ai-content-maker/.venv/Lib/site-packages/mpl_toolkits/mplot3d/axes3d.py

3444 lines
127 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""
axes3d.py, original mplot3d version by John Porter
Created: 23 Sep 2005
Parts fixed by Reinier Heeres <reinier@heeres.eu>
Minor additions by Ben Axelrod <baxelrod@coroware.com>
Significant updates and revisions by Ben Root <ben.v.root@gmail.com>
Module containing Axes3D, an object which can plot 3D objects on a
2D matplotlib figure.
"""
from collections import defaultdict
import functools
import itertools
import math
import textwrap
import numpy as np
import matplotlib as mpl
from matplotlib import _api, cbook, _docstring, _preprocess_data
import matplotlib.artist as martist
import matplotlib.axes as maxes
import matplotlib.collections as mcoll
import matplotlib.colors as mcolors
import matplotlib.image as mimage
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
import matplotlib.container as mcontainer
import matplotlib.transforms as mtransforms
from matplotlib.axes import Axes
from matplotlib.axes._base import _axis_method_wrapper, _process_plot_format
from matplotlib.transforms import Bbox
from matplotlib.tri._triangulation import Triangulation
from . import art3d
from . import proj3d
from . import axis3d
@_docstring.interpd
@_api.define_aliases({
"xlim": ["xlim3d"], "ylim": ["ylim3d"], "zlim": ["zlim3d"]})
class Axes3D(Axes):
"""
3D Axes object.
.. note::
As a user, you do not instantiate Axes directly, but use Axes creation
methods instead; e.g. from `.pyplot` or `.Figure`:
`~.pyplot.subplots`, `~.pyplot.subplot_mosaic` or `.Figure.add_axes`.
"""
name = '3d'
_axis_names = ("x", "y", "z")
Axes._shared_axes["z"] = cbook.Grouper()
Axes._shared_axes["view"] = cbook.Grouper()
vvec = _api.deprecate_privatize_attribute("3.7")
eye = _api.deprecate_privatize_attribute("3.7")
sx = _api.deprecate_privatize_attribute("3.7")
sy = _api.deprecate_privatize_attribute("3.7")
def __init__(
self, fig, rect=None, *args,
elev=30, azim=-60, roll=0, sharez=None, proj_type='persp',
box_aspect=None, computed_zorder=True, focal_length=None,
shareview=None,
**kwargs):
"""
Parameters
----------
fig : Figure
The parent figure.
rect : tuple (left, bottom, width, height), default: None.
The ``(left, bottom, width, height)`` axes position.
elev : float, default: 30
The elevation angle in degrees rotates the camera above and below
the x-y plane, with a positive angle corresponding to a location
above the plane.
azim : float, default: -60
The azimuthal angle in degrees rotates the camera about the z axis,
with a positive angle corresponding to a right-handed rotation. In
other words, a positive azimuth rotates the camera about the origin
from its location along the +x axis towards the +y axis.
roll : float, default: 0
The roll angle in degrees rotates the camera about the viewing
axis. A positive angle spins the camera clockwise, causing the
scene to rotate counter-clockwise.
sharez : Axes3D, optional
Other Axes to share z-limits with.
proj_type : {'persp', 'ortho'}
The projection type, default 'persp'.
box_aspect : 3-tuple of floats, default: None
Changes the physical dimensions of the Axes3D, such that the ratio
of the axis lengths in display units is x:y:z.
If None, defaults to 4:4:3
computed_zorder : bool, default: True
If True, the draw order is computed based on the average position
of the `.Artist`\\s along the view direction.
Set to False if you want to manually control the order in which
Artists are drawn on top of each other using their *zorder*
attribute. This can be used for fine-tuning if the automatic order
does not produce the desired result. Note however, that a manual
zorder will only be correct for a limited view angle. If the figure
is rotated by the user, it will look wrong from certain angles.
focal_length : float, default: None
For a projection type of 'persp', the focal length of the virtual
camera. Must be > 0. If None, defaults to 1.
For a projection type of 'ortho', must be set to either None
or infinity (numpy.inf). If None, defaults to infinity.
The focal length can be computed from a desired Field Of View via
the equation: focal_length = 1/tan(FOV/2)
shareview : Axes3D, optional
Other Axes to share view angles with.
**kwargs
Other optional keyword arguments:
%(Axes3D:kwdoc)s
"""
if rect is None:
rect = [0.0, 0.0, 1.0, 1.0]
self.initial_azim = azim
self.initial_elev = elev
self.initial_roll = roll
self.set_proj_type(proj_type, focal_length)
self.computed_zorder = computed_zorder
self.xy_viewLim = Bbox.unit()
self.zz_viewLim = Bbox.unit()
self.xy_dataLim = Bbox.unit()
# z-limits are encoded in the x-component of the Bbox, y is un-used
self.zz_dataLim = Bbox.unit()
# inhibit autoscale_view until the axes are defined
# they can't be defined until Axes.__init__ has been called
self.view_init(self.initial_elev, self.initial_azim, self.initial_roll)
self._sharez = sharez
if sharez is not None:
self._shared_axes["z"].join(self, sharez)
self._adjustable = 'datalim'
self._shareview = shareview
if shareview is not None:
self._shared_axes["view"].join(self, shareview)
if kwargs.pop('auto_add_to_figure', False):
raise AttributeError(
'auto_add_to_figure is no longer supported for Axes3D. '
'Use fig.add_axes(ax) instead.'
)
super().__init__(
fig, rect, frameon=True, box_aspect=box_aspect, *args, **kwargs
)
# Disable drawing of axes by base class
super().set_axis_off()
# Enable drawing of axes by Axes3D class
self.set_axis_on()
self.M = None
self.invM = None
# func used to format z -- fall back on major formatters
self.fmt_zdata = None
self.mouse_init()
self.figure.canvas.callbacks._connect_picklable(
'motion_notify_event', self._on_move)
self.figure.canvas.callbacks._connect_picklable(
'button_press_event', self._button_press)
self.figure.canvas.callbacks._connect_picklable(
'button_release_event', self._button_release)
self.set_top_view()
self.patch.set_linewidth(0)
# Calculate the pseudo-data width and height
pseudo_bbox = self.transLimits.inverted().transform([(0, 0), (1, 1)])
self._pseudo_w, self._pseudo_h = pseudo_bbox[1] - pseudo_bbox[0]
# mplot3d currently manages its own spines and needs these turned off
# for bounding box calculations
self.spines[:].set_visible(False)
def set_axis_off(self):
self._axis3don = False
self.stale = True
def set_axis_on(self):
self._axis3don = True
self.stale = True
def convert_zunits(self, z):
"""
For artists in an Axes, if the zaxis has units support,
convert *z* using zaxis unit type
"""
return self.zaxis.convert_units(z)
def set_top_view(self):
# this happens to be the right view for the viewing coordinates
# moved up and to the left slightly to fit labels and axes
xdwl = 0.95 / self._dist
xdw = 0.9 / self._dist
ydwl = 0.95 / self._dist
ydw = 0.9 / self._dist
# Set the viewing pane.
self.viewLim.intervalx = (-xdwl, xdw)
self.viewLim.intervaly = (-ydwl, ydw)
self.stale = True
def _init_axis(self):
"""Init 3D axes; overrides creation of regular X/Y axes."""
self.xaxis = axis3d.XAxis(self)
self.yaxis = axis3d.YAxis(self)
self.zaxis = axis3d.ZAxis(self)
def get_zaxis(self):
"""Return the ``ZAxis`` (`~.axis3d.Axis`) instance."""
return self.zaxis
get_zgridlines = _axis_method_wrapper("zaxis", "get_gridlines")
get_zticklines = _axis_method_wrapper("zaxis", "get_ticklines")
@_api.deprecated("3.7")
def unit_cube(self, vals=None):
return self._unit_cube(vals)
def _unit_cube(self, vals=None):
minx, maxx, miny, maxy, minz, maxz = vals or self.get_w_lims()
return [(minx, miny, minz),
(maxx, miny, minz),
(maxx, maxy, minz),
(minx, maxy, minz),
(minx, miny, maxz),
(maxx, miny, maxz),
(maxx, maxy, maxz),
(minx, maxy, maxz)]
@_api.deprecated("3.7")
def tunit_cube(self, vals=None, M=None):
return self._tunit_cube(vals, M)
def _tunit_cube(self, vals=None, M=None):
if M is None:
M = self.M
xyzs = self._unit_cube(vals)
tcube = proj3d._proj_points(xyzs, M)
return tcube
@_api.deprecated("3.7")
def tunit_edges(self, vals=None, M=None):
return self._tunit_edges(vals, M)
def _tunit_edges(self, vals=None, M=None):
tc = self._tunit_cube(vals, M)
edges = [(tc[0], tc[1]),
(tc[1], tc[2]),
(tc[2], tc[3]),
(tc[3], tc[0]),
(tc[0], tc[4]),
(tc[1], tc[5]),
(tc[2], tc[6]),
(tc[3], tc[7]),
(tc[4], tc[5]),
(tc[5], tc[6]),
(tc[6], tc[7]),
(tc[7], tc[4])]
return edges
def set_aspect(self, aspect, adjustable=None, anchor=None, share=False):
"""
Set the aspect ratios.
Parameters
----------
aspect : {'auto', 'equal', 'equalxy', 'equalxz', 'equalyz'}
Possible values:
========= ==================================================
value description
========= ==================================================
'auto' automatic; fill the position rectangle with data.
'equal' adapt all the axes to have equal aspect ratios.
'equalxy' adapt the x and y axes to have equal aspect ratios.
'equalxz' adapt the x and z axes to have equal aspect ratios.
'equalyz' adapt the y and z axes to have equal aspect ratios.
========= ==================================================
adjustable : None or {'box', 'datalim'}, optional
If not *None*, this defines which parameter will be adjusted to
meet the required aspect. See `.set_adjustable` for further
details.
anchor : None or str or 2-tuple of float, optional
If not *None*, this defines where the Axes will be drawn if there
is extra space due to aspect constraints. The most common way to
specify the anchor are abbreviations of cardinal directions:
===== =====================
value description
===== =====================
'C' centered
'SW' lower left corner
'S' middle of bottom edge
'SE' lower right corner
etc.
===== =====================
See `~.Axes.set_anchor` for further details.
share : bool, default: False
If ``True``, apply the settings to all shared Axes.
See Also
--------
mpl_toolkits.mplot3d.axes3d.Axes3D.set_box_aspect
"""
_api.check_in_list(('auto', 'equal', 'equalxy', 'equalyz', 'equalxz'),
aspect=aspect)
super().set_aspect(
aspect='auto', adjustable=adjustable, anchor=anchor, share=share)
self._aspect = aspect
if aspect in ('equal', 'equalxy', 'equalxz', 'equalyz'):
ax_indices = self._equal_aspect_axis_indices(aspect)
view_intervals = np.array([self.xaxis.get_view_interval(),
self.yaxis.get_view_interval(),
self.zaxis.get_view_interval()])
ptp = np.ptp(view_intervals, axis=1)
if self._adjustable == 'datalim':
mean = np.mean(view_intervals, axis=1)
scale = max(ptp[ax_indices] / self._box_aspect[ax_indices])
deltas = scale * self._box_aspect
for i, set_lim in enumerate((self.set_xlim3d,
self.set_ylim3d,
self.set_zlim3d)):
if i in ax_indices:
set_lim(mean[i] - deltas[i]/2., mean[i] + deltas[i]/2.)
else: # 'box'
# Change the box aspect such that the ratio of the length of
# the unmodified axis to the length of the diagonal
# perpendicular to it remains unchanged.
box_aspect = np.array(self._box_aspect)
box_aspect[ax_indices] = ptp[ax_indices]
remaining_ax_indices = {0, 1, 2}.difference(ax_indices)
if remaining_ax_indices:
remaining = remaining_ax_indices.pop()
old_diag = np.linalg.norm(self._box_aspect[ax_indices])
new_diag = np.linalg.norm(box_aspect[ax_indices])
box_aspect[remaining] *= new_diag / old_diag
self.set_box_aspect(box_aspect)
def _equal_aspect_axis_indices(self, aspect):
"""
Get the indices for which of the x, y, z axes are constrained to have
equal aspect ratios.
