks* is passed as well.
|
||
|
minor : bool, default: False
|
||
|
If ``False``, get/set the major ticks/labels; if ``True``, the minor
|
||
|
ticks/labels.
|
||
|
**kwargs
|
||
|
`.Text` properties can be used to control the appearance of the labels.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
locs
|
||
|
The list of xtick locations.
|
||
|
labels
|
||
|
The list of xlabel `.Text` objects.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Calling this function with no arguments (e.g. ``xticks()``) is the pyplot
|
||
|
equivalent of calling `~.Axes.get_xticks` and `~.Axes.get_xticklabels` on
|
||
|
the current axes.
|
||
|
Calling this function with arguments is the pyplot equivalent of calling
|
||
|
`~.Axes.set_xticks` and `~.Axes.set_xticklabels` on the current axes.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> locs, labels = xticks() # Get the current locations and labels.
|
||
|
>>> xticks(np.arange(0, 1, step=0.2)) # Set label locations.
|
||
|
>>> xticks(np.arange(3), ['Tom', 'Dick', 'Sue']) # Set text labels.
|
||
|
>>> xticks([0, 1, 2], ['January', 'February', 'March'],
|
||
|
... rotation=20) # Set text labels and properties.
|
||
|
>>> xticks([]) # Disable xticks.
|
||
|
"""
|
||
|
ax = gca()
|
||
|
|
||
|
locs: list[Tick] | np.ndarray
|
||
|
if ticks is None:
|
||
|
locs = ax.get_xticks(minor=minor)
|
||
|
if labels is not None:
|
||
|
raise TypeError("xticks(): Parameter 'labels' can't be set "
|
||
|
"without setting 'ticks'")
|
||
|
else:
|
||
|
locs = ax.set_xticks(ticks, minor=minor)
|
||
|
|
||
|
labels_out: list[Text] = []
|
||
|
if labels is None:
|
||
|
labels_out = ax.get_xticklabels(minor=minor)
|
||
|
for l in labels_out:
|
||
|
l._internal_update(kwargs)
|
||
|
else:
|
||
|
labels_out = ax.set_xticklabels(labels, minor=minor, **kwargs)
|
||
|
|
||
|
return locs, labels_out
|
||
|
|
||
|
|
||
|
def yticks(
|
||
|
ticks: ArrayLike | None = None,
|
||
|
labels: Sequence[str] | None = None,
|
||
|
*,
|
||
|
minor: bool = False,
|
||
|
**kwargs
|
||
|
) -> tuple[list[Tick] | np.ndarray, list[Text]]:
|
||
|
"""
|
||
|
Get or set the current tick locations and labels of the y-axis.
|
||
|
|
||
|
Pass no arguments to return the current values without modifying them.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ticks : array-like, optional
|
||
|
The list of ytick locations. Passing an empty list removes all yticks.
|
||
|
labels : array-like, optional
|
||
|
The labels to place at the given *ticks* locations. This argument can
|
||
|
only be passed if *ticks* is passed as well.
|
||
|
minor : bool, default: False
|
||
|
If ``False``, get/set the major ticks/labels; if ``True``, the minor
|
||
|
ticks/labels.
|
||
|
**kwargs
|
||
|
`.Text` properties can be used to control the appearance of the labels.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
locs
|
||
|
The list of ytick locations.
|
||
|
labels
|
||
|
The list of ylabel `.Text` objects.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Calling this function with no arguments (e.g. ``yticks()``) is the pyplot
|
||
|
equivalent of calling `~.Axes.get_yticks` and `~.Axes.get_yticklabels` on
|
||
|
the current axes.
|
||
|
Calling this function with arguments is the pyplot equivalent of calling
|
||
|
`~.Axes.set_yticks` and `~.Axes.set_yticklabels` on the current axes.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> locs, labels = yticks() # Get the current locations and labels.
|
||
|
>>> yticks(np.arange(0, 1, step=0.2)) # Set label locations.
|
||
|
>>> yticks(np.arange(3), ['Tom', 'Dick', 'Sue']) # Set text labels.
|
||
|
>>> yticks([0, 1, 2], ['January', 'February', 'March'],
|
||
|
... rotation=45) # Set text labels and properties.
|
||
|
>>> yticks([]) # Disable yticks.
|
||
|
"""
|
||
|
ax = gca()
|
||
|
|
||
|
locs: list[Tick] | np.ndarray
|
||
|
if ticks is None:
|
||
|
locs = ax.get_yticks(minor=minor)
|
||
|
if labels is not None:
|
||
|
raise TypeError("yticks(): Parameter 'labels' can't be set "
|
||
|
"without setting 'ticks'")
|
||
|
else:
|
||
|
locs = ax.set_yticks(ticks, minor=minor)
|
||
|
|
||
|
labels_out: list[Text] = []
|
||
|
if labels is None:
|
||
|
labels_out = ax.get_yticklabels(minor=minor)
|
||
|
for l in labels_out:
|
||
|
l._internal_update(kwargs)
|
||
|
else:
|
||
|
labels_out = ax.set_yticklabels(labels, minor=minor, **kwargs)
|
||
|
|
||
|
return locs, labels_out
|
||
|
|
||
|
|
||
|
def rgrids(
|
||
|
radii: ArrayLike | None = None,
|
||
|
labels: Sequence[str | Text] | None = None,
|
||
|
angle: float | None = None,
|
||
|
fmt: str | None = None,
|
||
|
**kwargs
|
||
|
) -> tuple[list[Line2D], list[Text]]:
|
||
|
"""
|
||
|
Get or set the radial gridlines on the current polar plot.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
lines, labels = rgrids()
|
||
|
lines, labels = rgrids(radii, labels=None, angle=22.5, fmt=None, **kwargs)
|
||
|
|
||
|
When called with no arguments, `.rgrids` simply returns the tuple
|
||
|
(*lines*, *labels*). When called with arguments, the labels will
|
||
|
appear at the specified radial distances and angle.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
radii : tuple with floats
|
||
|
The radii for the radial gridlines
|
||
|
|
||
|
labels : tuple with strings or None
|
||
|
The labels to use at each radial gridline. The
|
||
|
`matplotlib.ticker.ScalarFormatter` will be used if None.
|
||
|
|
||
|
angle : float
|
||
|
The angular position of the radius labels in degrees.
|
||
|
|
||
|
fmt : str or None
|
||
|
Format string used in `matplotlib.ticker.FormatStrFormatter`.
|
||
|
For example '%f'.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lines : list of `.lines.Line2D`
|
||
|
The radial gridlines.
|
||
|
|
||
|
labels : list of `.text.Text`
|
||
|
The tick labels.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
*kwargs* are optional `.Text` properties for the labels.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
.pyplot.thetagrids
|
||
|
.projections.polar.PolarAxes.set_rgrids
|
||
|
.Axis.get_gridlines
|
||
|
.Axis.get_ticklabels
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
::
|
||
|
|
||
|
# set the locations of the radial gridlines
|
||
|
lines, labels = rgrids( (0.25, 0.5, 1.0) )
|
||
|
|
||
|
# set the locations and labels of the radial gridlines
|
||
|
lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' ))
|
||
|
"""
|
||
|
ax = gca()
|
||
|
if not isinstance(ax, PolarAxes):
|
||
|
raise RuntimeError('rgrids only defined for polar axes')
|
||
|
if all(p is None for p in [radii, labels, angle, fmt]) and not kwargs:
|
||
|
lines_out: list[Line2D] = ax.yaxis.get_gridlines()
|
||
|
labels_out: list[Text] = ax.yaxis.get_ticklabels()
|
||
|
elif radii is None:
|
||
|
raise TypeError("'radii' cannot be None when other parameters are passed")
|
||
|
else:
|
||
|
lines_out, labels_out = ax.set_rgrids(
|
||
|
radii, labels=labels, angle=angle, fmt=fmt, **kwargs)
|
||
|
return lines_out, labels_out
|
||
|
|
||
|
|
||
|
def thetagrids(
|
||
|
angles: ArrayLike | None = None,
|
||
|
labels: Sequence[str | Text] | None = None,
|
||
|
fmt: str | None = None,
|
||
|
**kwargs
|
||
|
) -> tuple[list[Line2D], list[Text]]:
|
||
|
"""
|
||
|
Get or set the theta gridlines on the current polar plot.
|
||
|
|
||
|
Call signatures::
|
||
|
|
||
|
lines, labels = thetagrids()
|
||
|
lines, labels = thetagrids(angles, labels=None, fmt=None, **kwargs)
|
||
|
|
||
|
When called with no arguments, `.thetagrids` simply returns the tuple
|
||
|
(*lines*, *labels*). When called with arguments, the labels will
|
||
|
appear at the specified angles.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
angles : tuple with floats, degrees
|
||
|
The angles of the theta gridlines.
|
||
|
|
||
|
labels : tuple with strings or None
|
||
|
The labels to use at each radial gridline. The
|
||
|
`.projections.polar.ThetaFormatter` will be used if None.
|
||
|
|
||
|
fmt : str or None
|
||
|
Format string used in `matplotlib.ticker.FormatStrFormatter`.
|
||
|
For example '%f'. Note that the angle in radians will be used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
lines : list of `.lines.Line2D`
|
||
|
The theta gridlines.
|
||
|
|
||
|
labels : list of `.text.Text`
|
||
|
The tick labels.
