ai-content-maker/.venv/Lib/site-packages/matplotlib/tests/test_units.py

286 lines
9.1 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from datetime import datetime, timezone, timedelta
import platform
from unittest.mock import MagicMock
import matplotlib.pyplot as plt
from matplotlib.testing.decorators import check_figures_equal, image_comparison
import matplotlib.units as munits
from matplotlib.category import UnitData
import numpy as np
import pytest
# Basic class that wraps numpy array and has units
class Quantity:
def __init__(self, data, units):
self.magnitude = data
self.units = units
def to(self, new_units):
factors = {('hours', 'seconds'): 3600, ('minutes', 'hours'): 1 / 60,
('minutes', 'seconds'): 60, ('feet', 'miles'): 1 / 5280.,
('feet', 'inches'): 12, ('miles', 'inches'): 12 * 5280}
if self.units != new_units:
mult = factors[self.units, new_units]
return Quantity(mult * self.magnitude, new_units)
else:
return Quantity(self.magnitude, self.units)
def __copy__(self):
return Quantity(self.magnitude, self.units)
def __getattr__(self, attr):
return getattr(self.magnitude, attr)
def __getitem__(self, item):
if np.iterable(self.magnitude):
return Quantity(self.magnitude[item], self.units)
else:
return Quantity(self.magnitude, self.units)
def __array__(self):
return np.asarray(self.magnitude)
@pytest.fixture
def quantity_converter():
# Create an instance of the conversion interface and
# mock so we can check methods called
qc = munits.ConversionInterface()
def convert(value, unit, axis):
if hasattr(value, 'units'):
return value.to(unit).magnitude
elif np.iterable(value):
try:
return [v.to(unit).magnitude for v in value]
except AttributeError:
return [Quantity(v, axis.get_units()).to(unit).magnitude
for v in value]
else:
return Quantity(value, axis.get_units()).to(unit).magnitude
def default_units(value, axis):
if hasattr(value, 'units'):
return value.units
elif np.iterable(value):
for v in value:
if hasattr(v, 'units'):
return v.units
return None
qc.convert = MagicMock(side_effect=convert)
qc.axisinfo = MagicMock(side_effect=lambda u, a:
munits.AxisInfo(label=u, default_limits=(0, 100)))
qc.default_units = MagicMock(side_effect=default_units)
return qc
# Tests that the conversion machinery works properly for classes that
# work as a facade over numpy arrays (like pint)
@image_comparison(['plot_pint.png'], style='mpl20',
tol=0 if platform.machine() == 'x86_64' else 0.01)
def test_numpy_facade(quantity_converter):
# use former defaults to match existing baseline image
plt.rcParams['axes.formatter.limits'] = -7, 7
# Register the class
munits.registry[Quantity] = quantity_converter
# Simple test
y = Quantity(np.linspace(0, 30), 'miles')
x = Quantity(np.linspace(0, 5), 'hours')
fig, ax = plt.subplots()
fig.subplots_adjust(left=0.15) # Make space for label
ax.plot(x, y, 'tab:blue')
ax.axhline(Quantity(26400, 'feet'), color='tab:red')
ax.axvline(Quantity(120, 'minutes'), color='tab:green')
ax.yaxis.set_units('inches')
ax.xaxis.set_units('seconds')
assert quantity_converter.convert.called
assert quantity_converter.axisinfo.called
assert quantity_converter.default_units.called
# Tests gh-8908
@image_comparison(['plot_masked_units.png'], remove_text=True, style='mpl20',
tol=0 if platform.machine() == 'x86_64' else 0.01)
def test_plot_masked_units():
data = np.linspace(-5, 5)
data_masked = np.ma.array(data, mask=(data > -2) & (data < 2))
data_masked_units = Quantity(data_masked, 'meters')
fig, ax = plt.subplots()
ax.plot(data_masked_units)
def test_empty_set_limits_with_units(quantity_converter):
# Register the class
munits.registry[Quantity] = quantity_converter
fig, ax = plt.subplots()
ax.set_xlim(Quantity(-1, 'meters'), Quantity(6, 'meters'))
ax.set_ylim(Quantity(-1, 'hours'), Quantity(16, 'hours'))
@image_comparison(['jpl_bar_units.png'],
savefig_kwarg={'dpi': 120}, style='mpl20')
def test_jpl_bar_units():
import matplotlib.testing.jpl_units as units
units.register()
day = units.Duration("ET", 24.0 * 60.0 * 60.0)
x = [0 * units.km, 1 * units.km, 2 * units.km]
w = [1 * day, 2 * day, 3 * day]
b = units.Epoch("ET", dt=datetime(2009, 4, 25))