Parameters
----------
aspect : {'auto', 'equal', 'equalxy', 'equalxz', 'equalyz'}
See descriptions in docstring for `.set_aspect()`.
"""
ax_indices = [] # aspect == 'auto'
if aspect == 'equal':
ax_indices = [0, 1, 2]
elif aspect == 'equalxy':
ax_indices = [0, 1]
elif aspect == 'equalxz':
ax_indices = [0, 2]
elif aspect == 'equalyz':
ax_indices = [1, 2]
return ax_indices
def set_box_aspect(self, aspect, *, zoom=1):
"""
Set the Axes box aspect.
The box aspect is the ratio of height to width in display
units for each face of the box when viewed perpendicular to
that face. This is not to be confused with the data aspect (see
`~.Axes3D.set_aspect`). The default ratios are 4:4:3 (x:y:z).
To simulate having equal aspect in data space, set the box
aspect to match your data range in each dimension.
*zoom* controls the overall size of the Axes3D in the figure.
Parameters
----------
aspect : 3-tuple of floats or None
Changes the physical dimensions of the Axes3D, such that the ratio
of the axis lengths in display units is x:y:z.
If None, defaults to (4, 4, 3).
zoom : float, default: 1
Control overall size of the Axes3D in the figure. Must be > 0.
"""
if zoom <= 0:
raise ValueError(f'Argument zoom = {zoom} must be > 0')
if aspect is None:
aspect = np.asarray((4, 4, 3), dtype=float)
else:
aspect = np.asarray(aspect, dtype=float)
_api.check_shape((3,), aspect=aspect)
# default scale tuned to match the mpl32 appearance.
aspect *= 1.8294640721620434 * zoom / np.linalg.norm(aspect)
self._box_aspect = aspect
self.stale = True
def apply_aspect(self, position=None):
if position is None:
position = self.get_position(original=True)
# in the superclass, we would go through and actually deal with axis
# scales and box/datalim. Those are all irrelevant - all we need to do
# is make sure our coordinate system is square.
trans = self.get_figure().transSubfigure
bb = mtransforms.Bbox.unit().transformed(trans)
# this is the physical aspect of the panel (or figure):
fig_aspect = bb.height / bb.width
box_aspect = 1
pb = position.frozen()
pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect)
self._set_position(pb1.anchored(self.get_anchor(), pb), 'active')
@martist.allow_rasterization
def draw(self, renderer):
if not self.get_visible():
return
self._unstale_viewLim()
# draw the background patch
self.patch.draw(renderer)
self._frameon = False
# first, set the aspect
# this is duplicated from `axes._base._AxesBase.draw`
# but must be called before any of the artist are drawn as
# it adjusts the view limits and the size of the bounding box
# of the Axes
locator = self.get_axes_locator()
self.apply_aspect(locator(self, renderer) if locator else None)
# add the projection matrix to the renderer
self.M = self.get_proj()
self.invM = np.linalg.inv(self.M)
collections_and_patches = (
artist for artist in self._children
if isinstance(artist, (mcoll.Collection, mpatches.Patch))
and artist.get_visible())
if self.computed_zorder:
# Calculate projection of collections and patches and zorder
# them. Make sure they are drawn above the grids.
zorder_offset = max(axis.get_zorder()
for axis in self._axis_map.values()) + 1
collection_zorder = patch_zorder = zorder_offset
for artist in sorted(collections_and_patches,
key=lambda artist: artist.do_3d_projection(),
reverse=True):
if isinstance(artist, mcoll.Collection):
artist.zorder = collection_zorder
collection_zorder += 1
elif isinstance(artist, mpatches.Patch):
artist.zorder = patch_zorder
patch_zorder += 1
else:
for artist in collections_and_patches:
artist.do_3d_projection()
if self._axis3don:
# Draw panes first
for axis in self._axis_map.values():
axis.draw_pane(renderer)
# Then gridlines
for axis in self._axis_map.values():
axis.draw_grid(renderer)
# Then axes, labels, text, and ticks
for axis in self._axis_map.values():
axis.draw(renderer)
# Then rest
super().draw(renderer)
def get_axis_position(self):
vals = self.get_w_lims()
tc = self._tunit_cube(vals, self.M)
xhigh = tc[1][2] > tc[2][2]
yhigh = tc[3][2] > tc[2][2]
zhigh = tc[0][2] > tc[2][2]
return xhigh, yhigh, zhigh
def update_datalim(self, xys, **kwargs):
"""
Not implemented in `~mpl_toolkits.mplot3d.axes3d.Axes3D`.
"""
pass
get_autoscalez_on = _axis_method_wrapper("zaxis", "_get_autoscale_on")
set_autoscalez_on = _axis_method_wrapper("zaxis", "_set_autoscale_on")
def set_zmargin(self, m):
"""
Set padding of Z data limits prior to autoscaling.
*m* times the data interval will be added to each end of that interval
before it is used in autoscaling. If *m* is negative, this will clip
the data range instead of expanding it.
For example, if your data is in the range [0, 2], a margin of 0.1 will
result in a range [-0.2, 2.2]; a margin of -0.1 will result in a range
of [0.2, 1.8].
Parameters
----------
m : float greater than -0.5
"""
if m <= -0.5:
raise ValueError("margin must be greater than -0.5")
self._zmargin = m
self._request_autoscale_view("z")
self.stale = True
def margins(self, *margins, x=None, y=None, z=None, tight=True):
"""
Set or retrieve autoscaling margins.
See `.Axes.margins` for full documentation. Because this function
applies to 3D Axes, it also takes a *z* argument, and returns
``(xmargin, ymargin, zmargin)``.
"""
if margins and (x is not None or y is not None or z is not None):
raise TypeError('Cannot pass both positional and keyword '
'arguments for x, y, and/or z.')
elif len(margins) == 1:
x = y = z = margins[0]
elif len(margins) == 3:
x, y, z = margins
elif margins:
raise TypeError('Must pass a single positional argument for all '
'margins, or one for each margin (x, y, z).')
if x is None and y is None and z is None:
if tight is not True:
_api.warn_external(f'ignoring tight={tight!r} in get mode')
return self._xmargin, self._ymargin, self._zmargin
if x is not None:
self.set_xmargin(x)
if y is not None:
self.set_ymargin(y)
if z is not None:
self.set_zmargin(z)
self.autoscale_view(
tight=tight, scalex=(x is not None), scaley=(y is not None),
scalez=(z is not None)
)
def autoscale(self, enable=True, axis='both', tight=None):
"""
Convenience method for simple axis view autoscaling.
See `.Axes.autoscale` for full documentation. Because this function
applies to 3D Axes, *axis* can also be set to 'z', and setting *axis*
to 'both' autoscales all three axes.
"""
if enable is None:
scalex = True
scaley = True
scalez = True
else:
if axis in ['x', 'both']:
self.set_autoscalex_on(bool(enable))
scalex = self.get_autoscalex_on()
else:
scalex = False
if axis in ['y', 'both']:
self.set_autoscaley_on(bool(enable))
scaley = self.get_autoscaley_on()
else:
scaley = False
if axis in ['z', 'both']:
self.set_autoscalez_on(bool(enable))
scalez = self.get_autoscalez_on()
else:
scalez = False
if scalex:
self._request_autoscale_view("x", tight=tight)
if scaley:
self._request_autoscale_view("y", tight=tight)
if scalez:
self._request_autoscale_view("z", tight=tight)
def auto_scale_xyz(self, X, Y, Z=None, had_data=None):
# This updates the bounding boxes as to keep a record as to what the
# minimum sized rectangular volume holds the data.
if np.shape(X) == np.shape(Y):
self.xy_dataLim.update_from_data_xy(
np.column_stack([np.ravel(X), np.ravel(Y)]), not had_data)
else:
self.xy_dataLim.update_from_data_x(X, not had_data)
self.xy_dataLim.update_from_data_y(Y, not had_data)
if Z is not None:
self.zz_dataLim.update_from_data_x(Z, not had_data)
# Let autoscale_view figure out how to use this data.
self.autoscale_view()
def autoscale_view(self, tight=None, scalex=True, scaley=True,
scalez=True):
"""
Autoscale the view limits using the data limits.
See `.Axes.autoscale_view` for full documentation. Because this
function applies to 3D Axes, it also takes a *scalez* argument.
"""
# This method looks at the rectangular volume (see above)
# of data and decides how to scale the view portal to fit it.
if tight is None:
_tight = self._tight
if not _tight:
# if image data only just use the datalim
for artist in self._children:
if isinstance(artist, mimage.AxesImage):
_tight = True
elif isinstance(artist, (mlines.Line2D, mpatches.Patch)):
_tight = False
break
else:
_tight = self._tight = bool(tight)
if scalex and self.get_autoscalex_on():
x0, x1 = self.xy_dataLim.intervalx
xlocator = self.xaxis.get_major_locator()
x0, x1 = xlocator.nonsingular(x0, x1)
if self._xmargin > 0:
delta = (x1 - x0) * self._xmargin
x0 -= delta
x1 += delta
if not _tight:
x0, x1 = xlocator.view_limits(x0, x1)
self.set_xbound(x0, x1)
if scaley and self.get_autoscaley_on():
y0, y1 = self.xy_dataLim.intervaly
ylocator = self.yaxis.get_major_locator()
y0, y1 = ylocator.nonsingular(y0, y1)
if self._ymargin > 0:
delta = (y1 - y0) * self._ymargin
y0 -= delta
y1 += delta
if not _tight:
y0, y1 = ylocator.view_limits(y0, y1)
self.set_ybound(y0, y1)
if scalez and self.get_autoscalez_on():
z0, z1 = self.zz_dataLim.intervalx
zlocator = self.zaxis.get_major_locator()
z0, z1 = zlocator.nonsingular(z0, z1)
if self._zmargin > 0:
delta = (z1 - z0) * self._zmargin
z0 -= delta
z1 += delta
if not _tight:
z0, z1 = zlocator.view_limits(z0, z1)
self.set_zbound(z0, z1)
def get_w_lims(self):
"""Get 3D world limits."""
minx, maxx = self.get_xlim3d()
miny, maxy = self.get_ylim3d()
minz, maxz = self.get_zlim3d()
return minx, maxx, miny, maxy, minz, maxz
# set_xlim, set_ylim are directly inherited from base Axes.
def set_zlim(self, bottom=None, top=None, *, emit=True, auto=False,
zmin=None, zmax=None):
"""
Set 3D z limits.
See `.Axes.set_ylim` for full documentation
"""
if top is None and np.iterable(bottom):
bottom, top = bottom
if zmin is not None:
if bottom is not None:
raise TypeError("Cannot pass both 'bottom' and 'zmin'")
bottom = zmin
if zmax is not None:
if top is not None:
raise TypeError("Cannot pass both 'top' and 'zmax'")
top = zmax
return self.zaxis._set_lim(bottom, top, emit=emit, auto=auto)
set_xlim3d = maxes.Axes.set_xlim
set_ylim3d = maxes.Axes.set_ylim
set_zlim3d = set_zlim
def get_xlim(self):
# docstring inherited
return tuple(self.xy_viewLim.intervalx)
def get_ylim(self):
# docstring inherited
return tuple(self.xy_viewLim.intervaly)
def get_zlim(self):
"""
Return the 3D z-axis view limits.
Returns
-------
left, right : (float, float)
The current z-axis limits in data coordinates.
See Also
--------
set_zlim
set_zbound, get_zbound
invert_zaxis, zaxis_inverted
Notes
-----
The z-axis may be inverted, in which case the *left* value will
be greater than the *right* value.
"""
return tuple(self.zz_viewLim.intervalx)
get_zscale = _axis_method_wrapper("zaxis", "get_scale")
# Redefine all three methods to overwrite their docstrings.
set_xscale = _axis_method_wrapper("xaxis", "_set_axes_scale")
set_yscale = _axis_method_wrapper("yaxis", "_set_axes_scale")
set_zscale = _axis_method_wrapper("zaxis", "_set_axes_scale")
set_xscale.__doc__, set_yscale.__doc__, set_zscale.__doc__ = map(
"""
Set the {}-axis scale.