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs
|
||
|
*kwargs* are optional `.Text` properties for the labels.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
.pyplot.rgrids
|
||
|
.projections.polar.PolarAxes.set_thetagrids
|
||
|
.Axis.get_gridlines
|
||
|
.Axis.get_ticklabels
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
::
|
||
|
|
||
|
# set the locations of the angular gridlines
|
||
|
lines, labels = thetagrids(range(45, 360, 90))
|
||
|
|
||
|
# set the locations and labels of the angular gridlines
|
||
|
lines, labels = thetagrids(range(45, 360, 90), ('NE', 'NW', 'SW', 'SE'))
|
||
|
"""
|
||
|
ax = gca()
|
||
|
if not isinstance(ax, PolarAxes):
|
||
|
raise RuntimeError('thetagrids only defined for polar axes')
|
||
|
if all(param is None for param in [angles, labels, fmt]) and not kwargs:
|
||
|
lines_out: list[Line2D] = ax.xaxis.get_ticklines()
|
||
|
labels_out: list[Text] = ax.xaxis.get_ticklabels()
|
||
|
elif angles is None:
|
||
|
raise TypeError("'angles' cannot be None when other parameters are passed")
|
||
|
else:
|
||
|
lines_out, labels_out = ax.set_thetagrids(angles,
|
||
|
labels=labels, fmt=fmt,
|
||
|
**kwargs)
|
||
|
return lines_out, labels_out
|
||
|
|
||
|
|
||
|
@_api.deprecated("3.7", pending=True)
|
||
|
def get_plot_commands() -> list[str]:
|
||
|
"""
|
||
|
Get a sorted list of all of the plotting commands.
|
||
|
"""
|
||
|
NON_PLOT_COMMANDS = {
|
||
|
'connect', 'disconnect', 'get_current_fig_manager', 'ginput',
|
||
|
'new_figure_manager', 'waitforbuttonpress'}
|
||
|
return [name for name in _get_pyplot_commands()
|
||
|
if name not in NON_PLOT_COMMANDS]
|
||
|
|
||
|
|
||
|
def _get_pyplot_commands() -> list[str]:
|
||
|
# This works by searching for all functions in this module and removing
|
||
|
# a few hard-coded exclusions, as well as all of the colormap-setting
|
||
|
# functions, and anything marked as private with a preceding underscore.
|
||
|
exclude = {'colormaps', 'colors', 'get_plot_commands', *colormaps}
|
||
|
this_module = inspect.getmodule(get_plot_commands)
|
||
|
return sorted(
|
||
|
name for name, obj in globals().items()
|
||
|
if not name.startswith('_') and name not in exclude
|
||
|
and inspect.isfunction(obj)
|
||
|
and inspect.getmodule(obj) is this_module)
|
||
|
|
||
|
|
||
|
## Plotting part 1: manually generated functions and wrappers ##
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(Figure.colorbar)
|
||
|
def colorbar(
|
||
|
mappable: ScalarMappable | None = None,
|
||
|
cax: matplotlib.axes.Axes | None = None,
|
||
|
ax: matplotlib.axes.Axes | Iterable[matplotlib.axes.Axes] | None = None,
|
||
|
**kwargs
|
||
|
) -> Colorbar:
|
||
|
if mappable is None:
|
||
|
mappable = gci()
|
||
|
if mappable is None:
|
||
|
raise RuntimeError('No mappable was found to use for colorbar '
|
||
|
'creation. First define a mappable such as '
|
||
|
'an image (with imshow) or a contour set ('
|
||
|
'with contourf).')
|
||
|
ret = gcf().colorbar(mappable, cax=cax, ax=ax, **kwargs)
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def clim(vmin: float | None = None, vmax: float | None = None) -> None:
|
||
|
"""
|
||
|
Set the color limits of the current image.
|
||
|
|
||
|
If either *vmin* or *vmax* is None, the image min/max respectively
|
||
|
will be used for color scaling.
|
||
|
|
||
|
If you want to set the clim of multiple images, use
|
||
|
`~.ScalarMappable.set_clim` on every image, for example::
|
||
|
|
||
|
for im in gca().get_images():
|
||
|
im.set_clim(0, 0.5)
|
||
|
|
||
|
"""
|
||
|
im = gci()
|
||
|
if im is None:
|
||
|
raise RuntimeError('You must first define an image, e.g., with imshow')
|
||
|
|
||
|
im.set_clim(vmin, vmax)
|
||
|
|
||
|
|
||
|
# eventually this implementation should move here, use indirection for now to
|
||
|
# avoid having two copies of the code floating around.
|
||
|
def get_cmap(
|
||
|
name: Colormap | str | None = None,
|
||
|
lut: int | None = None
|
||
|
) -> Colormap:
|
||
|
return cm._get_cmap(name=name, lut=lut) # type: ignore
|
||
|
get_cmap.__doc__ = cm._get_cmap.__doc__ # type: ignore
|
||
|
|
||
|
|
||
|
def set_cmap(cmap: Colormap | str) -> None:
|
||
|
"""
|
||
|
Set the default colormap, and applies it to the current image if any.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
cmap : `~matplotlib.colors.Colormap` or str
|
||
|
A colormap instance or the name of a registered colormap.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
colormaps
|
||
|
matplotlib.cm.register_cmap
|
||
|
matplotlib.cm.get_cmap
|
||
|
"""
|
||
|
cmap = get_cmap(cmap)
|
||
|
|
||
|
rc('image', cmap=cmap.name)
|
||
|
im = gci()
|
||
|
|
||
|
if im is not None:
|
||
|
im.set_cmap(cmap)
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(matplotlib.image.imread)
|
||
|
def imread(
|
||
|
fname: str | pathlib.Path | BinaryIO, format: str | None = None
|
||
|
) -> np.ndarray:
|
||
|
return matplotlib.image.imread(fname, format)
|
||
|
|
||
|
|
||
|
@_copy_docstring_and_deprecators(matplotlib.image.imsave)
|
||
|
def imsave(
|
||
|
fname: str | os.PathLike | BinaryIO, arr: ArrayLike, **kwargs
|
||
|
) -> None:
|
||
|
matplotlib.image.imsave(fname, arr, **kwargs)
|
||
|
|
||
|
|
||
|
def matshow(A: ArrayLike, fignum: None | int = None, **kwargs) -> AxesImage:
|
||
|
"""
|
||
|
Display an array as a matrix in a new figure window.
|
||
|
|
||
|
The origin is set at the upper left hand corner and rows (first
|
||
|
dimension of the array) are displayed horizontally. The aspect
|
||
|
ratio of the figure window is that of the array, unless this would
|
||
|
make an excessively short or narrow figure.
|
||
|
|
||
|
Tick labels for the xaxis are placed on top.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : 2D array-like
|
||
|
The matrix to be displayed.
|
||
|
|
||
|
fignum : None or int
|
||
|
If *None*, create a new, appropriately sized figure window.
|
||
|
|
||
|
If 0, use the current Axes (creating one if there is none, without ever
|
||
|
adjusting the figure size).
|
||
|
|
||
|
Otherwise, create a new Axes on the figure with the given number
|
||
|
(creating it at the appropriate size if it does not exist, but not
|
||
|
adjusting the figure size otherwise). Note that this will be drawn on
|
||
|
top of any preexisting Axes on the figure.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`~matplotlib.image.AxesImage`
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
**kwargs : `~matplotlib.axes.Axes.imshow` arguments
|
||
|
|
||
|
"""
|
||
|
A = np.asanyarray(A)
|
||
|
if fignum == 0:
|
||
|
ax = gca()
|
||
|
else:
|
||
|
# Extract actual aspect ratio of array and make appropriately sized
|
||
|
# figure.
|
||
|
fig = figure(fignum, figsize=figaspect(A))
|
||
|
ax = fig.add_axes((0.15, 0.09, 0.775, 0.775))
|
||
|
im = ax.matshow(A, **kwargs)
|
||
|
sci(im)
|
||
|
return im
|
||
|
|
||
|
|
||
|
def polar(*args, **kwargs) -> list[Line2D]:
|
||
|
"""
|
||
|
Make a polar plot.
|
||
|
|
||
|
call signature::
|
||
|
|
||
|
polar(theta, r, **kwargs)
|
||
|
|
||
|
Multiple *theta*, *r* arguments are supported, with format strings, as in
|
||
|
`plot`.