fig, ax = plt.subplots()
ax.bar(x, w, bottom=b)
ax.set_ylim([b - 1 * day, b + w[-1] + (1.001) * day])
@image_comparison(['jpl_barh_units.png'],
savefig_kwarg={'dpi': 120}, style='mpl20')
def test_jpl_barh_units():
import matplotlib.testing.jpl_units as units
units.register()
day = units.Duration("ET", 24.0 * 60.0 * 60.0)
x = [0 * units.km, 1 * units.km, 2 * units.km]
w = [1 * day, 2 * day, 3 * day]
b = units.Epoch("ET", dt=datetime(2009, 4, 25))
fig, ax = plt.subplots()
ax.barh(x, w, left=b)
ax.set_xlim([b - 1 * day, b + w[-1] + (1.001) * day])
def test_empty_arrays():
# Check that plotting an empty array with a dtype works
plt.scatter(np.array([], dtype='datetime64[ns]'), np.array([]))
def test_scatter_element0_masked():
times = np.arange('2005-02', '2005-03', dtype='datetime64[D]')
y = np.arange(len(times), dtype=float)
y[0] = np.nan
fig, ax = plt.subplots()
ax.scatter(times, y)
fig.canvas.draw()
def test_errorbar_mixed_units():
x = np.arange(10)
y = [datetime(2020, 5, i * 2 + 1) for i in x]
fig, ax = plt.subplots()
ax.errorbar(x, y, timedelta(days=0.5))
fig.canvas.draw()
@check_figures_equal(extensions=["png"])
def test_subclass(fig_test, fig_ref):
class subdate(datetime):
pass
fig_test.subplots().plot(subdate(2000, 1, 1), 0, "o")
fig_ref.subplots().plot(datetime(2000, 1, 1), 0, "o")
def test_shared_axis_quantity(quantity_converter):
munits.registry[Quantity] = quantity_converter
x = Quantity(np.linspace(0, 1, 10), "hours")
y1 = Quantity(np.linspace(1, 2, 10), "feet")
y2 = Quantity(np.linspace(3, 4, 10), "feet")
fig, (ax1, ax2) = plt.subplots(2, 1, sharex='all', sharey='all')
ax1.plot(x, y1)
ax2.plot(x, y2)
assert ax1.xaxis.get_units() == ax2.xaxis.get_units() == "hours"
assert ax2.yaxis.get_units() == ax2.yaxis.get_units() == "feet"
ax1.xaxis.set_units("seconds")
ax2.yaxis.set_units("inches")
assert ax1.xaxis.get_units() == ax2.xaxis.get_units() == "seconds"
assert ax1.yaxis.get_units() == ax2.yaxis.get_units() == "inches"
def test_shared_axis_datetime():
# datetime uses dates.DateConverter
y1 = [datetime(2020, i, 1, tzinfo=timezone.utc) for i in range(1, 13)]
y2 = [datetime(2021, i, 1, tzinfo=timezone.utc) for i in range(1, 13)]
fig, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(y1)
ax2.plot(y2)
ax1.yaxis.set_units(timezone(timedelta(hours=5)))
assert ax2.yaxis.units == timezone(timedelta(hours=5))
def test_shared_axis_categorical():
# str uses category.StrCategoryConverter
d1 = {"a": 1, "b": 2}
d2 = {"a": 3, "b": 4}
fig, (ax1, ax2) = plt.subplots(1, 2, sharex=True, sharey=True)
ax1.plot(d1.keys(), d1.values())
ax2.plot(d2.keys(), d2.values())
ax1.xaxis.set_units(UnitData(["c", "d"]))
assert "c" in ax2.xaxis.get_units()._mapping.keys()
def test_empty_default_limits(quantity_converter):
munits.registry[Quantity] = quantity_converter
fig, ax1 = plt.subplots()
ax1.xaxis.update_units(Quantity([10], "miles"))
fig.draw_without_rendering()
assert ax1.get_xlim() == (0, 100)
ax1.yaxis.update_units(Quantity([10], "miles"))
fig.draw_without_rendering()
assert ax1.get_ylim() == (0, 100)
fig, ax = plt.subplots()
ax.axhline(30)
ax.plot(Quantity(np.arange(0, 3), "miles"),
Quantity(np.arange(0, 6, 2), "feet"))
fig.draw_without_rendering()
assert ax.get_xlim() == (0, 2)
assert ax.get_ylim() == (0, 30)
fig, ax = plt.subplots()
ax.axvline(30)
ax.plot(Quantity(np.arange(0, 3), "miles"),
Quantity(np.arange(0, 6, 2), "feet"))
fig.draw_without_rendering()
assert ax.get_xlim() == (0, 30)
assert ax.get_ylim() == (0, 4)
fig, ax = plt.subplots()
ax.xaxis.update_units(Quantity([10], "miles"))
ax.axhline(30)
fig.draw_without_rendering()
assert ax.get_xlim() == (0, 100)
assert ax.get_ylim() == (28.5, 31.5)
fig, ax = plt.subplots()
ax.yaxis.update_units(Quantity([10], "miles"))
ax.axvline(30)
fig.draw_without_rendering()
assert ax.get_ylim() == (0, 100)
assert ax.get_xlim() == (28.5, 31.5)
# test array-like objects...
class Kernel:
def __init__(self, array):
self._array = np.asanyarray(array)
def __array__(self):
return self._array
@property
def shape(self):
return self._array.shape
def test_plot_kernel():
# just a smoketest that fail
kernel = Kernel([1, 2, 3, 4, 5])
plt.plot(kernel)