Parameters
----------
value : {{"linear"}}
The axis scale type to apply. 3D axes currently only support
linear scales; other scales yield nonsensical results.
**kwargs
Keyword arguments are nominally forwarded to the scale class, but
none of them is applicable for linear scales.
""".format,
["x", "y", "z"])
get_zticks = _axis_method_wrapper("zaxis", "get_ticklocs")
set_zticks = _axis_method_wrapper("zaxis", "set_ticks")
get_zmajorticklabels = _axis_method_wrapper("zaxis", "get_majorticklabels")
get_zminorticklabels = _axis_method_wrapper("zaxis", "get_minorticklabels")
get_zticklabels = _axis_method_wrapper("zaxis", "get_ticklabels")
set_zticklabels = _axis_method_wrapper(
"zaxis", "set_ticklabels",
doc_sub={"Axis.set_ticks": "Axes3D.set_zticks"})
zaxis_date = _axis_method_wrapper("zaxis", "axis_date")
if zaxis_date.__doc__:
zaxis_date.__doc__ += textwrap.dedent("""
Notes
-----
This function is merely provided for completeness, but 3D axes do not
support dates for ticks, and so this may not work as expected.
""")
def clabel(self, *args, **kwargs):
"""Currently not implemented for 3D axes, and returns *None*."""
return None
def view_init(self, elev=None, azim=None, roll=None, vertical_axis="z",
share=False):
"""
Set the elevation and azimuth of the axes in degrees (not radians).
This can be used to rotate the axes programmatically.
To look normal to the primary planes, the following elevation and
azimuth angles can be used. A roll angle of 0, 90, 180, or 270 deg
will rotate these views while keeping the axes at right angles.
========== ==== ====
view plane elev azim
========== ==== ====
XY 90 -90
XZ 0 -90
YZ 0 0
-XY -90 90
-XZ 0 90
-YZ 0 180
========== ==== ====
Parameters
----------
elev : float, default: None
The elevation angle in degrees rotates the camera above the plane
pierced by the vertical axis, with a positive angle corresponding
to a location above that plane. For example, with the default
vertical axis of 'z', the elevation defines the angle of the camera
location above the x-y plane.
If None, then the initial value as specified in the `Axes3D`
constructor is used.
azim : float, default: None
The azimuthal angle in degrees rotates the camera about the
vertical axis, with a positive angle corresponding to a
right-handed rotation. For example, with the default vertical axis
of 'z', a positive azimuth rotates the camera about the origin from
its location along the +x axis towards the +y axis.
If None, then the initial value as specified in the `Axes3D`
constructor is used.
roll : float, default: None
The roll angle in degrees rotates the camera about the viewing
axis. A positive angle spins the camera clockwise, causing the
scene to rotate counter-clockwise.
If None, then the initial value as specified in the `Axes3D`
constructor is used.
vertical_axis : {"z", "x", "y"}, default: "z"
The axis to align vertically. *azim* rotates about this axis.
share : bool, default: False
If ``True``, apply the settings to all Axes with shared views.
"""
self._dist = 10 # The camera distance from origin. Behaves like zoom
if elev is None:
elev = self.initial_elev
if azim is None:
azim = self.initial_azim
if roll is None:
roll = self.initial_roll
vertical_axis = _api.check_getitem(
dict(x=0, y=1, z=2), vertical_axis=vertical_axis
)
if share:
axes = {sibling for sibling
in self._shared_axes['view'].get_siblings(self)}
else:
axes = [self]
for ax in axes:
ax.elev = elev
ax.azim = azim
ax.roll = roll
ax._vertical_axis = vertical_axis
def set_proj_type(self, proj_type, focal_length=None):
"""
Set the projection type.
Parameters
----------
proj_type : {'persp', 'ortho'}
The projection type.
focal_length : float, default: None
For a projection type of 'persp', the focal length of the virtual
camera. Must be > 0. If None, defaults to 1.
The focal length can be computed from a desired Field Of View via
the equation: focal_length = 1/tan(FOV/2)
"""
_api.check_in_list(['persp', 'ortho'], proj_type=proj_type)
if proj_type == 'persp':
if focal_length is None:
focal_length = 1
elif focal_length <= 0:
raise ValueError(f"focal_length = {focal_length} must be "
"greater than 0")
self._focal_length = focal_length
else: # 'ortho':
if focal_length not in (None, np.inf):
raise ValueError(f"focal_length = {focal_length} must be "
f"None for proj_type = {proj_type}")
self._focal_length = np.inf
def _roll_to_vertical(self, arr):
"""Roll arrays to match the different vertical axis."""
return np.roll(arr, self._vertical_axis - 2)
def get_proj(self):
"""Create the projection matrix from the current viewing position."""
# Transform to uniform world coordinates 0-1, 0-1, 0-1
box_aspect = self._roll_to_vertical(self._box_aspect)
worldM = proj3d.world_transformation(
*self.get_xlim3d(),
*self.get_ylim3d(),
*self.get_zlim3d(),
pb_aspect=box_aspect,
)
# Look into the middle of the world coordinates:
R = 0.5 * box_aspect
# elev: elevation angle in the z plane.
# azim: azimuth angle in the xy plane.
# Coordinates for a point that rotates around the box of data.
# p0, p1 corresponds to rotating the box only around the vertical axis.
# p2 corresponds to rotating the box only around the horizontal axis.
elev_rad = np.deg2rad(self.elev)
azim_rad = np.deg2rad(self.azim)
p0 = np.cos(elev_rad) * np.cos(azim_rad)
p1 = np.cos(elev_rad) * np.sin(azim_rad)
p2 = np.sin(elev_rad)
# When changing vertical axis the coordinates changes as well.
# Roll the values to get the same behaviour as the default:
ps = self._roll_to_vertical([p0, p1, p2])
# The coordinates for the eye viewing point. The eye is looking
# towards the middle of the box of data from a distance:
eye = R + self._dist * ps
# vvec, self._vvec and self._eye are unused, remove when deprecated
vvec = R - eye
self._eye = eye
self._vvec = vvec / np.linalg.norm(vvec)
# Calculate the viewing axes for the eye position
u, v, w = self._calc_view_axes(eye)
self._view_u = u # _view_u is towards the right of the screen
self._view_v = v # _view_v is towards the top of the screen
self._view_w = w # _view_w is out of the screen
# Generate the view and projection transformation matrices
if self._focal_length == np.inf:
# Orthographic projection
viewM = proj3d._view_transformation_uvw(u, v, w, eye)
projM = proj3d._ortho_transformation(-self._dist, self._dist)
else:
# Perspective projection
# Scale the eye dist to compensate for the focal length zoom effect
eye_focal = R + self._dist * ps * self._focal_length
viewM = proj3d._view_transformation_uvw(u, v, w, eye_focal)
projM = proj3d._persp_transformation(-self._dist,
self._dist,
self._focal_length)
# Combine all the transformation matrices to get the final projection
M0 = np.dot(viewM, worldM)
M = np.dot(projM, M0)
return M
def mouse_init(self, rotate_btn=1, pan_btn=2, zoom_btn=3):
"""
Set the mouse buttons for 3D rotation and zooming.
Parameters
----------
rotate_btn : int or list of int, default: 1
The mouse button or buttons to use for 3D rotation of the axes.
pan_btn : int or list of int, default: 2
The mouse button or buttons to use to pan the 3D axes.
zoom_btn : int or list of int, default: 3
The mouse button or buttons to use to zoom the 3D axes.
"""
self.button_pressed = None
# coerce scalars into array-like, then convert into
# a regular list to avoid comparisons against None
# which breaks in recent versions of numpy.
self._rotate_btn = np.atleast_1d(rotate_btn).tolist()
self._pan_btn = np.atleast_1d(pan_btn).tolist()
self._zoom_btn = np.atleast_1d(zoom_btn).tolist()
def disable_mouse_rotation(self):
"""Disable mouse buttons for 3D rotation, panning, and zooming."""
self.mouse_init(rotate_btn=[], pan_btn=[], zoom_btn=[])
def can_zoom(self):
# doc-string inherited
return True
def can_pan(self):
# doc-string inherited
return True
def sharez(self, other):
"""
Share the z-axis with *other*.
This is equivalent to passing ``sharez=other`` when constructing the
Axes, and cannot be used if the z-axis is already being shared with
another Axes.
"""
_api.check_isinstance(Axes3D, other=other)
if self._sharez is not None and other is not self._sharez:
raise ValueError("z-axis is already shared")
self._shared_axes["z"].join(self, other)
self._sharez = other
self.zaxis.major = other.zaxis.major # Ticker instances holding
self.zaxis.minor = other.zaxis.minor # locator and formatter.
z0, z1 = other.get_zlim()
self.set_zlim(z0, z1, emit=False, auto=other.get_autoscalez_on())
self.zaxis._scale = other.zaxis._scale
def shareview(self, other):
"""
Share the view angles with *other*.
This is equivalent to passing ``shareview=other`` when
constructing the Axes, and cannot be used if the view angles are
already being shared with another Axes.
"""
_api.check_isinstance(Axes3D, other=other)
if self._shareview is not None and other is not self._shareview:
raise ValueError("view angles are already shared")
self._shared_axes["view"].join(self, other)
self._shareview = other
vertical_axis = {0: "x", 1: "y", 2: "z"}[other._vertical_axis]
self.view_init(elev=other.elev, azim=other.azim, roll=other.roll,
vertical_axis=vertical_axis, share=True)
def clear(self):
# docstring inherited.
super().clear()
if self._focal_length == np.inf:
self._zmargin = mpl.rcParams['axes.zmargin']
else:
self._zmargin = 0.
self.grid(mpl.rcParams['axes3d.grid'])
def _button_press(self, event):
if event.inaxes == self:
self.button_pressed = event.button
self._sx, self._sy = event.xdata, event.ydata
toolbar = self.figure.canvas.toolbar
if toolbar and toolbar._nav_stack() is None:
toolbar.push_current()
def _button_release(self, event):
self.button_pressed = None
toolbar = self.figure.canvas.toolbar
# backend_bases.release_zoom and backend_bases.release_pan call
# push_current, so check the navigation mode so we don't call it twice
if toolbar and self.get_navigate_mode() is None:
toolbar.push_current()
def _get_view(self):
# docstring inherited
return {
"xlim": self.get_xlim(), "autoscalex_on": self.get_autoscalex_on(),
"ylim": self.get_ylim(), "autoscaley_on": self.get_autoscaley_on(),
"zlim": self.get_zlim(), "autoscalez_on": self.get_autoscalez_on(),
}, (self.elev, self.azim, self.roll)
def _set_view(self, view):
# docstring inherited
props, (elev, azim, roll) = view
self.set(**props)
self.elev = elev
self.azim = azim
self.roll = roll
def format_zdata(self, z):
"""
Return *z* string formatted. This function will use the
:attr:`fmt_zdata` attribute if it is callable, else will fall
back on the zaxis major formatter
"""
try:
return self.fmt_zdata(z)
except (AttributeError, TypeError):
func = self.zaxis.get_major_formatter().format_data_short
val = func(z)
return val
def format_coord(self, xv, yv, renderer=None):
"""
Return a string giving the current view rotation angles, or the x, y, z
coordinates of the point on the nearest axis pane underneath the mouse
cursor, depending on the mouse button pressed.
"""
coords = ''
if self.button_pressed in self._rotate_btn:
# ignore xv and yv and display angles instead
coords = self._rotation_coords()
elif self.M is not None:
coords = self._location_coords(xv, yv, renderer)
return coords
def _rotation_coords(self):
"""
Return the rotation angles as a string.