|
||
|
"""
|
||
|
# If an axis already exists, check if it has a polar projection
|
||
|
if gcf().get_axes():
|
||
|
ax = gca()
|
||
|
if not isinstance(ax, PolarAxes):
|
||
|
_api.warn_external('Trying to create polar plot on an Axes '
|
||
|
'that does not have a polar projection.')
|
||
|
else:
|
||
|
ax = axes(projection="polar")
|
||
|
return ax.plot(*args, **kwargs)
|
||
|
|
||
|
|
||
|
# If rcParams['backend_fallback'] is true, and an interactive backend is
|
||
|
# requested, ignore rcParams['backend'] and force selection of a backend that
|
||
|
# is compatible with the current running interactive framework.
|
||
|
if (rcParams["backend_fallback"]
|
||
|
and rcParams._get_backend_or_none() in ( # type: ignore
|
||
|
set(rcsetup.interactive_bk) - {'WebAgg', 'nbAgg'})
|
||
|
and cbook._get_running_interactive_framework()): # type: ignore
|
||
|
rcParams._set("backend", rcsetup._auto_backend_sentinel) # type: ignore
|
||
|
|
||
|
# fmt: on
|
||
|
|
||
|
################# REMAINING CONTENT GENERATED BY boilerplate.py ##############
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Figure.figimage)
|
||
|
def figimage(
|
||
|
X: ArrayLike,
|
||
|
xo: int = 0,
|
||
|
yo: int = 0,
|
||
|
alpha: float | None = None,
|
||
|
norm: str | Normalize | None = None,
|
||
|
cmap: str | Colormap | None = None,
|
||
|
vmin: float | None = None,
|
||
|
vmax: float | None = None,
|
||
|
origin: Literal["upper", "lower"] | None = None,
|
||
|
resize: bool = False,
|
||
|
**kwargs,
|
||
|
) -> FigureImage:
|
||
|
return gcf().figimage(
|
||
|
X,
|
||
|
xo=xo,
|
||
|
yo=yo,
|
||
|
alpha=alpha,
|
||
|
norm=norm,
|
||
|
cmap=cmap,
|
||
|
vmin=vmin,
|
||
|
vmax=vmax,
|
||
|
origin=origin,
|
||
|
resize=resize,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Figure.text)
|
||
|
def figtext(
|
||
|
x: float, y: float, s: str, fontdict: dict[str, Any] | None = None, **kwargs
|
||
|
) -> Text:
|
||
|
return gcf().text(x, y, s, fontdict=fontdict, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Figure.gca)
|
||
|
def gca() -> Axes:
|
||
|
return gcf().gca()
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Figure._gci)
|
||
|
def gci() -> ScalarMappable | None:
|
||
|
return gcf()._gci()
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Figure.ginput)
|
||
|
def ginput(
|
||
|
n: int = 1,
|
||
|
timeout: float = 30,
|
||
|
show_clicks: bool = True,
|
||
|
mouse_add: MouseButton = MouseButton.LEFT,
|
||
|
mouse_pop: MouseButton = MouseButton.RIGHT,
|
||
|
mouse_stop: MouseButton = MouseButton.MIDDLE,
|
||
|
) -> list[tuple[int, int]]:
|
||
|
return gcf().ginput(
|
||
|
n=n,
|
||
|
timeout=timeout,
|
||
|
show_clicks=show_clicks,
|
||
|
mouse_add=mouse_add,
|
||
|
mouse_pop=mouse_pop,
|
||
|
mouse_stop=mouse_stop,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Figure.subplots_adjust)
|
||
|
def subplots_adjust(
|
||
|
left: float | None = None,
|
||
|
bottom: float | None = None,
|
||
|
right: float | None = None,
|
||
|
top: float | None = None,
|
||
|
wspace: float | None = None,
|
||
|
hspace: float | None = None,
|
||
|
) -> None:
|
||
|
gcf().subplots_adjust(
|
||
|
left=left, bottom=bottom, right=right, top=top, wspace=wspace, hspace=hspace
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Figure.suptitle)
|
||
|
def suptitle(t: str, **kwargs) -> Text:
|
||
|
return gcf().suptitle(t, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Figure.tight_layout)
|
||
|
def tight_layout(
|
||
|
*,
|
||
|
pad: float = 1.08,
|
||
|
h_pad: float | None = None,
|
||
|
w_pad: float | None = None,
|
||
|
rect: tuple[float, float, float, float] | None = None,
|
||
|
) -> None:
|
||
|
gcf().tight_layout(pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Figure.waitforbuttonpress)
|
||
|
def waitforbuttonpress(timeout: float = -1) -> None | bool:
|
||
|
return gcf().waitforbuttonpress(timeout=timeout)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.acorr)
|
||
|
def acorr(
|
||
|
x: ArrayLike, *, data=None, **kwargs
|
||
|
) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]:
|
||
|
return gca().acorr(x, **({"data": data} if data is not None else {}), **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.angle_spectrum)
|
||
|
def angle_spectrum(
|
||
|
x: ArrayLike,
|
||
|
Fs: float | None = None,
|
||
|
Fc: int | None = None,
|
||
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = None,
|
||
|
pad_to: int | None = None,
|
||
|
sides: Literal["default", "onesided", "twosided"] | None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> tuple[np.ndarray, np.ndarray, Line2D]:
|
||
|
return gca().angle_spectrum(
|
||
|
x,
|
||
|
Fs=Fs,
|
||
|
Fc=Fc,
|
||
|
window=window,
|
||
|
pad_to=pad_to,
|
||
|
sides=sides,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.annotate)
|
||
|
def annotate(
|
||
|
text: str,
|
||
|
xy: tuple[float, float],
|
||
|
xytext: tuple[float, float] | None = None,
|
||
|
xycoords: str
|
||
|
| Artist
|
||
|
| Transform
|
||
|
| Callable[[RendererBase], Bbox | Transform]
|
||
|
| tuple[float, float] = "data",
|
||
|
textcoords: str
|
||
|
| Artist
|
||
|
| Transform
|
||
|
| Callable[[RendererBase], Bbox | Transform]
|
||
|
| tuple[float, float]
|
||
|
| None = None,
|
||
|
arrowprops: dict[str, Any] | None = None,
|
||
|
annotation_clip: bool | None = None,
|
||
|
**kwargs,
|
||
|
) -> Annotation:
|
||
|
return gca().annotate(
|
||
|
text,
|
||
|
xy,
|
||
|
xytext=xytext,
|
||
|
xycoords=xycoords,
|
||
|
textcoords=textcoords,
|
||
|
arrowprops=arrowprops,
|
||
|
annotation_clip=annotation_clip,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.arrow)
|
||
|
def arrow(x: float, y: float, dx: float, dy: float, **kwargs) -> FancyArrow:
|
||
|
return gca().arrow(x, y, dx, dy, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.autoscale)
|
||
|
def autoscale(
|
||
|
enable: bool = True,
|
||
|
axis: Literal["both", "x", "y"] = "both",
|
||
|
tight: bool | None = None,
|
||
|
) -> None:
|
||
|
gca().autoscale(enable=enable, axis=axis, tight=tight)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.axhline)
|
||
|
def axhline(y: float = 0, xmin: float = 0, xmax: float = 1, **kwargs) -> Line2D:
|
||
|
return gca().axhline(y=y, xmin=xmin, xmax=xmax, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.axhspan)
|
||
|
def axhspan(
|
||
|
ymin: float, ymax: float, xmin: float = 0, xmax: float = 1, **kwargs
|
||
|
) -> Polygon:
|
||
|
return gca().axhspan(ymin, ymax, xmin=xmin, xmax=xmax, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.axis)
|
||
|
def axis(
|
||
|
arg: tuple[float, float, float, float] | bool | str | None = None,
|
||
|
/,
|
||
|
*,
|
||
|
emit: bool = True,
|
||
|
**kwargs,
|
||
|
) -> tuple[float, float, float, float]:
|
||
|
return gca().axis(arg, emit=emit, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.axline)
|
||
|
def axline(
|
||
|
xy1: tuple[float, float],
|
||
|
xy2: tuple[float, float] | None = None,
|
||
|
*,
|
||
|
slope: float | None = None,
|
||
|
**kwargs,
|
||
|
) -> AxLine:
|
||
|
return gca().axline(xy1, xy2=xy2, slope=slope, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.axvline)
|
||
|
def axvline(x: float = 0, ymin: float = 0, ymax: float = 1, **kwargs) -> Line2D:
|
||
|
return gca().axvline(x=x, ymin=ymin, ymax=ymax, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.axvspan)
|
||
|
def axvspan(
|
||
|
xmin: float, xmax: float, ymin: float = 0, ymax: float = 1, **kwargs
|
||
|
) -> Polygon:
|
||
|
return gca().axvspan(xmin, xmax, ymin=ymin, ymax=ymax, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.bar)
|
||
|
def bar(
|
||
|
x: float | ArrayLike,
|
||
|
height: float | ArrayLike,
|
||
|
width: float | ArrayLike = 0.8,
|
||
|
bottom: float | ArrayLike | None = None,
|
||
|
*,
|
||
|
align: Literal["center", "edge"] = "center",
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> BarContainer:
|
||
|
