ai-content-maker/.venv/Lib/site-packages/matplotlib/scale.pyi

179 lines
4.9 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from matplotlib.axis import Axis
from matplotlib.transforms import Transform
from collections.abc import Callable, Iterable
from typing import Literal
from numpy.typing import ArrayLike
class ScaleBase:
def __init__(self, axis: Axis | None) -> None: ...
def get_transform(self) -> Transform: ...
def set_default_locators_and_formatters(self, axis: Axis) -> None: ...
def limit_range_for_scale(
self, vmin: float, vmax: float, minpos: float
) -> tuple[float, float]: ...
class LinearScale(ScaleBase):
name: str
class FuncTransform(Transform):
input_dims: int
output_dims: int
def __init__(
self,
forward: Callable[[ArrayLike], ArrayLike],
inverse: Callable[[ArrayLike], ArrayLike],
) -> None: ...
def inverted(self) -> FuncTransform: ...
class FuncScale(ScaleBase):
name: str
def __init__(
self,
axis: Axis | None,
functions: tuple[
Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]
],
) -> None: ...
class LogTransform(Transform):
input_dims: int
output_dims: int
base: float
def __init__(
self, base: float, nonpositive: Literal["clip", "mask"] = ...
) -> None: ...
def inverted(self) -> InvertedLogTransform: ...
class InvertedLogTransform(Transform):
input_dims: int
output_dims: int
base: float
def __init__(self, base: float) -> None: ...
def inverted(self) -> LogTransform: ...
class LogScale(ScaleBase):
name: str
subs: Iterable[int] | None
def __init__(
self,
axis: Axis | None,
*,
base: float = ...,
subs: Iterable[int] | None = ...,
nonpositive: Literal["clip", "mask"] = ...
) -> None: ...
@property
def base(self) -> float: ...
def get_transform(self) -> Transform: ...
class FuncScaleLog(LogScale):
def __init__(
self,
axis: Axis | None,
functions: tuple[
Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]
],
base: float = ...,
) -> None: ...
@property
def base(self) -> float: ...
def get_transform(self) -> Transform: ...
class SymmetricalLogTransform(Transform):
input_dims: int
output_dims: int
base: float
linthresh: float
linscale: float
def __init__(self, base: float, linthresh: float, linscale: float) -> None: ...
def inverted(self) -> InvertedSymmetricalLogTransform: ...
class InvertedSymmetricalLogTransform(Transform):
input_dims: int
output_dims: int
base: float
linthresh: float
invlinthresh: float
linscale: float
def __init__(self, base: float, linthresh: float, linscale: float) -> None: ...
def inverted(self) -> SymmetricalLogTransform: ...
class SymmetricalLogScale(ScaleBase):
name: str
subs: Iterable[int] | None
def __init__(
self,
axis: Axis | None,
*,
base: float = ...,
linthresh: float = ...,
subs: Iterable[int] | None = ...,
linscale: float = ...
) -> None: ...
@property
def base(self) -> float: ...
@property
def linthresh(self) -> float: ...
@property
def linscale(self) -> float: ...
def get_transform(self) -> SymmetricalLogTransform: ...
class AsinhTransform(Transform):
input_dims: int
output_dims: int
linear_width: float
def __init__(self, linear_width: float) -> None: ...
def inverted(self) -> InvertedAsinhTransform: ...
class InvertedAsinhTransform(Transform):
input_dims: int
output_dims: int
linear_width: float
def __init__(self, linear_width: float) -> None: ...
def inverted(self) -> AsinhTransform: ...
class AsinhScale(ScaleBase):
name: str
auto_tick_multipliers: dict[int, tuple[int, ...]]
def __init__(
self,
axis: Axis | None,
*,
linear_width: float = ...,
base: float = ...,
subs: Iterable[int] | Literal["auto"] | None = ...,
**kwargs
) -> None: ...
@property
def linear_width(self) -> float: ...
def get_transform(self) -> AsinhTransform: ...
class LogitTransform(Transform):
input_dims: int
output_dims: int
def __init__(self, nonpositive: Literal["mask", "clip"] = ...) -> None: ...
def inverted(self) -> LogisticTransform: ...
class LogisticTransform(Transform):
input_dims: int
output_dims: int
def __init__(self, nonpositive: Literal["mask", "clip"] = ...) -> None: ...
def inverted(self) -> LogitTransform: ...
class LogitScale(ScaleBase):
name: str
def __init__(
self,
axis: Axis | None,
nonpositive: Literal["mask", "clip"] = ...,
*,
one_half: str = ...,
use_overline: bool = ...
) -> None: ...
def get_transform(self) -> LogitTransform: ...
def get_scale_names() -> list[str]: ...
def scale_factory(scale: str, axis: Axis, **kwargs) -> ScaleBase: ...
def register_scale(scale_class: type[ScaleBase]) -> None: ...