"""
norm_elev = art3d._norm_angle(self.elev)
norm_azim = art3d._norm_angle(self.azim)
norm_roll = art3d._norm_angle(self.roll)
coords = (f"elevation={norm_elev:.0f}\N{DEGREE SIGN}, "
f"azimuth={norm_azim:.0f}\N{DEGREE SIGN}, "
f"roll={norm_roll:.0f}\N{DEGREE SIGN}"
).replace("-", "\N{MINUS SIGN}")
return coords
def _location_coords(self, xv, yv, renderer):
"""
Return the location on the axis pane underneath the cursor as a string.
"""
p1, pane_idx = self._calc_coord(xv, yv, renderer)
xs = self.format_xdata(p1[0])
ys = self.format_ydata(p1[1])
zs = self.format_zdata(p1[2])
if pane_idx == 0:
coords = f'x pane={xs}, y={ys}, z={zs}'
elif pane_idx == 1:
coords = f'x={xs}, y pane={ys}, z={zs}'
elif pane_idx == 2:
coords = f'x={xs}, y={ys}, z pane={zs}'
return coords
def _get_camera_loc(self):
"""
Returns the current camera location in data coordinates.
"""
cx, cy, cz, dx, dy, dz = self._get_w_centers_ranges()
c = np.array([cx, cy, cz])
r = np.array([dx, dy, dz])
if self._focal_length == np.inf: # orthographic projection
focal_length = 1e9 # large enough to be effectively infinite
else: # perspective projection
focal_length = self._focal_length
eye = c + self._view_w * self._dist * r / self._box_aspect * focal_length
return eye
def _calc_coord(self, xv, yv, renderer=None):
"""
Given the 2D view coordinates, find the point on the nearest axis pane
that lies directly below those coordinates. Returns a 3D point in data
coordinates.
"""
if self._focal_length == np.inf: # orthographic projection
zv = 1
else: # perspective projection
zv = -1 / self._focal_length
# Convert point on view plane to data coordinates
p1 = np.array(proj3d.inv_transform(xv, yv, zv, self.invM)).ravel()
# Get the vector from the camera to the point on the view plane
vec = self._get_camera_loc() - p1
# Get the pane locations for each of the axes
pane_locs = []
for axis in self._axis_map.values():
xys, loc = axis.active_pane(renderer)
pane_locs.append(loc)
# Find the distance to the nearest pane by projecting the view vector
scales = np.zeros(3)
for i in range(3):
if vec[i] == 0:
scales[i] = np.inf
else:
scales[i] = (p1[i] - pane_locs[i]) / vec[i]
pane_idx = np.argmin(abs(scales))
scale = scales[pane_idx]
# Calculate the point on the closest pane
p2 = p1 - scale*vec
return p2, pane_idx
def _on_move(self, event):
"""
Mouse moving.
By default, button-1 rotates, button-2 pans, and button-3 zooms;
these buttons can be modified via `mouse_init`.
"""
if not self.button_pressed:
return
if self.get_navigate_mode() is not None:
# we don't want to rotate if we are zooming/panning
# from the toolbar
return
if self.M is None:
return
x, y = event.xdata, event.ydata
# In case the mouse is out of bounds.
if x is None or event.inaxes != self:
return
dx, dy = x - self._sx, y - self._sy
w = self._pseudo_w
h = self._pseudo_h
# Rotation
if self.button_pressed in self._rotate_btn:
# rotate viewing point
# get the x and y pixel coords
if dx == 0 and dy == 0:
return
roll = np.deg2rad(self.roll)
delev = -(dy/h)*180*np.cos(roll) + (dx/w)*180*np.sin(roll)
dazim = -(dy/h)*180*np.sin(roll) - (dx/w)*180*np.cos(roll)
elev = self.elev + delev
azim = self.azim + dazim
self.view_init(elev=elev, azim=azim, roll=roll, share=True)
self.stale = True
# Pan
elif self.button_pressed in self._pan_btn:
# Start the pan event with pixel coordinates
px, py = self.transData.transform([self._sx, self._sy])
self.start_pan(px, py, 2)
# pan view (takes pixel coordinate input)
self.drag_pan(2, None, event.x, event.y)
self.end_pan()
# Zoom
elif self.button_pressed in self._zoom_btn:
# zoom view (dragging down zooms in)
scale = h/(h - dy)
self._scale_axis_limits(scale, scale, scale)
# Store the event coordinates for the next time through.
self._sx, self._sy = x, y
# Always request a draw update at the end of interaction
self.figure.canvas.draw_idle()
def drag_pan(self, button, key, x, y):
# docstring inherited
# Get the coordinates from the move event
p = self._pan_start
(xdata, ydata), (xdata_start, ydata_start) = p.trans_inverse.transform(
[(x, y), (p.x, p.y)])
self._sx, self._sy = xdata, ydata
# Calling start_pan() to set the x/y of this event as the starting
# move location for the next event
self.start_pan(x, y, button)
du, dv = xdata - xdata_start, ydata - ydata_start
dw = 0
if key == 'x':
dv = 0
elif key == 'y':
du = 0
if du == 0 and dv == 0:
return
# Transform the pan from the view axes to the data axes
R = np.array([self._view_u, self._view_v, self._view_w])
R = -R / self._box_aspect * self._dist
duvw_projected = R.T @ np.array([du, dv, dw])
# Calculate pan distance
minx, maxx, miny, maxy, minz, maxz = self.get_w_lims()
dx = (maxx - minx) * duvw_projected[0]
dy = (maxy - miny) * duvw_projected[1]
dz = (maxz - minz) * duvw_projected[2]
# Set the new axis limits
self.set_xlim3d(minx + dx, maxx + dx)
self.set_ylim3d(miny + dy, maxy + dy)
self.set_zlim3d(minz + dz, maxz + dz)
def _calc_view_axes(self, eye):
"""
Get the unit vectors for the viewing axes in data coordinates.
`u` is towards the right of the screen
`v` is towards the top of the screen
`w` is out of the screen
"""
elev_rad = np.deg2rad(art3d._norm_angle(self.elev))
roll_rad = np.deg2rad(art3d._norm_angle(self.roll))
# Look into the middle of the world coordinates
R = 0.5 * self._roll_to_vertical(self._box_aspect)
# Define which axis should be vertical. A negative value
# indicates the plot is upside down and therefore the values
# have been reversed:
V = np.zeros(3)
V[self._vertical_axis] = -1 if abs(elev_rad) > np.pi/2 else 1
u, v, w = proj3d._view_axes(eye, R, V, roll_rad)
return u, v, w
def _set_view_from_bbox(self, bbox, direction='in',
mode=None, twinx=False, twiny=False):
"""
Zoom in or out of the bounding box.
Will center the view in the center of the bounding box, and zoom by
the ratio of the size of the bounding box to the size of the Axes3D.
"""
(start_x, start_y, stop_x, stop_y) = bbox
if mode == 'x':
start_y = self.bbox.min[1]
stop_y = self.bbox.max[1]
elif mode == 'y':
start_x = self.bbox.min[0]
stop_x = self.bbox.max[0]
# Clip to bounding box limits
start_x, stop_x = np.clip(sorted([start_x, stop_x]),
self.bbox.min[0], self.bbox.max[0])
start_y, stop_y = np.clip(sorted([start_y, stop_y]),
self.bbox.min[1], self.bbox.max[1])
# Move the center of the view to the center of the bbox
zoom_center_x = (start_x + stop_x)/2
zoom_center_y = (start_y + stop_y)/2
ax_center_x = (self.bbox.max[0] + self.bbox.min[0])/2
ax_center_y = (self.bbox.max[1] + self.bbox.min[1])/2
self.start_pan(zoom_center_x, zoom_center_y, 2)
self.drag_pan(2, None, ax_center_x, ax_center_y)
self.end_pan()
# Calculate zoom level
dx = abs(start_x - stop_x)
dy = abs(start_y - stop_y)
scale_u = dx / (self.bbox.max[0] - self.bbox.min[0])
scale_v = dy / (self.bbox.max[1] - self.bbox.min[1])
# Keep aspect ratios equal
scale = max(scale_u, scale_v)
# Zoom out
if direction == 'out':
scale = 1 / scale
self._zoom_data_limits(scale, scale, scale)
def _zoom_data_limits(self, scale_u, scale_v, scale_w):
"""
Zoom in or out of a 3D plot.
Will scale the data limits by the scale factors. These will be
transformed to the x, y, z data axes based on the current view angles.
A scale factor > 1 zooms out and a scale factor < 1 zooms in.
For an axes that has had its aspect ratio set to 'equal', 'equalxy',
'equalyz', or 'equalxz', the relevant axes are constrained to zoom
equally.
Parameters
----------
scale_u : float
Scale factor for the u view axis (view screen horizontal).
scale_v : float
Scale factor for the v view axis (view screen vertical).
scale_w : float
Scale factor for the w view axis (view screen depth).
"""
scale = np.array([scale_u, scale_v, scale_w])
# Only perform frame conversion if unequal scale factors
if not np.allclose(scale, scale_u):
# Convert the scale factors from the view frame to the data frame
R = np.array([self._view_u, self._view_v, self._view_w])
S = scale * np.eye(3)
scale = np.linalg.norm(R.T @ S, axis=1)
# Set the constrained scale factors to the factor closest to 1
if self._aspect in ('equal', 'equalxy', 'equalxz', 'equalyz'):
ax_idxs = self._equal_aspect_axis_indices(self._aspect)
min_ax_idxs = np.argmin(np.abs(scale[ax_idxs] - 1))
scale[ax_idxs] = scale[ax_idxs][min_ax_idxs]
self._scale_axis_limits(scale[0], scale[1], scale[2])
def _scale_axis_limits(self, scale_x, scale_y, scale_z):
"""
Keeping the center of the x, y, and z data axes fixed, scale their
limits by scale factors. A scale factor > 1 zooms out and a scale
factor < 1 zooms in.
Parameters
----------
scale_x : float
Scale factor for the x data axis.
scale_y : float
Scale factor for the y data axis.
scale_z : float
Scale factor for the z data axis.
"""
# Get the axis centers and ranges
cx, cy, cz, dx, dy, dz = self._get_w_centers_ranges()
# Set the scaled axis limits
self.set_xlim3d(cx - dx*scale_x/2, cx + dx*scale_x/2)
self.set_ylim3d(cy - dy*scale_y/2, cy + dy*scale_y/2)
self.set_zlim3d(cz - dz*scale_z/2, cz + dz*scale_z/2)
def _get_w_centers_ranges(self):
"""Get 3D world centers and axis ranges."""
# Calculate center of axis limits
minx, maxx, miny, maxy, minz, maxz = self.get_w_lims()
cx = (maxx + minx)/2
cy = (maxy + miny)/2
cz = (maxz + minz)/2
# Calculate range of axis limits
dx = (maxx - minx)
dy = (maxy - miny)
dz = (maxz - minz)
return cx, cy, cz, dx, dy, dz
def set_zlabel(self, zlabel, fontdict=None, labelpad=None, **kwargs):
"""
Set zlabel. See doc for `.set_ylabel` for description.
"""
if labelpad is not None:
self.zaxis.labelpad = labelpad
return self.zaxis.set_label_text(zlabel, fontdict, **kwargs)
def get_zlabel(self):
"""
Get the z-label text string.
"""
label = self.zaxis.get_label()
return label.get_text()
# Axes rectangle characteristics
# The frame_on methods are not available for 3D axes.
# Python will raise a TypeError if they are called.
get_frame_on = None
set_frame_on = None
def grid(self, visible=True, **kwargs):
"""
Set / unset 3D grid.
.. note::
Currently, this function does not behave the same as
`.axes.Axes.grid`, but it is intended to eventually support that
behavior.
"""
# TODO: Operate on each axes separately
if len(kwargs):
visible = True
self._draw_grid = visible
self.stale = True
def tick_params(self, axis='both', **kwargs):
"""
Convenience method for changing the appearance of ticks and
tick labels.
See `.Axes.tick_params` for full documentation. Because this function
applies to 3D Axes, *axis* can also be set to 'z', and setting *axis*
to 'both' autoscales all three axes.
Also, because of how Axes3D objects are drawn very differently
from regular 2D axes, some of these settings may have
ambiguous meaning. For simplicity, the 'z' axis will
accept settings as if it was like the 'y' axis.