return gca().bar(
|
||
|
x,
|
||
|
height,
|
||
|
width=width,
|
||
|
bottom=bottom,
|
||
|
align=align,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.barbs)
|
||
|
def barbs(*args, data=None, **kwargs) -> Barbs:
|
||
|
return gca().barbs(*args, **({"data": data} if data is not None else {}), **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.barh)
|
||
|
def barh(
|
||
|
y: float | ArrayLike,
|
||
|
width: float | ArrayLike,
|
||
|
height: float | ArrayLike = 0.8,
|
||
|
left: float | ArrayLike | None = None,
|
||
|
*,
|
||
|
align: Literal["center", "edge"] = "center",
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> BarContainer:
|
||
|
return gca().barh(
|
||
|
y,
|
||
|
width,
|
||
|
height=height,
|
||
|
left=left,
|
||
|
align=align,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.bar_label)
|
||
|
def bar_label(
|
||
|
container: BarContainer,
|
||
|
labels: ArrayLike | None = None,
|
||
|
*,
|
||
|
fmt: str | Callable[[float], str] = "%g",
|
||
|
label_type: Literal["center", "edge"] = "edge",
|
||
|
padding: float = 0,
|
||
|
**kwargs,
|
||
|
) -> list[Annotation]:
|
||
|
return gca().bar_label(
|
||
|
container,
|
||
|
labels=labels,
|
||
|
fmt=fmt,
|
||
|
label_type=label_type,
|
||
|
padding=padding,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.boxplot)
|
||
|
def boxplot(
|
||
|
x: ArrayLike | Sequence[ArrayLike],
|
||
|
notch: bool | None = None,
|
||
|
sym: str | None = None,
|
||
|
vert: bool | None = None,
|
||
|
whis: float | tuple[float, float] | None = None,
|
||
|
positions: ArrayLike | None = None,
|
||
|
widths: float | ArrayLike | None = None,
|
||
|
patch_artist: bool | None = None,
|
||
|
bootstrap: int | None = None,
|
||
|
usermedians: ArrayLike | None = None,
|
||
|
conf_intervals: ArrayLike | None = None,
|
||
|
meanline: bool | None = None,
|
||
|
showmeans: bool | None = None,
|
||
|
showcaps: bool | None = None,
|
||
|
showbox: bool | None = None,
|
||
|
showfliers: bool | None = None,
|
||
|
boxprops: dict[str, Any] | None = None,
|
||
|
labels: Sequence[str] | None = None,
|
||
|
flierprops: dict[str, Any] | None = None,
|
||
|
medianprops: dict[str, Any] | None = None,
|
||
|
meanprops: dict[str, Any] | None = None,
|
||
|
capprops: dict[str, Any] | None = None,
|
||
|
whiskerprops: dict[str, Any] | None = None,
|
||
|
manage_ticks: bool = True,
|
||
|
autorange: bool = False,
|
||
|
zorder: float | None = None,
|
||
|
capwidths: float | ArrayLike | None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
) -> dict[str, Any]:
|
||
|
return gca().boxplot(
|
||
|
x,
|
||
|
notch=notch,
|
||
|
sym=sym,
|
||
|
vert=vert,
|
||
|
whis=whis,
|
||
|
positions=positions,
|
||
|
widths=widths,
|
||
|
patch_artist=patch_artist,
|
||
|
bootstrap=bootstrap,
|
||
|
usermedians=usermedians,
|
||
|
conf_intervals=conf_intervals,
|
||
|
meanline=meanline,
|
||
|
showmeans=showmeans,
|
||
|
showcaps=showcaps,
|
||
|
showbox=showbox,
|
||
|
showfliers=showfliers,
|
||
|
boxprops=boxprops,
|
||
|
labels=labels,
|
||
|
flierprops=flierprops,
|
||
|
medianprops=medianprops,
|
||
|
meanprops=meanprops,
|
||
|
capprops=capprops,
|
||
|
whiskerprops=whiskerprops,
|
||
|
manage_ticks=manage_ticks,
|
||
|
autorange=autorange,
|
||
|
zorder=zorder,
|
||
|
capwidths=capwidths,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.broken_barh)
|
||
|
def broken_barh(
|
||
|
xranges: Sequence[tuple[float, float]],
|
||
|
yrange: tuple[float, float],
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> BrokenBarHCollection:
|
||
|
return gca().broken_barh(
|
||
|
xranges, yrange, **({"data": data} if data is not None else {}), **kwargs
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.clabel)
|
||
|
def clabel(CS: ContourSet, levels: ArrayLike | None = None, **kwargs) -> list[Text]:
|
||
|
return gca().clabel(CS, levels=levels, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.cohere)
|
||
|
def cohere(
|
||
|
x: ArrayLike,
|
||
|
y: ArrayLike,
|
||
|
NFFT: int = 256,
|
||
|
Fs: float = 2,
|
||
|
Fc: int = 0,
|
||
|
detrend: Literal["none", "mean", "linear"]
|
||
|
| Callable[[ArrayLike], ArrayLike] = mlab.detrend_none,
|
||
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike = mlab.window_hanning,
|
||
|
noverlap: int = 0,
|
||
|
pad_to: int | None = None,
|
||
|
sides: Literal["default", "onesided", "twosided"] = "default",
|
||
|
scale_by_freq: bool | None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> tuple[np.ndarray, np.ndarray]:
|
||
|
return gca().cohere(
|
||
|
x,
|
||
|
y,
|
||
|
NFFT=NFFT,
|
||
|
Fs=Fs,
|
||
|
Fc=Fc,
|
||
|
detrend=detrend,
|
||
|
window=window,
|
||
|
noverlap=noverlap,
|
||
|
pad_to=pad_to,
|
||
|
sides=sides,
|
||
|
scale_by_freq=scale_by_freq,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.contour)
|
||
|
def contour(*args, data=None, **kwargs) -> QuadContourSet:
|
||
|
__ret = gca().contour(
|
||
|
*args, **({"data": data} if data is not None else {}), **kwargs
|
||
|
)
|
||
|
if __ret._A is not None: # type: ignore[attr-defined]
|
||
|
sci(__ret)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.contourf)
|
||
|
def contourf(*args, data=None, **kwargs) -> QuadContourSet:
|
||
|
__ret = gca().contourf(
|
||
|
*args, **({"data": data} if data is not None else {}), **kwargs
|
||
|
)
|
||
|
if __ret._A is not None: # type: ignore[attr-defined]
|
||
|
sci(__ret)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.csd)
|
||
|
def csd(
|
||
|
x: ArrayLike,
|
||
|
y: ArrayLike,
|
||
|
NFFT: int | None = None,
|
||
|
Fs: float | None = None,
|
||
|
Fc: int | None = None,
|
||
|
detrend: Literal["none", "mean", "linear"]
|
||
|
| Callable[[ArrayLike], ArrayLike]
|
||
|
| None = None,
|
||
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = None,
|
||
|
noverlap: int | None = None,
|
||
|
pad_to: int | None = None,
|
||
|
sides: Literal["default", "onesided", "twosided"] | None = None,
|
||
|
scale_by_freq: bool | None = None,
|
||
|
return_line: bool | None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]:
|
||
|
return gca().csd(
|
||
|
x,
|
||
|
y,
|
||
|
NFFT=NFFT,
|
||
|
Fs=Fs,
|
||
|
Fc=Fc,
|
||
|
detrend=detrend,
|
||
|
window=window,
|
||
|
noverlap=noverlap,
|
||
|
pad_to=pad_to,
|
||
|
sides=sides,
|
||
|
scale_by_freq=scale_by_freq,
|
||
|
return_line=return_line,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.ecdf)
|
||
|
def ecdf(
|
||
|
x: ArrayLike,
|
||
|
weights: ArrayLike | None = None,
|
||
|
*,
|
||
|
complementary: bool = False,
|
||
|
orientation: Literal["vertical", "horizonatal"] = "vertical",
|
||
|
compress: bool = False,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> Line2D:
|
||
|
return gca().ecdf(
|
||
|
x,
|
||
|
weights=weights,
|
||
|
complementary=complementary,
|
||
|
orientation=orientation,
|
||
|
compress=compress,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.errorbar)
|
||
|
def errorbar(
|
||
|
x: float | ArrayLike,
|
||
|
y: float | ArrayLike,
|
||
|
yerr: float | ArrayLike | None = None,
|
||
|
xerr: float | ArrayLike | None = None,
|
||
|
fmt: str = "",
|
||
|
ecolor: ColorType | None = None,
|
||
|
elinewidth: float | None = None,
|
||
|
capsize: float | None = None,
|
||
|
barsabove: bool = False,
|
||
|
lolims: bool | ArrayLike = False,
|
||
|
uplims: bool | ArrayLike = False,
|
||
|
xlolims: bool | ArrayLike = False,
|
||
|
xuplims: bool | ArrayLike = False,
|
||
|
errorevery: int | tuple[int, int] = 1,
|
||
|
capthick: float | None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> ErrorbarContainer:
|
||
|
return gca().errorbar(
|
||
|
x,
|
||
|
y,
|
||
|
yerr=yerr,
|
||
|
xerr=xerr,
|
||
|
fmt=fmt,
|
||
|
ecolor=ecolor,
|
||
|
elinewidth=elinewidth,
|
||
|
capsize=capsize,
|
||
|
barsabove=barsabove,
|
||
|
lolims=lolims,
|
||
|
uplims=uplims,
|
||
|
xlolims=xlolims,
|
||
|
xuplims=xuplims,
|
||
|
errorevery=errorevery,
|
||
|
capthick=capthick,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.eventplot)
|
||
|
def eventplot(
|
||
|
positions: ArrayLike | Sequence[ArrayLike],
|
||
|
orientation: Literal["horizontal", "vertical"] = "horizontal",
|
||
|
lineoffsets: float | Sequence[float] = 1,
|
||
|
linelengths: float | Sequence[float] = 1,
|
||
|
linewidths: float | Sequence[float] | None = None,
|
||
|
colors: ColorType | Sequence[ColorType] | None = None,
|
||
|
alpha: float | Sequence[float] | None = None,
|
||
|
linestyles: LineStyleType | Sequence[LineStyleType] = "solid",
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> EventCollection:
|
||
|
return gca().eventplot(
|
||
|
positions,
|
||
|
orientation=orientation,
|
||
|
lineoffsets=lineoffsets,
|
||
|
linelengths=linelengths,
|
||
|
linewidths=linewidths,
|
||
|
colors=colors,
|
||
|
alpha=alpha,
|
||
|
linestyles=linestyles,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.fill)
|
||
|
def fill(*args, data=None, **kwargs) -> list[Polygon]:
|
||
|
return gca().fill(*args, **({"data": data} if data is not None else {}), **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.fill_between)
|
||
|
def fill_between(
|
||
|
x: ArrayLike,
|
||
|
y1: ArrayLike | float,
|
||
|
y2: ArrayLike | float = 0,
|
||
|
where: Sequence[bool] | None = None,
|
||
|
interpolate: bool = False,
|
||
|
step: Literal["pre", "post", "mid"] | None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> PolyCollection:
|
||
|
return gca().fill_between(
|
||
|
x,
|
||
|
y1,
|
||
|
y2=y2,
|
||
|
where=where,
|
||
|
interpolate=interpolate,
|
||
|
step=step,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.fill_betweenx)
|
||
|
def fill_betweenx(
|
||
|
y: ArrayLike,
|
||
|
x1: ArrayLike | float,
|
||
|
x2: ArrayLike | float = 0,
|
||
|
where: Sequence[bool] | None = None,
|
||
|
step: Literal["pre", "post", "mid"] | None = None,
|
||
|
interpolate: bool = False,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> PolyCollection:
|
||
|
return gca().fill_betweenx(
|
||
|
y,
|
||
|
x1,
|
||
|
x2=x2,
|
||
|
where=where,
|
||
|
step=step,
|
||
|
interpolate=interpolate,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.grid)
|
||
|
def grid(
|
||
|
visible: bool | None = None,
|
||
|
which: Literal["major", "minor", "both"] = "major",
|
||
|
axis: Literal["both", "x", "y"] = "both",
|
||
|
**kwargs,
|
||
|
) -> None:
|
||
|
gca().grid(visible=visible, which=which, axis=axis, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.hexbin)
|
||
|
def hexbin(
|
||
|
x: ArrayLike,
|
||
|
y: ArrayLike,
|
||
|
C: ArrayLike | None = None,
|
||
|
gridsize: int | tuple[int, int] = 100,
|
||
|
bins: Literal["log"] | int | Sequence[float] | None = None,
|
||
|
xscale: Literal["linear", "log"] = "linear",
|
||
|
yscale: Literal["linear", "log"] = "linear",
|
||
|
extent: tuple[float, float, float, float] | None = None,
|
||
|
cmap: str | Colormap | None = None,
|
||
|
norm: str | Normalize | None = None,
|
||
|
vmin: float | None = None,
|
||
|
vmax: float | None = None,
|
||
|
alpha: float | None = None,
|
||
|
linewidths: float | None = None,
|
||
|
edgecolors: Literal["face", "none"] | ColorType = "face",
|
||
|
reduce_C_function: Callable[[np.ndarray | list[float]], float] = np.mean,
|
||
|
mincnt: int | None = None,
|
||
|
marginals: bool = False,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> PolyCollection:
|
||
|
__ret = gca().hexbin(
|
||
|
x,
|
||
|
y,
|
||
|
C=C,
|
||
|
gridsize=gridsize,
|
||
|
bins=bins,
|
||
|
xscale=xscale,
|
||
|
yscale=yscale,
|
||
|
extent=extent,
|
||
|
cmap=cmap,
|
||
|
norm=norm,
|
||
|
vmin=vmin,
|
||
|
vmax=vmax,
|
||
|
alpha=alpha,
|
||
|
linewidths=linewidths,
|
||
|
edgecolors=edgecolors,
|
||
|
reduce_C_function=reduce_C_function,
|
||
|
mincnt=mincnt,
|
||
|
marginals=marginals,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
sci(__ret)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.hist)
|
||
|
def hist(
|
||
|
x: ArrayLike | Sequence[ArrayLike],
|
||
|
bins: int | Sequence[float] | str | None = None,
|
||
|
range: tuple[float, float] | None = None,
|
||
|
density: bool = False,
|
||
|
weights: ArrayLike | None = None,
|
||
|
cumulative: bool | float = False,
|
||
|
bottom: ArrayLike | float | None = None,
|
||
|
histtype: Literal["bar", "barstacked", "step", "stepfilled"] = "bar",
|
||
|
align: Literal["left", "mid", "right"] = "mid",
|
||
|
orientation: Literal["vertical", "horizontal"] = "vertical",
|
||
|
rwidth: float | None = None,
|
||
|
log: bool = False,
|
||
|
color: ColorType | Sequence[ColorType] | None = None,
|
||
|
label: str | Sequence[str] | None = None,
|
||
|
stacked: bool = False,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> tuple[
|
||
|
np.ndarray | list[np.ndarray],
|
||
|
np.ndarray,
|
||
|
BarContainer | Polygon | list[BarContainer | Polygon],
|
||
|
]:
|
||
|
return gca().hist(
|
||
|
x,
|
||
|
bins=bins,
|
||
|
range=range,
|
||
|
density=density,
|
||
|
weights=weights,
|
||
|
cumulative=cumulative,
|
||
|
bottom=bottom,
|
||
|
histtype=histtype,
|
||
|
align=align,
|
||
|
orientation=orientation,
|
||
|
rwidth=rwidth,
|
||
|
log=log,
|
||
|
color=color,
|
||
|
label=label,
|
||
|
stacked=stacked,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.stairs)
|
||
|
def stairs(
|
||
|
values: ArrayLike,
|
||
|
edges: ArrayLike | None = None,
|
||
|
*,
|
||
|
orientation: Literal["vertical", "horizontal"] = "vertical",
|
||
|
baseline: float | ArrayLike | None = 0,
|
||
|
fill: bool = False,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> StepPatch:
|
||
|
return gca().stairs(
|
||
|
values,
|
||
|
edges=edges,
|
||
|
orientation=orientation,
|
||
|
baseline=baseline,
|
||
|
fill=fill,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.hist2d)
|
||
|
def hist2d(
|
||
|
x: ArrayLike,
|
||
|
y: ArrayLike,
|
||
|
bins: None | int | tuple[int, int] | ArrayLike | tuple[ArrayLike, ArrayLike] = 10,
|
||
|
range: ArrayLike | None = None,
|
||
|
density: bool = False,
|
||
|
weights: ArrayLike | None = None,
|
||
|
cmin: float | None = None,
|
||
|
cmax: float | None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray, QuadMesh]:
|
||
|
__ret = gca().hist2d(
|
||
|
x,
|
||
|
y,
|
||
|
bins=bins,
|
||
|
range=range,
|
||
|
density=density,
|
||
|
weights=weights,
|
||
|
cmin=cmin,
|
||
|
cmax=cmax,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
sci(__ret[-1])
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.hlines)
|
||
|
def hlines(
|
||
|
y: float | ArrayLike,
|
||
|
xmin: float | ArrayLike,
|
||
|
xmax: float | ArrayLike,
|
||
|
colors: ColorType | Sequence[ColorType] | None = None,
|
||
|
linestyles: LineStyleType = "solid",
|
||
|
label: str = "",
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> LineCollection:
|
||
|
return gca().hlines(
|
||
|
y,
|
||
|
xmin,
|
||
|
xmax,
|
||
|
colors=colors,
|
||
|
linestyles=linestyles,
|
||
|
label=label,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.imshow)
|
||
|
def imshow(
|
||
|
X: ArrayLike | PIL.Image.Image,
|
||
|
cmap: str | Colormap | None = None,
|
||
|
norm: str | Normalize | None = None,
|
||
|
*,
|
||
|
aspect: Literal["equal", "auto"] | float | None = None,
|
||
|
interpolation: str | None = None,
|
||
|
alpha: float | ArrayLike | None = None,
|
||
|
vmin: float | None = None,
|
||
|
vmax: float | None = None,
|
||
|
origin: Literal["upper", "lower"] | None = None,
|
||
|
extent: tuple[float, float, float, float] | None = None,
|
||
|
interpolation_stage: Literal["data", "rgba"] | None = None,
|
||
|
filternorm: bool = True,
|
||
|
filterrad: float = 4.0,
|
||
|
resample: bool | None = None,
|
||
|
url: str | None = None,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> AxesImage:
|
||
|
__ret = gca().imshow(
|
||
|
X,
|
||
|
cmap=cmap,
|
||
|
norm=norm,
|
||
|
aspect=aspect,
|
||
|
interpolation=interpolation,
|
||
|