.. note::
Axes3D currently ignores some of these settings.
"""
_api.check_in_list(['x', 'y', 'z', 'both'], axis=axis)
if axis in ['x', 'y', 'both']:
super().tick_params(axis, **kwargs)
if axis in ['z', 'both']:
zkw = dict(kwargs)
zkw.pop('top', None)
zkw.pop('bottom', None)
zkw.pop('labeltop', None)
zkw.pop('labelbottom', None)
self.zaxis.set_tick_params(**zkw)
# data limits, ticks, tick labels, and formatting
def invert_zaxis(self):
"""
Invert the z-axis.
See Also
--------
zaxis_inverted
get_zlim, set_zlim
get_zbound, set_zbound
"""
bottom, top = self.get_zlim()
self.set_zlim(top, bottom, auto=None)
zaxis_inverted = _axis_method_wrapper("zaxis", "get_inverted")
def get_zbound(self):
"""
Return the lower and upper z-axis bounds, in increasing order.
See Also
--------
set_zbound
get_zlim, set_zlim
invert_zaxis, zaxis_inverted
"""
bottom, top = self.get_zlim()
if bottom < top:
return bottom, top
else:
return top, bottom
def set_zbound(self, lower=None, upper=None):
"""
Set the lower and upper numerical bounds of the z-axis.
This method will honor axes inversion regardless of parameter order.
It will not change the autoscaling setting (`.get_autoscalez_on()`).
Parameters
----------
lower, upper : float or None
The lower and upper bounds. If *None*, the respective axis bound
is not modified.
See Also
--------
get_zbound
get_zlim, set_zlim
invert_zaxis, zaxis_inverted
"""
if upper is None and np.iterable(lower):
lower, upper = lower
old_lower, old_upper = self.get_zbound()
if lower is None:
lower = old_lower
if upper is None:
upper = old_upper
self.set_zlim(sorted((lower, upper),
reverse=bool(self.zaxis_inverted())),
auto=None)
def text(self, x, y, z, s, zdir=None, **kwargs):
"""
Add the text *s* to the 3D Axes at location *x*, *y*, *z* in data coordinates.
Parameters
----------
x, y, z : float
The position to place the text.
s : str
The text.
zdir : {'x', 'y', 'z', 3-tuple}, optional
The direction to be used as the z-direction. Default: 'z'.
See `.get_dir_vector` for a description of the values.
**kwargs
Other arguments are forwarded to `matplotlib.axes.Axes.text`.
Returns
-------
`.Text3D`
The created `.Text3D` instance.
"""
text = super().text(x, y, s, **kwargs)
art3d.text_2d_to_3d(text, z, zdir)
return text
text3D = text
text2D = Axes.text
def plot(self, xs, ys, *args, zdir='z', **kwargs):
"""
Plot 2D or 3D data.
Parameters
----------
xs : 1D array-like
x coordinates of vertices.
ys : 1D array-like
y coordinates of vertices.
zs : float or 1D array-like
z coordinates of vertices; either one for all points or one for
each point.
zdir : {'x', 'y', 'z'}, default: 'z'
When plotting 2D data, the direction to use as z.
**kwargs
Other arguments are forwarded to `matplotlib.axes.Axes.plot`.
"""
had_data = self.has_data()
# `zs` can be passed positionally or as keyword; checking whether
# args[0] is a string matches the behavior of 2D `plot` (via
# `_process_plot_var_args`).
if args and not isinstance(args[0], str):
zs, *args = args
if 'zs' in kwargs:
raise TypeError("plot() for multiple values for argument 'z'")
else:
zs = kwargs.pop('zs', 0)
# Match length
zs = np.broadcast_to(zs, np.shape(xs))
lines = super().plot(xs, ys, *args, **kwargs)
for line in lines:
art3d.line_2d_to_3d(line, zs=zs, zdir=zdir)
xs, ys, zs = art3d.juggle_axes(xs, ys, zs, zdir)
self.auto_scale_xyz(xs, ys, zs, had_data)
return lines
plot3D = plot
def plot_surface(self, X, Y, Z, *, norm=None, vmin=None,
vmax=None, lightsource=None, **kwargs):
"""
Create a surface plot.
By default, it will be colored in shades of a solid color, but it also
supports colormapping by supplying the *cmap* argument.
.. note::
The *rcount* and *ccount* kwargs, which both default to 50,
determine the maximum number of samples used in each direction. If
the input data is larger, it will be downsampled (by slicing) to
these numbers of points.
.. note::
To maximize rendering speed consider setting *rstride* and *cstride*
to divisors of the number of rows minus 1 and columns minus 1
respectively. For example, given 51 rows rstride can be any of the
divisors of 50.
Similarly, a setting of *rstride* and *cstride* equal to 1 (or
*rcount* and *ccount* equal the number of rows and columns) can use
the optimized path.
Parameters
----------
X, Y, Z : 2D arrays
Data values.
rcount, ccount : int
Maximum number of samples used in each direction. If the input
data is larger, it will be downsampled (by slicing) to these
numbers of points. Defaults to 50.
rstride, cstride : int
Downsampling stride in each direction. These arguments are
mutually exclusive with *rcount* and *ccount*. If only one of
*rstride* or *cstride* is set, the other defaults to 10.
'classic' mode uses a default of ``rstride = cstride = 10`` instead
of the new default of ``rcount = ccount = 50``.
color : color-like
Color of the surface patches.
cmap : Colormap
Colormap of the surface patches.
facecolors : array-like of colors.
Colors of each individual patch.
norm : Normalize
Normalization for the colormap.
vmin, vmax : float
Bounds for the normalization.
shade : bool, default: True
Whether to shade the facecolors. Shading is always disabled when
*cmap* is specified.
lightsource : `~matplotlib.colors.LightSource`
The lightsource to use when *shade* is True.
**kwargs
Other keyword arguments are forwarded to `.Poly3DCollection`.
"""
had_data = self.has_data()
if Z.ndim != 2:
raise ValueError("Argument Z must be 2-dimensional.")
Z = cbook._to_unmasked_float_array(Z)
X, Y, Z = np.broadcast_arrays(X, Y, Z)
rows, cols = Z.shape
has_stride = 'rstride' in kwargs or 'cstride' in kwargs
has_count = 'rcount' in kwargs or 'ccount' in kwargs
if has_stride and has_count:
raise ValueError("Cannot specify both stride and count arguments")
rstride = kwargs.pop('rstride', 10)
cstride = kwargs.pop('cstride', 10)
rcount = kwargs.pop('rcount', 50)
ccount = kwargs.pop('ccount', 50)
if mpl.rcParams['_internal.classic_mode']:
# Strides have priority over counts in classic mode.
# So, only compute strides from counts
# if counts were explicitly given
compute_strides = has_count
else:
# If the strides are provided then it has priority.
# Otherwise, compute the strides from the counts.
compute_strides = not has_stride
if compute_strides:
rstride = int(max(np.ceil(rows / rcount), 1))
cstride = int(max(np.ceil(cols / ccount), 1))
fcolors = kwargs.pop('facecolors', None)
cmap = kwargs.get('cmap', None)
shade = kwargs.pop('shade', cmap is None)
if shade is None:
raise ValueError("shade cannot be None.")
colset = [] # the sampled facecolor
if (rows - 1) % rstride == 0 and \
(cols - 1) % cstride == 0 and \
fcolors is None:
polys = np.stack(
[cbook._array_patch_perimeters(a, rstride, cstride)
for a in (X, Y, Z)],
axis=-1)
else:
# evenly spaced, and including both endpoints
row_inds = list(range(0, rows-1, rstride)) + [rows-1]
col_inds = list(range(0, cols-1, cstride)) + [cols-1]
polys = []
for rs, rs_next in zip(row_inds[:-1], row_inds[1:]):
for cs, cs_next in zip(col_inds[:-1], col_inds[1:]):
ps = [
# +1 ensures we share edges between polygons
cbook._array_perimeter(a[rs:rs_next+1, cs:cs_next+1])
for a in (X, Y, Z)
]
# ps = np.stack(ps, axis=-1)
ps = np.array(ps).T
polys.append(ps)
if fcolors is not None:
colset.append(fcolors[rs][cs])
# In cases where there are non-finite values in the data (possibly NaNs from
# masked arrays), artifacts can be introduced. Here check whether such values
# are present and remove them.
if not isinstance(polys, np.ndarray) or not np.isfinite(polys).all():
new_polys = []
new_colset = []
# Depending on fcolors, colset is either an empty list or has as
# many elements as polys. In the former case new_colset results in
# a list with None entries, that is discarded later.
for p, col in itertools.zip_longest(polys, colset):
new_poly = np.array(p)[np.isfinite(p).all(axis=1)]
if len(new_poly):
new_polys.append(new_poly)
new_colset.append(col)
# Replace previous polys and, if fcolors is not None, colset
polys = new_polys
if fcolors is not None:
colset = new_colset
# note that the striding causes some polygons to have more coordinates
# than others
if fcolors is not None:
polyc = art3d.Poly3DCollection(
polys, edgecolors=colset, facecolors=colset, shade=shade,
lightsource=lightsource, **kwargs)
elif cmap:
polyc = art3d.Poly3DCollection(polys, **kwargs)
# can't always vectorize, because polys might be jagged
if isinstance(polys, np.ndarray):
avg_z = polys[..., 2].mean(axis=-1)
else:
avg_z = np.array([ps[:, 2].mean() for ps in polys])
polyc.set_array(avg_z)
if vmin is not None or vmax is not None:
polyc.set_clim(vmin, vmax)
if norm is not None:
polyc.set_norm(norm)
else:
color = kwargs.pop('color', None)
if color is None:
color = self._get_lines.get_next_color()
color = np.array(mcolors.to_rgba(color))
polyc = art3d.Poly3DCollection(
polys, facecolors=color, shade=shade,
lightsource=lightsource, **kwargs)
self.add_collection(polyc)
self.auto_scale_xyz(X, Y, Z, had_data)
return polyc
def plot_wireframe(self, X, Y, Z, **kwargs):
"""
Plot a 3D wireframe.
.. note::
The *rcount* and *ccount* kwargs, which both default to 50,
determine the maximum number of samples used in each direction. If
the input data is larger, it will be downsampled (by slicing) to
these numbers of points.
Parameters
----------
X, Y, Z : 2D arrays
Data values.
rcount, ccount : int
Maximum number of samples used in each direction. If the input
data is larger, it will be downsampled (by slicing) to these
numbers of points. Setting a count to zero causes the data to be
not sampled in the corresponding direction, producing a 3D line
plot rather than a wireframe plot. Defaults to 50.
rstride, cstride : int
Downsampling stride in each direction. These arguments are
mutually exclusive with *rcount* and *ccount*. If only one of
*rstride* or *cstride* is set, the other defaults to 1. Setting a
stride to zero causes the data to be not sampled in the
corresponding direction, producing a 3D line plot rather than a
wireframe plot.
'classic' mode uses a default of ``rstride = cstride = 1`` instead
of the new default of ``rcount = ccount = 50``.
**kwargs
Other keyword arguments are forwarded to `.Line3DCollection`.
"""
had_data = self.has_data()
if Z.ndim != 2:
raise ValueError("Argument Z must be 2-dimensional.")
# FIXME: Support masked arrays
X, Y, Z = np.broadcast_arrays(X, Y, Z)
rows, cols = Z.shape
has_stride = 'rstride' in kwargs or 'cstride' in kwargs
has_count = 'rcount' in kwargs or 'ccount' in kwargs
if has_stride and has_count:
raise ValueError("Cannot specify both stride and count arguments")
rstride = kwargs.pop('rstride', 1)
cstride = kwargs.pop('cstride', 1)
rcount = kwargs.pop('rcount', 50)
ccount = kwargs.pop('ccount', 50)
if mpl.rcParams['_internal.classic_mode']:
# Strides have priority over counts in classic mode.
# So, only compute strides from counts
# if counts were explicitly given
if has_count:
rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0
else:
# If the strides are provided then it has priority.
# Otherwise, compute the strides from the counts.
if not has_stride:
rstride = int(max(np.ceil(rows / rcount), 1)) if rcount else 0
cstride = int(max(np.ceil(cols / ccount), 1)) if ccount else 0
# We want two sets of lines, one running along the "rows" of
# Z and another set of lines running along the "columns" of Z.
# This transpose will make it easy to obtain the columns.
tX, tY, tZ = np.transpose(X), np.transpose(Y), np.transpose(Z)
if rstride:
rii = list(range(0, rows, rstride))
# Add the last index only if needed
if rows > 0 and rii[-1] != (rows - 1):
rii += [rows-1]
else:
rii = []
if cstride:
cii = list(range(0, cols, cstride))
# Add the last index only if needed
if cols > 0 and cii[-1] != (cols - 1):
cii += [cols-1]
else:
cii = []
if rstride == 0 and cstride == 0:
raise ValueError("Either rstride or cstride must be non zero")
# If the inputs were empty, then just
# reset everything.
if Z.size == 0:
rii = []
cii = []
xlines = [X[i] for i in rii]
ylines = [Y[i] for i in rii]
zlines = [Z[i] for i in rii]
txlines = [tX[i] for i in cii]
tylines = [tY[i] for i in cii]
tzlines = [tZ[i] for i in cii]
lines = ([list(zip(xl, yl, zl))
for xl, yl, zl in zip(xlines, ylines, zlines)]
+ [list(zip(xl, yl, zl))
for xl, yl, zl in zip(txlines, tylines, tzlines)])
linec = art3d.Line3DCollection(lines, **kwargs)
self.add_collection(linec)
self.auto_scale_xyz(X, Y, Z, had_data)
return linec
def plot_trisurf(self, *args, color=None, norm=None, vmin=None, vmax=None,
lightsource=None, **kwargs):
"""
Plot a triangulated surface.
The (optional) triangulation can be specified in one of two ways;
either::
plot_trisurf(triangulation, ...)
where triangulation is a `~matplotlib.tri.Triangulation` object, or::
plot_trisurf(X, Y, ...)
plot_trisurf(X, Y, triangles, ...)
plot_trisurf(X, Y, triangles=triangles, ...)
in which case a Triangulation object will be created. See
`.Triangulation` for an explanation of these possibilities.
The remaining arguments are::
plot_trisurf(..., Z)
where *Z* is the array of values to contour, one per point
in the triangulation.
Parameters
----------
X, Y, Z : array-like
Data values as 1D arrays.
color
Color of the surface patches.
cmap
A colormap for the surface patches.
norm : Normalize
An instance of Normalize to map values to colors.
vmin, vmax : float, default: None
Minimum and maximum value to map.
shade : bool, default: True
Whether to shade the facecolors. Shading is always disabled when
*cmap* is specified.
lightsource : `~matplotlib.colors.LightSource`
The lightsource to use when *shade* is True.
**kwargs
All other keyword arguments are passed on to
:class:`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`
Examples
--------
.. plot:: gallery/mplot3d/trisurf3d.py
.. plot:: gallery/mplot3d/trisurf3d_2.py
"""
had_data = self.has_data()
# TODO: Support custom face colours
if color is None:
color = self._get_lines.get_next_color()
color = np.array(mcolors.to_rgba(color))
cmap = kwargs.get('cmap', None)
shade = kwargs.pop('shade', cmap is None)
tri, args, kwargs = \
Triangulation.get_from_args_and_kwargs(*args, **kwargs)
try:
z = kwargs.pop('Z')
except KeyError:
# We do this so Z doesn't get passed as an arg to PolyCollection
z, *args = args
z = np.asarray(z)
triangles = tri.get_masked_triangles()
xt = tri.x[triangles]
yt = tri.y[triangles]
zt = z[triangles]
verts = np.stack((xt, yt, zt), axis=-1)
if cmap:
polyc = art3d.Poly3DCollection(verts, *args, **kwargs)
# average over the three points of each triangle
avg_z = verts[:, :, 2].mean(axis=1)
polyc.set_array(avg_z)
if vmin is not None or vmax is not None:
polyc.set_clim(vmin, vmax)
if norm is not None:
polyc.set_norm(norm)
else:
polyc = art3d.Poly3DCollection(
verts, *args, shade=shade, lightsource=lightsource,
facecolors=color, **kwargs)
self.add_collection(polyc)
self.auto_scale_xyz(tri.x, tri.y, z, had_data)
return polyc
def _3d_extend_contour(self, cset, stride=5):
"""
Extend a contour in 3D by creating
"""
dz = (cset.levels[1] - cset.levels[0]) / 2
polyverts = []
colors = []
for idx, level in enumerate(cset.levels):
path = cset.get_paths()[idx]
subpaths = [*path._iter_connected_components()]
color = cset.get_edgecolor()[idx]
top = art3d._paths_to_3d_segments(subpaths, level - dz)
bot = art3d._paths_to_3d_segments(subpaths, level + dz)
if not len(top[0]):
continue
nsteps = max(round(len(top[0]) / stride), 2)
stepsize = (len(top[0]) - 1) / (nsteps - 1)
polyverts.extend([
(top[0][round(i * stepsize)], top[0][round((i + 1) * stepsize)],
bot[0][round((i + 1) * stepsize)], bot[0][round(i * stepsize)])
for i in range(round(nsteps) - 1)])
colors.extend([color] * (round(nsteps) - 1))
self.add_collection3d(art3d.Poly3DCollection(
np.array(polyverts), # All polygons have 4 vertices, so vectorize.
facecolors=colors, edgecolors=colors, shade=True))
cset.remove()
def add_contour_set(
self, cset, extend3d=False, stride=5, zdir='z', offset=None):
zdir = '-' + zdir
if extend3d:
self._3d_extend_contour(cset, stride)
else:
art3d.collection_2d_to_3d(
cset, zs=offset if offset is not None else cset.levels, zdir=zdir)
def add_contourf_set(self, cset, zdir='z', offset=None):
self._add_contourf_set(cset, zdir=zdir, offset=offset)
def _add_contourf_set(self, cset, zdir='z', offset=None):
"""
Returns
-------
levels : `numpy.ndarray`
Levels at which the filled contours are added.
"""
zdir = '-' + zdir
midpoints = cset.levels[:-1] + np.diff(cset.levels) / 2
# Linearly interpolate to get levels for any extensions
if cset._extend_min:
min_level = cset.levels[0] - np.diff(cset.levels[:2]) / 2
midpoints = np.insert(midpoints, 0, min_level)
if cset._extend_max:
max_level = cset.levels[-1] + np.diff(cset.levels[-2:]) / 2
midpoints = np.append(midpoints, max_level)
art3d.collection_2d_to_3d(
cset, zs=offset if offset is not None else midpoints, zdir=zdir)
return midpoints
@_preprocess_data()
def contour(self, X, Y, Z, *args,
extend3d=False, stride=5, zdir='z', offset=None, **kwargs):
"""
Create a 3D contour plot.
Parameters
----------
X, Y, Z : array-like,
Input data. See `.Axes.contour` for supported data shapes.
extend3d : bool, default: False
Whether to extend contour in 3D.
stride : int
Step size for extending contour.
zdir : {'x', 'y', 'z'}, default: 'z'
The direction to use.
offset : float, optional
If specified, plot a projection of the contour lines at this
position in a plane normal to *zdir*.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
*args, **kwargs
Other arguments are forwarded to `matplotlib.axes.Axes.contour`.
Returns
-------
matplotlib.contour.QuadContourSet
"""
had_data = self.has_data()
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
cset = super().contour(jX, jY, jZ, *args, **kwargs)
self.add_contour_set(cset, extend3d, stride, zdir, offset)
self.auto_scale_xyz(X, Y, Z, had_data)
return cset
contour3D = contour
@_preprocess_data()
def tricontour(self, *args,
extend3d=False, stride=5, zdir='z', offset=None, **kwargs):
"""
Create a 3D contour plot.
.. note::
This method currently produces incorrect output due to a
longstanding bug in 3D PolyCollection rendering.
Parameters
----------
X, Y, Z : array-like
Input data. See `.Axes.tricontour` for supported data shapes.
extend3d : bool, default: False
Whether to extend contour in 3D.
stride : int
Step size for extending contour.
zdir : {'x', 'y', 'z'}, default: 'z'
The direction to use.
offset : float, optional
If specified, plot a projection of the contour lines at this
position in a plane normal to *zdir*.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
*args, **kwargs
Other arguments are forwarded to `matplotlib.axes.Axes.tricontour`.
Returns
-------
matplotlib.tri._tricontour.TriContourSet
"""
had_data = self.has_data()
tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
*args, **kwargs)
X = tri.x
Y = tri.y
if 'Z' in kwargs:
Z = kwargs.pop('Z')
else:
# We do this so Z doesn't get passed as an arg to Axes.tricontour
Z, *args = args
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
tri = Triangulation(jX, jY, tri.triangles, tri.mask)
cset = super().tricontour(tri, jZ, *args, **kwargs)
self.add_contour_set(cset, extend3d, stride, zdir, offset)
self.auto_scale_xyz(X, Y, Z, had_data)
return cset
def _auto_scale_contourf(self, X, Y, Z, zdir, levels, had_data):
# Autoscale in the zdir based on the levels added, which are
# different from data range if any contour extensions are present
dim_vals = {'x': X, 'y': Y, 'z': Z, zdir: levels}
# Input data and levels have different sizes, but auto_scale_xyz
# expected same-size input, so manually take min/max limits
limits = [(np.nanmin(dim_vals[dim]), np.nanmax(dim_vals[dim]))
for dim in ['x', 'y', 'z']]
self.auto_scale_xyz(*limits, had_data)
@_preprocess_data()
def contourf(self, X, Y, Z, *args, zdir='z', offset=None, **kwargs):
"""
Create a 3D filled contour plot.
Parameters
----------
X, Y, Z : array-like
Input data. See `.Axes.contourf` for supported data shapes.
zdir : {'x', 'y', 'z'}, default: 'z'
The direction to use.
offset : float, optional
If specified, plot a projection of the contour lines at this
position in a plane normal to *zdir*.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
*args, **kwargs
Other arguments are forwarded to `matplotlib.axes.Axes.contourf`.
Returns
-------
matplotlib.contour.QuadContourSet
"""
had_data = self.has_data()
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
cset = super().contourf(jX, jY, jZ, *args, **kwargs)
levels = self._add_contourf_set(cset, zdir, offset)
self._auto_scale_contourf(X, Y, Z, zdir, levels, had_data)
return cset
contourf3D = contourf
@_preprocess_data()
def tricontourf(self, *args, zdir='z', offset=None, **kwargs):
"""
Create a 3D filled contour plot.
.. note::
This method currently produces incorrect output due to a
longstanding bug in 3D PolyCollection rendering.
Parameters
----------
X, Y, Z : array-like
Input data. See `.Axes.tricontourf` for supported data shapes.
zdir : {'x', 'y', 'z'}, default: 'z'
The direction to use.
offset : float, optional
If specified, plot a projection of the contour lines at this
position in a plane normal to zdir.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
*args, **kwargs
Other arguments are forwarded to
`matplotlib.axes.Axes.tricontourf`.
Returns
-------
matplotlib.tri._tricontour.TriContourSet
"""
had_data = self.has_data()
tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
*args, **kwargs)
X = tri.x
Y = tri.y
if 'Z' in kwargs:
Z = kwargs.pop('Z')
else:
# We do this so Z doesn't get passed as an arg to Axes.tricontourf
Z, *args = args
jX, jY, jZ = art3d.rotate_axes(X, Y, Z, zdir)
tri = Triangulation(jX, jY, tri.triangles, tri.mask)
cset = super().tricontourf(tri, jZ, *args, **kwargs)
levels = self._add_contourf_set(cset, zdir, offset)
self._auto_scale_contourf(X, Y, Z, zdir, levels, had_data)
return cset
def add_collection3d(self, col, zs=0, zdir='z'):
"""
Add a 3D collection object to the plot.