alpha=alpha,
|
||
|
vmin=vmin,
|
||
|
vmax=vmax,
|
||
|
origin=origin,
|
||
|
extent=extent,
|
||
|
interpolation_stage=interpolation_stage,
|
||
|
filternorm=filternorm,
|
||
|
filterrad=filterrad,
|
||
|
resample=resample,
|
||
|
url=url,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
sci(__ret)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.legend)
|
||
|
def legend(*args, **kwargs) -> Legend:
|
||
|
return gca().legend(*args, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.locator_params)
|
||
|
def locator_params(
|
||
|
axis: Literal["both", "x", "y"] = "both", tight: bool | None = None, **kwargs
|
||
|
) -> None:
|
||
|
gca().locator_params(axis=axis, tight=tight, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.loglog)
|
||
|
def loglog(*args, **kwargs) -> list[Line2D]:
|
||
|
return gca().loglog(*args, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.magnitude_spectrum)
|
||
|
def magnitude_spectrum(
|
||
|
x: ArrayLike,
|
||
|
Fs: float | None = None,
|
||
|
Fc: int | None = None,
|
||
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = None,
|
||
|
pad_to: int | None = None,
|
||
|
sides: Literal["default", "onesided", "twosided"] | None = None,
|
||
|
scale: Literal["default", "linear", "dB"] | None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> tuple[np.ndarray, np.ndarray, Line2D]:
|
||
|
return gca().magnitude_spectrum(
|
||
|
x,
|
||
|
Fs=Fs,
|
||
|
Fc=Fc,
|
||
|
window=window,
|
||
|
pad_to=pad_to,
|
||
|
sides=sides,
|
||
|
scale=scale,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.margins)
|
||
|
def margins(
|
||
|
*margins: float,
|
||
|
x: float | None = None,
|
||
|
y: float | None = None,
|
||
|
tight: bool | None = True,
|
||
|
) -> tuple[float, float] | None:
|
||
|
return gca().margins(*margins, x=x, y=y, tight=tight)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.minorticks_off)
|
||
|
def minorticks_off() -> None:
|
||
|
gca().minorticks_off()
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.minorticks_on)
|
||
|
def minorticks_on() -> None:
|
||
|
gca().minorticks_on()
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.pcolor)
|
||
|
def pcolor(
|
||
|
*args: ArrayLike,
|
||
|
shading: Literal["flat", "nearest", "auto"] | None = None,
|
||
|
alpha: float | None = None,
|
||
|
norm: str | Normalize | None = None,
|
||
|
cmap: str | Colormap | None = None,
|
||
|
vmin: float | None = None,
|
||
|
vmax: float | None = None,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> Collection:
|
||
|
__ret = gca().pcolor(
|
||
|
*args,
|
||
|
shading=shading,
|
||
|
alpha=alpha,
|
||
|
norm=norm,
|
||
|
cmap=cmap,
|
||
|
vmin=vmin,
|
||
|
vmax=vmax,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
sci(__ret)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.pcolormesh)
|
||
|
def pcolormesh(
|
||
|
*args: ArrayLike,
|
||
|
alpha: float | None = None,
|
||
|
norm: str | Normalize | None = None,
|
||
|
cmap: str | Colormap | None = None,
|
||
|
vmin: float | None = None,
|
||
|
vmax: float | None = None,
|
||
|
shading: Literal["flat", "nearest", "gouraud", "auto"] | None = None,
|
||
|
antialiased: bool = False,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> QuadMesh:
|
||
|
__ret = gca().pcolormesh(
|
||
|
*args,
|
||
|
alpha=alpha,
|
||
|
norm=norm,
|
||
|
cmap=cmap,
|
||
|
vmin=vmin,
|
||
|
vmax=vmax,
|
||
|
shading=shading,
|
||
|
antialiased=antialiased,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
sci(__ret)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.phase_spectrum)
|
||
|
def phase_spectrum(
|
||
|
x: ArrayLike,
|
||
|
Fs: float | None = None,
|
||
|
Fc: int | None = None,
|
||
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = None,
|
||
|
pad_to: int | None = None,
|
||
|
sides: Literal["default", "onesided", "twosided"] | None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> tuple[np.ndarray, np.ndarray, Line2D]:
|
||
|
return gca().phase_spectrum(
|
||
|
x,
|
||
|
Fs=Fs,
|
||
|
Fc=Fc,
|
||
|
window=window,
|
||
|
pad_to=pad_to,
|
||
|
sides=sides,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.pie)
|
||
|
def pie(
|
||
|
x: ArrayLike,
|
||
|
explode: ArrayLike | None = None,
|
||
|
labels: Sequence[str] | None = None,
|
||
|
colors: ColorType | Sequence[ColorType] | None = None,
|
||
|
autopct: str | Callable[[float], str] | None = None,
|
||
|
pctdistance: float = 0.6,
|
||
|
shadow: bool = False,
|
||
|
labeldistance: float | None = 1.1,
|
||
|
startangle: float = 0,
|
||
|
radius: float = 1,
|
||
|
counterclock: bool = True,
|
||
|
wedgeprops: dict[str, Any] | None = None,
|
||
|
textprops: dict[str, Any] | None = None,
|
||
|
center: tuple[float, float] = (0, 0),
|
||
|
frame: bool = False,
|
||
|
rotatelabels: bool = False,
|
||
|
*,
|
||
|
normalize: bool = True,
|
||
|
hatch: str | Sequence[str] | None = None,
|
||
|
data=None,
|
||
|
) -> tuple[list[Wedge], list[Text]] | tuple[list[Wedge], list[Text], list[Text]]:
|
||
|
return gca().pie(
|
||
|
x,
|
||
|
explode=explode,
|
||
|
labels=labels,
|
||
|
colors=colors,
|
||
|
autopct=autopct,
|
||
|
pctdistance=pctdistance,
|
||
|
shadow=shadow,
|
||
|
labeldistance=labeldistance,
|
||
|
startangle=startangle,
|
||
|
radius=radius,
|
||
|
counterclock=counterclock,
|
||
|
wedgeprops=wedgeprops,
|
||
|
textprops=textprops,
|
||
|
center=center,
|
||
|
frame=frame,
|
||
|
rotatelabels=rotatelabels,
|
||
|
normalize=normalize,
|
||
|
hatch=hatch,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.plot)
|
||
|
def plot(
|
||
|
*args: float | ArrayLike | str,
|
||
|
scalex: bool = True,
|
||
|
scaley: bool = True,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> list[Line2D]:
|
||
|
return gca().plot(
|
||
|
*args,
|
||
|
scalex=scalex,
|
||
|
scaley=scaley,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.plot_date)
|
||
|
def plot_date(
|
||
|
x: ArrayLike,
|
||
|
y: ArrayLike,
|
||
|
fmt: str = "o",
|
||
|
tz: str | datetime.tzinfo | None = None,
|
||
|
xdate: bool = True,
|
||
|
ydate: bool = False,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> list[Line2D]:
|
||
|
return gca().plot_date(
|
||
|
x,
|
||
|
y,
|
||
|
fmt=fmt,
|
||
|
tz=tz,
|
||
|
xdate=xdate,
|
||
|
ydate=ydate,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.psd)
|
||
|
def psd(
|
||
|
x: ArrayLike,
|
||
|
NFFT: int | None = None,
|
||
|
Fs: float | None = None,
|
||
|
Fc: int | None = None,
|
||
|
detrend: Literal["none", "mean", "linear"]
|
||
|
| Callable[[ArrayLike], ArrayLike]
|
||
|
| None = None,
|
||
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = None,
|
||
|
noverlap: int | None = None,
|
||
|
pad_to: int | None = None,
|
||
|
sides: Literal["default", "onesided", "twosided"] | None = None,
|
||
|
scale_by_freq: bool | None = None,
|
||
|
return_line: bool | None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]:
|
||
|
return gca().psd(
|
||
|
x,
|
||
|
NFFT=NFFT,
|
||
|
Fs=Fs,
|
||
|
Fc=Fc,
|
||
|
detrend=detrend,
|
||
|
window=window,
|
||
|
noverlap=noverlap,
|
||
|
pad_to=pad_to,
|
||
|
sides=sides,
|
||
|
scale_by_freq=scale_by_freq,
|
||
|
return_line=return_line,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.quiver)
|
||
|
def quiver(*args, data=None, **kwargs) -> Quiver:
|
||
|
__ret = gca().quiver(
|
||
|
*args, **({"data": data} if data is not None else {}), **kwargs
|
||
|
)
|
||
|
sci(__ret)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.quiverkey)
|
||
|
def quiverkey(
|
||
|
Q: Quiver, X: float, Y: float, U: float, label: str, **kwargs
|
||
|
) -> QuiverKey:
|
||
|
return gca().quiverkey(Q, X, Y, U, label, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.scatter)
|
||
|
def scatter(
|
||
|
x: float | ArrayLike,
|
||
|
y: float | ArrayLike,
|
||
|
s: float | ArrayLike | None = None,
|
||
|
c: ArrayLike | Sequence[ColorType] | ColorType | None = None,
|
||
|
marker: MarkerType | None = None,
|
||
|
cmap: str | Colormap | None = None,
|
||
|
norm: str | Normalize | None = None,
|
||
|
vmin: float | None = None,
|
||
|
vmax: float | None = None,
|
||
|
alpha: float | None = None,
|
||
|
linewidths: float | Sequence[float] | None = None,
|
||
|
*,
|
||
|
edgecolors: Literal["face", "none"] | ColorType | Sequence[ColorType] | None = None,
|
||
|
plotnonfinite: bool = False,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> PathCollection:
|
||
|
__ret = gca().scatter(
|
||
|
x,
|
||
|
y,
|
||
|
s=s,
|
||
|
c=c,
|
||
|
marker=marker,
|
||
|
cmap=cmap,
|
||
|
norm=norm,
|
||
|
vmin=vmin,
|
||
|
vmax=vmax,
|
||
|
alpha=alpha,
|
||
|
linewidths=linewidths,
|
||
|
edgecolors=edgecolors,
|
||
|
plotnonfinite=plotnonfinite,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
sci(__ret)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.semilogx)
|
||
|
def semilogx(*args, **kwargs) -> list[Line2D]:
|
||
|
return gca().semilogx(*args, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.semilogy)
|
||
|
def semilogy(*args, **kwargs) -> list[Line2D]:
|
||
|
return gca().semilogy(*args, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.specgram)
|
||
|
def specgram(
|
||
|
x: ArrayLike,
|
||
|
NFFT: int | None = None,
|
||
|
Fs: float | None = None,
|
||
|
Fc: int | None = None,
|
||
|
detrend: Literal["none", "mean", "linear"]
|
||
|
| Callable[[ArrayLike], ArrayLike]
|
||
|
| None = None,
|
||
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = None,
|
||
|
noverlap: int | None = None,
|
||
|
cmap: str | Colormap | None = None,
|
||
|
xextent: tuple[float, float] | None = None,
|
||
|
pad_to: int | None = None,
|
||
|
sides: Literal["default", "onesided", "twosided"] | None = None,
|
||
|
scale_by_freq: bool | None = None,
|
||
|
mode: Literal["default", "psd", "magnitude", "angle", "phase"] | None = None,
|
||
|
scale: Literal["default", "linear", "dB"] | None = None,
|
||
|
vmin: float | None = None,
|
||
|
vmax: float | None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray, AxesImage]:
|
||
|
__ret = gca().specgram(
|
||
|
x,
|
||
|
NFFT=NFFT,
|
||
|
Fs=Fs,
|
||
|
Fc=Fc,
|
||
|
detrend=detrend,
|
||
|
window=window,
|
||
|
noverlap=noverlap,
|
||
|
cmap=cmap,
|
||
|
xextent=xextent,
|
||
|
pad_to=pad_to,
|
||
|
sides=sides,
|
||
|
scale_by_freq=scale_by_freq,
|
||
|
mode=mode,
|
||
|
scale=scale,
|
||
|
vmin=vmin,
|
||
|
vmax=vmax,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
sci(__ret[-1])
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.spy)
|
||
|
def spy(
|
||
|
Z: ArrayLike,
|
||
|
precision: float | Literal["present"] = 0,
|
||
|
marker: str | None = None,
|
||
|
markersize: float | None = None,
|
||
|
aspect: Literal["equal", "auto"] | float | None = "equal",
|
||
|
origin: Literal["upper", "lower"] = "upper",
|
||
|
**kwargs,
|
||
|
) -> AxesImage:
|
||
|
__ret = gca().spy(
|
||
|
Z,
|
||
|
precision=precision,
|
||
|
marker=marker,
|
||
|
markersize=markersize,
|
||
|
aspect=aspect,
|
||
|
origin=origin,
|
||
|
**kwargs,
|
||
|
)
|
||
|
if isinstance(__ret, cm.ScalarMappable):
|
||
|
sci(__ret) # noqa
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.stackplot)
|
||
|
def stackplot(x, *args, labels=(), colors=None, baseline="zero", data=None, **kwargs):
|
||
|
return gca().stackplot(
|
||
|
x,
|
||
|
*args,
|
||
|
labels=labels,
|
||
|
colors=colors,
|
||
|
baseline=baseline,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.stem)
|
||
|
def stem(
|
||
|
*args: ArrayLike | str,
|
||
|
linefmt: str | None = None,
|
||
|
markerfmt: str | None = None,
|
||
|
basefmt: str | None = None,
|
||
|
bottom: float = 0,
|
||
|
label: str | None = None,
|
||
|
orientation: Literal["vertical", "horizontal"] = "vertical",
|
||
|
data=None,
|
||
|
) -> StemContainer:
|
||
|
return gca().stem(
|
||
|
*args,
|
||
|
linefmt=linefmt,
|
||
|
markerfmt=markerfmt,
|
||
|
basefmt=basefmt,
|
||
|
bottom=bottom,
|
||
|
label=label,
|
||
|
orientation=orientation,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.step)
|
||
|
def step(
|
||
|
x: ArrayLike,
|
||
|
y: ArrayLike,
|
||
|
*args,
|
||
|
where: Literal["pre", "post", "mid"] = "pre",
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> list[Line2D]:
|
||
|
return gca().step(
|
||
|
x,
|
||
|
y,
|
||
|
*args,
|
||
|
where=where,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.streamplot)
|
||
|
def streamplot(
|
||
|
x,
|
||
|
y,
|
||
|
u,
|
||
|
v,
|
||
|
density=1,
|
||
|
linewidth=None,
|
||
|
color=None,
|
||
|
cmap=None,
|
||
|
norm=None,
|
||
|
arrowsize=1,
|
||
|
arrowstyle="-|>",
|
||
|
minlength=0.1,
|
||
|
transform=None,
|
||
|
zorder=None,
|
||
|
start_points=None,
|
||
|
maxlength=4.0,
|
||
|
integration_direction="both",
|
||
|
broken_streamlines=True,
|
||
|
*,
|
||
|
data=None,
|
||
|
):
|
||
|
__ret = gca().streamplot(
|
||
|
x,
|
||
|
y,
|
||
|
u,
|
||
|
v,
|
||
|
density=density,
|
||
|
linewidth=linewidth,
|
||
|
color=color,
|
||
|
cmap=cmap,
|
||
|
norm=norm,
|
||
|
arrowsize=arrowsize,
|
||
|
arrowstyle=arrowstyle,
|
||
|
minlength=minlength,
|
||
|
transform=transform,
|
||
|
zorder=zorder,
|
||
|
start_points=start_points,
|
||
|
maxlength=maxlength,
|
||
|
integration_direction=integration_direction,
|
||
|
broken_streamlines=broken_streamlines,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
)
|
||
|
sci(__ret.lines)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.table)
|
||
|
def table(
|
||
|
cellText=None,
|
||
|
cellColours=None,
|
||
|
cellLoc="right",
|
||
|
colWidths=None,
|
||
|
rowLabels=None,
|
||
|
rowColours=None,
|
||
|
rowLoc="left",
|
||
|
colLabels=None,
|
||
|
colColours=None,
|
||
|
colLoc="center",
|
||
|
loc="bottom",
|
||
|
bbox=None,
|
||
|
edges="closed",
|
||
|
**kwargs,
|
||
|
):
|
||
|
return gca().table(
|
||
|
cellText=cellText,
|
||
|
cellColours=cellColours,
|
||
|
cellLoc=cellLoc,
|
||
|
colWidths=colWidths,
|
||
|
rowLabels=rowLabels,
|
||
|
rowColours=rowColours,
|
||
|
rowLoc=rowLoc,
|
||
|
colLabels=colLabels,
|
||
|
colColours=colColours,
|
||
|
colLoc=colLoc,
|
||
|
loc=loc,
|
||
|
bbox=bbox,
|
||
|
edges=edges,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.text)
|
||
|
def text(
|
||
|
x: float, y: float, s: str, fontdict: dict[str, Any] | None = None, **kwargs
|
||
|
) -> Text:
|
||
|
return gca().text(x, y, s, fontdict=fontdict, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.tick_params)
|
||
|
def tick_params(axis: Literal["both", "x", "y"] = "both", **kwargs) -> None:
|
||
|
gca().tick_params(axis=axis, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.ticklabel_format)
|
||
|
def ticklabel_format(
|
||
|
*,
|
||
|
axis: Literal["both", "x", "y"] = "both",
|
||
|
style: Literal["", "sci", "scientific", "plain"] = "",
|
||
|
scilimits: tuple[int, int] | None = None,
|
||
|
useOffset: bool | float | None = None,
|
||
|
useLocale: bool | None = None,
|
||
|
useMathText: bool | None = None,
|
||
|
) -> None:
|
||
|
gca().ticklabel_format(
|
||
|
axis=axis,
|
||
|
style=style,
|
||
|
scilimits=scilimits,
|
||
|
useOffset=useOffset,
|
||
|
useLocale=useLocale,
|
||
|
useMathText=useMathText,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.tricontour)
|
||
|
def tricontour(*args, **kwargs):
|
||
|
__ret = gca().tricontour(*args, **kwargs)
|
||
|
if __ret._A is not None: # type: ignore[attr-defined]
|
||
|
sci(__ret)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.tricontourf)
|
||
|
def tricontourf(*args, **kwargs):
|
||
|
__ret = gca().tricontourf(*args, **kwargs)
|
||
|
if __ret._A is not None: # type: ignore[attr-defined]
|
||
|
sci(__ret)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.tripcolor)
|
||
|
def tripcolor(
|
||
|
*args,
|
||
|
alpha=1.0,
|
||
|
norm=None,
|
||
|
cmap=None,
|
||
|
vmin=None,
|
||
|
vmax=None,
|
||
|
shading="flat",
|
||
|
facecolors=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