2D collection types are converted to a 3D version by
modifying the object and adding z coordinate information.
Supported are:
- PolyCollection
- LineCollection
- PatchCollection
"""
zvals = np.atleast_1d(zs)
zsortval = (np.min(zvals) if zvals.size
else 0) # FIXME: arbitrary default
# FIXME: use issubclass() (although, then a 3D collection
# object would also pass.) Maybe have a collection3d
# abstract class to test for and exclude?
if type(col) is mcoll.PolyCollection:
art3d.poly_collection_2d_to_3d(col, zs=zs, zdir=zdir)
col.set_sort_zpos(zsortval)
elif type(col) is mcoll.LineCollection:
art3d.line_collection_2d_to_3d(col, zs=zs, zdir=zdir)
col.set_sort_zpos(zsortval)
elif type(col) is mcoll.PatchCollection:
art3d.patch_collection_2d_to_3d(col, zs=zs, zdir=zdir)
col.set_sort_zpos(zsortval)
collection = super().add_collection(col)
return collection
@_preprocess_data(replace_names=["xs", "ys", "zs", "s",
"edgecolors", "c", "facecolor",
"facecolors", "color"])
def scatter(self, xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True,
*args, **kwargs):
"""
Create a scatter plot.
Parameters
----------
xs, ys : array-like
The data positions.
zs : float or array-like, default: 0
The z-positions. Either an array of the same length as *xs* and
*ys* or a single value to place all points in the same plane.
zdir : {'x', 'y', 'z', '-x', '-y', '-z'}, default: 'z'
The axis direction for the *zs*. This is useful when plotting 2D
data on a 3D Axes. The data must be passed as *xs*, *ys*. Setting
*zdir* to 'y' then plots the data to the x-z-plane.
See also :doc:`/gallery/mplot3d/2dcollections3d`.
s : float or array-like, default: 20
The marker size in points**2. Either an array of the same length
as *xs* and *ys* or a single value to make all markers the same
size.
c : color, sequence, or sequence of colors, optional
The marker color. Possible values:
- A single color format string.
- A sequence of colors of length n.
- A sequence of n numbers to be mapped to colors using *cmap* and
*norm*.
- A 2D array in which the rows are RGB or RGBA.
For more details see the *c* argument of `~.axes.Axes.scatter`.
depthshade : bool, default: True
Whether to shade the scatter markers to give the appearance of
depth. Each call to ``scatter()`` will perform its depthshading
independently.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
**kwargs
All other keyword arguments are passed on to `~.axes.Axes.scatter`.
Returns
-------
paths : `~matplotlib.collections.PathCollection`
"""
had_data = self.has_data()
zs_orig = zs
xs, ys, zs = np.broadcast_arrays(
*[np.ravel(np.ma.filled(t, np.nan)) for t in [xs, ys, zs]])
s = np.ma.ravel(s) # This doesn't have to match x, y in size.
xs, ys, zs, s, c, color = cbook.delete_masked_points(
xs, ys, zs, s, c, kwargs.get('color', None)
)
if kwargs.get("color") is not None:
kwargs['color'] = color
# For xs and ys, 2D scatter() will do the copying.
if np.may_share_memory(zs_orig, zs): # Avoid unnecessary copies.
zs = zs.copy()
patches = super().scatter(xs, ys, s=s, c=c, *args, **kwargs)
art3d.patch_collection_2d_to_3d(patches, zs=zs, zdir=zdir,
depthshade=depthshade)
if self._zmargin < 0.05 and xs.size > 0:
self.set_zmargin(0.05)
self.auto_scale_xyz(xs, ys, zs, had_data)
return patches
scatter3D = scatter
@_preprocess_data()
def bar(self, left, height, zs=0, zdir='z', *args, **kwargs):
"""
Add 2D bar(s).
Parameters
----------
left : 1D array-like
The x coordinates of the left sides of the bars.
height : 1D array-like
The height of the bars.
zs : float or 1D array-like
Z coordinate of bars; if a single value is specified, it will be
used for all bars.
zdir : {'x', 'y', 'z'}, default: 'z'
When plotting 2D data, the direction to use as z ('x', 'y' or 'z').
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
**kwargs
Other keyword arguments are forwarded to
`matplotlib.axes.Axes.bar`.
Returns
-------
mpl_toolkits.mplot3d.art3d.Patch3DCollection
"""
had_data = self.has_data()
patches = super().bar(left, height, *args, **kwargs)
zs = np.broadcast_to(zs, len(left))
verts = []
verts_zs = []
for p, z in zip(patches, zs):
vs = art3d._get_patch_verts(p)
verts += vs.tolist()
verts_zs += [z] * len(vs)
art3d.patch_2d_to_3d(p, z, zdir)
if 'alpha' in kwargs:
p.set_alpha(kwargs['alpha'])
if len(verts) > 0:
# the following has to be skipped if verts is empty
# NOTE: Bugs could still occur if len(verts) > 0,
# but the "2nd dimension" is empty.
xs, ys = zip(*verts)
else:
xs, ys = [], []
xs, ys, verts_zs = art3d.juggle_axes(xs, ys, verts_zs, zdir)
self.auto_scale_xyz(xs, ys, verts_zs, had_data)
return patches
@_preprocess_data()
def bar3d(self, x, y, z, dx, dy, dz, color=None,
zsort='average', shade=True, lightsource=None, *args, **kwargs):
"""
Generate a 3D barplot.
This method creates three-dimensional barplot where the width,
depth, height, and color of the bars can all be uniquely set.
Parameters
----------
x, y, z : array-like
The coordinates of the anchor point of the bars.
dx, dy, dz : float or array-like
The width, depth, and height of the bars, respectively.
color : sequence of colors, optional
The color of the bars can be specified globally or
individually. This parameter can be:
- A single color, to color all bars the same color.
- An array of colors of length N bars, to color each bar
independently.
- An array of colors of length 6, to color the faces of the
bars similarly.
- An array of colors of length 6 * N bars, to color each face
independently.
When coloring the faces of the boxes specifically, this is
the order of the coloring:
1. -Z (bottom of box)
2. +Z (top of box)
3. -Y
4. +Y
5. -X
6. +X
zsort : str, optional
The z-axis sorting scheme passed onto `~.art3d.Poly3DCollection`
shade : bool, default: True
When true, this shades the dark sides of the bars (relative
to the plot's source of light).
lightsource : `~matplotlib.colors.LightSource`
The lightsource to use when *shade* is True.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
**kwargs
Any additional keyword arguments are passed onto
`~.art3d.Poly3DCollection`.
Returns
-------
collection : `~.art3d.Poly3DCollection`
A collection of three-dimensional polygons representing the bars.
"""
had_data = self.has_data()
x, y, z, dx, dy, dz = np.broadcast_arrays(
np.atleast_1d(x), y, z, dx, dy, dz)
minx = np.min(x)
maxx = np.max(x + dx)
miny = np.min(y)
maxy = np.max(y + dy)
minz = np.min(z)
maxz = np.max(z + dz)
# shape (6, 4, 3)
# All faces are oriented facing outwards - when viewed from the
# outside, their vertices are in a counterclockwise ordering.
cuboid = np.array([
# -z
(
(0, 0, 0),
(0, 1, 0),
(1, 1, 0),
(1, 0, 0),
),
# +z
(
(0, 0, 1),
(1, 0, 1),
(1, 1, 1),
(0, 1, 1),
),
# -y
(
(0, 0, 0),
(1, 0, 0),
(1, 0, 1),
(0, 0, 1),
),
# +y
(
(0, 1, 0),
(0, 1, 1),
(1, 1, 1),
(1, 1, 0),
),
# -x
(
(0, 0, 0),
(0, 0, 1),
(0, 1, 1),
(0, 1, 0),
),
# +x
(
(1, 0, 0),
(1, 1, 0),
(1, 1, 1),
(1, 0, 1),
),
])
# indexed by [bar, face, vertex, coord]
polys = np.empty(x.shape + cuboid.shape)
# handle each coordinate separately
for i, p, dp in [(0, x, dx), (1, y, dy), (2, z, dz)]:
p = p[..., np.newaxis, np.newaxis]
dp = dp[..., np.newaxis, np.newaxis]
polys[..., i] = p + dp * cuboid[..., i]
# collapse the first two axes
polys = polys.reshape((-1,) + polys.shape[2:])
facecolors = []
if color is None:
color = [self._get_patches_for_fill.get_next_color()]
color = list(mcolors.to_rgba_array(color))
if len(color) == len(x):
# bar colors specified, need to expand to number of faces
for c in color:
facecolors.extend([c] * 6)
else:
# a single color specified, or face colors specified explicitly
facecolors = color
if len(facecolors) < len(x):
facecolors *= (6 * len(x))
col = art3d.Poly3DCollection(polys,
zsort=zsort,
facecolors=facecolors,
shade=shade,
lightsource=lightsource,
*args, **kwargs)
self.add_collection(col)
self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data)
return col
def set_title(self, label, fontdict=None, loc='center', **kwargs):
# docstring inherited
ret = super().set_title(label, fontdict=fontdict, loc=loc, **kwargs)
(x, y) = self.title.get_position()
self.title.set_y(0.92 * y)
return ret
@_preprocess_data()
def quiver(self, X, Y, Z, U, V, W, *,
length=1, arrow_length_ratio=.3, pivot='tail', normalize=False,
**kwargs):
"""
Plot a 3D field of arrows.
The arguments can be array-like or scalars, so long as they can be
broadcast together. The arguments can also be masked arrays. If an
element in any of argument is masked, then that corresponding quiver
element will not be plotted.
Parameters
----------
X, Y, Z : array-like
The x, y and z coordinates of the arrow locations (default is
tail of arrow; see *pivot* kwarg).
U, V, W : array-like
The x, y and z components of the arrow vectors.
length : float, default: 1
The length of each quiver.
arrow_length_ratio : float, default: 0.3
The ratio of the arrow head with respect to the quiver.
pivot : {'tail', 'middle', 'tip'}, default: 'tail'
The part of the arrow that is at the grid point; the arrow
rotates about this point, hence the name *pivot*.
normalize : bool, default: False
Whether all arrows are normalized to have the same length, or keep
the lengths defined by *u*, *v*, and *w*.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
**kwargs
Any additional keyword arguments are delegated to
:class:`.Line3DCollection`
"""
def calc_arrows(UVW):
# get unit direction vector perpendicular to (u, v, w)
x = UVW[:, 0]
y = UVW[:, 1]
norm = np.linalg.norm(UVW[:, :2], axis=1)
x_p = np.divide(y, norm, where=norm != 0, out=np.zeros_like(x))
y_p = np.divide(-x, norm, where=norm != 0, out=np.ones_like(x))
# compute the two arrowhead direction unit vectors
rangle = math.radians(15)
c = math.cos(rangle)
s = math.sin(rangle)
# construct the rotation matrices of shape (3, 3, n)
r13 = y_p * s
r32 = x_p * s
r12 = x_p * y_p * (1 - c)
Rpos = np.array(
[[c + (x_p ** 2) * (1 - c), r12, r13],
[r12, c + (y_p ** 2) * (1 - c), -r32],
[-r13, r32, np.full_like(x_p, c)]])
# opposite rotation negates all the sin terms
Rneg = Rpos.copy()