__ret = gca().tripcolor(
|
||
|
*args,
|
||
|
alpha=alpha,
|
||
|
norm=norm,
|
||
|
cmap=cmap,
|
||
|
vmin=vmin,
|
||
|
vmax=vmax,
|
||
|
shading=shading,
|
||
|
facecolors=facecolors,
|
||
|
**kwargs,
|
||
|
)
|
||
|
sci(__ret)
|
||
|
return __ret
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.triplot)
|
||
|
def triplot(*args, **kwargs):
|
||
|
return gca().triplot(*args, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.violinplot)
|
||
|
def violinplot(
|
||
|
dataset: ArrayLike | Sequence[ArrayLike],
|
||
|
positions: ArrayLike | None = None,
|
||
|
vert: bool = True,
|
||
|
widths: float | ArrayLike = 0.5,
|
||
|
showmeans: bool = False,
|
||
|
showextrema: bool = True,
|
||
|
showmedians: bool = False,
|
||
|
quantiles: Sequence[float | Sequence[float]] | None = None,
|
||
|
points: int = 100,
|
||
|
bw_method: Literal["scott", "silverman"]
|
||
|
| float
|
||
|
| Callable[[GaussianKDE], float]
|
||
|
| None = None,
|
||
|
*,
|
||
|
data=None,
|
||
|
) -> dict[str, Collection]:
|
||
|
return gca().violinplot(
|
||
|
dataset,
|
||
|
positions=positions,
|
||
|
vert=vert,
|
||
|
widths=widths,
|
||
|
showmeans=showmeans,
|
||
|
showextrema=showextrema,
|
||
|
showmedians=showmedians,
|
||
|
quantiles=quantiles,
|
||
|
points=points,
|
||
|
bw_method=bw_method,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.vlines)
|
||
|
def vlines(
|
||
|
x: float | ArrayLike,
|
||
|
ymin: float | ArrayLike,
|
||
|
ymax: float | ArrayLike,
|
||
|
colors: ColorType | Sequence[ColorType] | None = None,
|
||
|
linestyles: LineStyleType = "solid",
|
||
|
label: str = "",
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> LineCollection:
|
||
|
return gca().vlines(
|
||
|
x,
|
||
|
ymin,
|
||
|
ymax,
|
||
|
colors=colors,
|
||
|
linestyles=linestyles,
|
||
|
label=label,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.xcorr)
|
||
|
def xcorr(
|
||
|
x: ArrayLike,
|
||
|
y: ArrayLike,
|
||
|
normed: bool = True,
|
||
|
detrend: Callable[[ArrayLike], ArrayLike] = mlab.detrend_none,
|
||
|
usevlines: bool = True,
|
||
|
maxlags: int = 10,
|
||
|
*,
|
||
|
data=None,
|
||
|
**kwargs,
|
||
|
) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]:
|
||
|
return gca().xcorr(
|
||
|
x,
|
||
|
y,
|
||
|
normed=normed,
|
||
|
detrend=detrend,
|
||
|
usevlines=usevlines,
|
||
|
maxlags=maxlags,
|
||
|
**({"data": data} if data is not None else {}),
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes._sci)
|
||
|
def sci(im: ScalarMappable) -> None:
|
||
|
gca()._sci(im)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.set_title)
|
||
|
def title(
|
||
|
label: str,
|
||
|
fontdict: dict[str, Any] | None = None,
|
||
|
loc: Literal["left", "center", "right"] | None = None,
|
||
|
pad: float | None = None,
|
||
|
*,
|
||
|
y: float | None = None,
|
||
|
**kwargs,
|
||
|
) -> Text:
|
||
|
return gca().set_title(label, fontdict=fontdict, loc=loc, pad=pad, y=y, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.set_xlabel)
|
||
|
def xlabel(
|
||
|
xlabel: str,
|
||
|
fontdict: dict[str, Any] | None = None,
|
||
|
labelpad: float | None = None,
|
||
|
*,
|
||
|
loc: Literal["left", "center", "right"] | None = None,
|
||
|
**kwargs,
|
||
|
) -> Text:
|
||
|
return gca().set_xlabel(
|
||
|
xlabel, fontdict=fontdict, labelpad=labelpad, loc=loc, **kwargs
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.set_ylabel)
|
||
|
def ylabel(
|
||
|
ylabel: str,
|
||
|
fontdict: dict[str, Any] | None = None,
|
||
|
labelpad: float | None = None,
|
||
|
*,
|
||
|
loc: Literal["bottom", "center", "top"] | None = None,
|
||
|
**kwargs,
|
||
|
) -> Text:
|
||
|
return gca().set_ylabel(
|
||
|
ylabel, fontdict=fontdict, labelpad=labelpad, loc=loc, **kwargs
|
||
|
)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.set_xscale)
|
||
|
def xscale(value: str | ScaleBase, **kwargs) -> None:
|
||
|
gca().set_xscale(value, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
@_copy_docstring_and_deprecators(Axes.set_yscale)
|
||
|
def yscale(value: str | ScaleBase, **kwargs) -> None:
|
||
|
gca().set_yscale(value, **kwargs)
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def autumn() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'autumn'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("autumn")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def bone() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'bone'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("bone")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def cool() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'cool'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("cool")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def copper() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'copper'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("copper")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def flag() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'flag'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("flag")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def gray() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'gray'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("gray")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def hot() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'hot'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("hot")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def hsv() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'hsv'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("hsv")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def jet() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'jet'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("jet")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def pink() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'pink'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("pink")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def prism() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'prism'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("prism")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def spring() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'spring'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("spring")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def summer() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'summer'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("summer")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def winter() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'winter'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("winter")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def magma() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'magma'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("magma")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def inferno() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'inferno'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("inferno")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def plasma() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'plasma'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("plasma")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def viridis() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'viridis'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("viridis")
|
||
|
|
||
|
|
||
|
# Autogenerated by boilerplate.py. Do not edit as changes will be lost.
|
||
|
def nipy_spectral() -> None:
|
||
|
"""
|
||
|
Set the colormap to 'nipy_spectral'.
|
||
|
|
||
|
This changes the default colormap as well as the colormap of the current
|
||
|
image if there is one. See ``help(colormaps)`` for more information.
|
||
|
"""
|
||
|
set_cmap("nipy_spectral")
|