Rneg[[0, 1, 2, 2], [2, 2, 0, 1]] *= -1
# Batch n (3, 3) x (3) matrix multiplications ((3, 3, n) x (n, 3)).
Rpos_vecs = np.einsum("ij...,...j->...i", Rpos, UVW)
Rneg_vecs = np.einsum("ij...,...j->...i", Rneg, UVW)
# Stack into (n, 2, 3) result.
return np.stack([Rpos_vecs, Rneg_vecs], axis=1)
had_data = self.has_data()
input_args = [X, Y, Z, U, V, W]
# extract the masks, if any
masks = [k.mask for k in input_args
if isinstance(k, np.ma.MaskedArray)]
# broadcast to match the shape
bcast = np.broadcast_arrays(*input_args, *masks)
input_args = bcast[:6]
masks = bcast[6:]
if masks:
# combine the masks into one
mask = functools.reduce(np.logical_or, masks)
# put mask on and compress
input_args = [np.ma.array(k, mask=mask).compressed()
for k in input_args]
else:
input_args = [np.ravel(k) for k in input_args]
if any(len(v) == 0 for v in input_args):
# No quivers, so just make an empty collection and return early
linec = art3d.Line3DCollection([], **kwargs)
self.add_collection(linec)
return linec
shaft_dt = np.array([0., length], dtype=float)
arrow_dt = shaft_dt * arrow_length_ratio
_api.check_in_list(['tail', 'middle', 'tip'], pivot=pivot)
if pivot == 'tail':
shaft_dt -= length
elif pivot == 'middle':
shaft_dt -= length / 2
XYZ = np.column_stack(input_args[:3])
UVW = np.column_stack(input_args[3:]).astype(float)
# Normalize rows of UVW
if normalize:
norm = np.linalg.norm(UVW, axis=1)
norm[norm == 0] = 1
UVW = UVW / norm.reshape((-1, 1))
if len(XYZ) > 0:
# compute the shaft lines all at once with an outer product
shafts = (XYZ - np.multiply.outer(shaft_dt, UVW)).swapaxes(0, 1)
# compute head direction vectors, n heads x 2 sides x 3 dimensions
head_dirs = calc_arrows(UVW)
# compute all head lines at once, starting from the shaft ends
heads = shafts[:, :1] - np.multiply.outer(arrow_dt, head_dirs)
# stack left and right head lines together
heads = heads.reshape((len(arrow_dt), -1, 3))
# transpose to get a list of lines
heads = heads.swapaxes(0, 1)
lines = [*shafts, *heads[::2], *heads[1::2]]
else:
lines = []
linec = art3d.Line3DCollection(lines, **kwargs)
self.add_collection(linec)
self.auto_scale_xyz(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], had_data)
return linec
quiver3D = quiver
def voxels(self, *args, facecolors=None, edgecolors=None, shade=True,
lightsource=None, **kwargs):
"""
ax.voxels([x, y, z,] /, filled, facecolors=None, edgecolors=None, \
**kwargs)
Plot a set of filled voxels
All voxels are plotted as 1x1x1 cubes on the axis, with
``filled[0, 0, 0]`` placed with its lower corner at the origin.
Occluded faces are not plotted.
Parameters
----------
filled : 3D np.array of bool
A 3D array of values, with truthy values indicating which voxels
to fill
x, y, z : 3D np.array, optional
The coordinates of the corners of the voxels. This should broadcast
to a shape one larger in every dimension than the shape of
*filled*. These can be used to plot non-cubic voxels.
If not specified, defaults to increasing integers along each axis,
like those returned by :func:`~numpy.indices`.
As indicated by the ``/`` in the function signature, these
arguments can only be passed positionally.
facecolors, edgecolors : array-like, optional
The color to draw the faces and edges of the voxels. Can only be
passed as keyword arguments.
These parameters can be:
- A single color value, to color all voxels the same color. This
can be either a string, or a 1D RGB/RGBA array
- ``None``, the default, to use a single color for the faces, and
the style default for the edges.
- A 3D `~numpy.ndarray` of color names, with each item the color
for the corresponding voxel. The size must match the voxels.
- A 4D `~numpy.ndarray` of RGB/RGBA data, with the components
along the last axis.
shade : bool, default: True
Whether to shade the facecolors.
lightsource : `~matplotlib.colors.LightSource`
The lightsource to use when *shade* is True.
**kwargs
Additional keyword arguments to pass onto
`~mpl_toolkits.mplot3d.art3d.Poly3DCollection`.
Returns
-------
faces : dict
A dictionary indexed by coordinate, where ``faces[i, j, k]`` is a
`.Poly3DCollection` of the faces drawn for the voxel
``filled[i, j, k]``. If no faces were drawn for a given voxel,
either because it was not asked to be drawn, or it is fully
occluded, then ``(i, j, k) not in faces``.
Examples
--------
.. plot:: gallery/mplot3d/voxels.py
.. plot:: gallery/mplot3d/voxels_rgb.py
.. plot:: gallery/mplot3d/voxels_torus.py
.. plot:: gallery/mplot3d/voxels_numpy_logo.py
"""
# work out which signature we should be using, and use it to parse
# the arguments. Name must be voxels for the correct error message
if len(args) >= 3:
# underscores indicate position only
def voxels(__x, __y, __z, filled, **kwargs):
return (__x, __y, __z), filled, kwargs
else:
def voxels(filled, **kwargs):
return None, filled, kwargs
xyz, filled, kwargs = voxels(*args, **kwargs)
# check dimensions
if filled.ndim != 3:
raise ValueError("Argument filled must be 3-dimensional")
size = np.array(filled.shape, dtype=np.intp)
# check xyz coordinates, which are one larger than the filled shape
coord_shape = tuple(size + 1)
if xyz is None:
x, y, z = np.indices(coord_shape)
else:
x, y, z = (np.broadcast_to(c, coord_shape) for c in xyz)
def _broadcast_color_arg(color, name):
if np.ndim(color) in (0, 1):
# single color, like "red" or [1, 0, 0]
return np.broadcast_to(color, filled.shape + np.shape(color))
elif np.ndim(color) in (3, 4):
# 3D array of strings, or 4D array with last axis rgb
if np.shape(color)[:3] != filled.shape:
raise ValueError(
f"When multidimensional, {name} must match the shape "
"of filled")
return color
else:
raise ValueError(f"Invalid {name} argument")
# broadcast and default on facecolors
if facecolors is None:
facecolors = self._get_patches_for_fill.get_next_color()
facecolors = _broadcast_color_arg(facecolors, 'facecolors')
# broadcast but no default on edgecolors
edgecolors = _broadcast_color_arg(edgecolors, 'edgecolors')
# scale to the full array, even if the data is only in the center
self.auto_scale_xyz(x, y, z)
# points lying on corners of a square
square = np.array([
[0, 0, 0],
[1, 0, 0],
[1, 1, 0],
[0, 1, 0],
], dtype=np.intp)
voxel_faces = defaultdict(list)
def permutation_matrices(n):
"""Generate cyclic permutation matrices."""
mat = np.eye(n, dtype=np.intp)
for i in range(n):
yield mat
mat = np.roll(mat, 1, axis=0)
# iterate over each of the YZ, ZX, and XY orientations, finding faces
# to render
for permute in permutation_matrices(3):
# find the set of ranges to iterate over
pc, qc, rc = permute.T.dot(size)
pinds = np.arange(pc)
qinds = np.arange(qc)
rinds = np.arange(rc)
square_rot_pos = square.dot(permute.T)
square_rot_neg = square_rot_pos[::-1]
# iterate within the current plane
for p in pinds:
for q in qinds:
# iterate perpendicularly to the current plane, handling
# boundaries. We only draw faces between a voxel and an
# empty space, to avoid drawing internal faces.
# draw lower faces
p0 = permute.dot([p, q, 0])
i0 = tuple(p0)
if filled[i0]:
voxel_faces[i0].append(p0 + square_rot_neg)
# draw middle faces
for r1, r2 in zip(rinds[:-1], rinds[1:]):
p1 = permute.dot([p, q, r1])
p2 = permute.dot([p, q, r2])
i1 = tuple(p1)
i2 = tuple(p2)
if filled[i1] and not filled[i2]:
voxel_faces[i1].append(p2 + square_rot_pos)
elif not filled[i1] and filled[i2]:
voxel_faces[i2].append(p2 + square_rot_neg)
# draw upper faces
pk = permute.dot([p, q, rc-1])
pk2 = permute.dot([p, q, rc])
ik = tuple(pk)
if filled[ik]:
voxel_faces[ik].append(pk2 + square_rot_pos)
# iterate over the faces, and generate a Poly3DCollection for each
# voxel
polygons = {}
for coord, faces_inds in voxel_faces.items():
# convert indices into 3D positions
if xyz is None:
faces = faces_inds
else:
faces = []
for face_inds in faces_inds:
ind = face_inds[:, 0], face_inds[:, 1], face_inds[:, 2]
face = np.empty(face_inds.shape)
face[:, 0] = x[ind]
face[:, 1] = y[ind]
face[:, 2] = z[ind]
faces.append(face)
# shade the faces
facecolor = facecolors[coord]
edgecolor = edgecolors[coord]
poly = art3d.Poly3DCollection(
faces, facecolors=facecolor, edgecolors=edgecolor,
shade=shade, lightsource=lightsource, **kwargs)
self.add_collection3d(poly)
polygons[coord] = poly
return polygons
@_preprocess_data(replace_names=["x", "y", "z", "xerr", "yerr", "zerr"])
def errorbar(self, x, y, z, zerr=None, yerr=None, xerr=None, fmt='',
barsabove=False, errorevery=1, ecolor=None, elinewidth=None,
capsize=None, capthick=None, xlolims=False, xuplims=False,
ylolims=False, yuplims=False, zlolims=False, zuplims=False,
**kwargs):
"""
Plot lines and/or markers with errorbars around them.
*x*/*y*/*z* define the data locations, and *xerr*/*yerr*/*zerr* define
the errorbar sizes. By default, this draws the data markers/lines as
well the errorbars. Use fmt='none' to draw errorbars only.
Parameters
----------
x, y, z : float or array-like
The data positions.
xerr, yerr, zerr : float or array-like, shape (N,) or (2, N), optional
The errorbar sizes:
- scalar: Symmetric +/- values for all data points.
- shape(N,): Symmetric +/-values for each data point.
- shape(2, N): Separate - and + values for each bar. First row
contains the lower errors, the second row contains the upper
errors.
- *None*: No errorbar.
Note that all error arrays should have *positive* values.
fmt : str, default: ''
The format for the data points / data lines. See `.plot` for
details.
Use 'none' (case-insensitive) to plot errorbars without any data
markers.
ecolor : color, default: None
The color of the errorbar lines. If None, use the color of the
line connecting the markers.
elinewidth : float, default: None
The linewidth of the errorbar lines. If None, the linewidth of
the current style is used.
capsize : float, default: :rc:`errorbar.capsize`
The length of the error bar caps in points.
capthick : float, default: None
An alias to the keyword argument *markeredgewidth* (a.k.a. *mew*).
This setting is a more sensible name for the property that
controls the thickness of the error bar cap in points. For
backwards compatibility, if *mew* or *markeredgewidth* are given,
then they will over-ride *capthick*. This may change in future
releases.
barsabove : bool, default: False
If True, will plot the errorbars above the plot
symbols. Default is below.
xlolims, ylolims, zlolims : bool, default: False
These arguments can be used to indicate that a value gives only
lower limits. In that case a caret symbol is used to indicate
this. *lims*-arguments may be scalars, or array-likes of the same
length as the errors. To use limits with inverted axes,
`~.Axes.set_xlim` or `~.Axes.set_ylim` must be called before
`errorbar`. Note the tricky parameter names: setting e.g.
*ylolims* to True means that the y-value is a *lower* limit of the
True value, so, only an *upward*-pointing arrow will be drawn!
xuplims, yuplims, zuplims : bool, default: False
Same as above, but for controlling the upper limits.
errorevery : int or (int, int), default: 1
draws error bars on a subset of the data. *errorevery* =N draws
error bars on the points (x[::N], y[::N], z[::N]).
*errorevery* =(start, N) draws error bars on the points
(x[start::N], y[start::N], z[start::N]). e.g. *errorevery* =(6, 3)
adds error bars to the data at (x[6], x[9], x[12], x[15], ...).
Used to avoid overlapping error bars when two series share x-axis
values.
Returns
-------
errlines : list
List of `~mpl_toolkits.mplot3d.art3d.Line3DCollection` instances
each containing an errorbar line.
caplines : list
List of `~mpl_toolkits.mplot3d.art3d.Line3D` instances each
containing a capline object.
limmarks : list
List of `~mpl_toolkits.mplot3d.art3d.Line3D` instances each
containing a marker with an upper or lower limit.
Other Parameters
----------------
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
**kwargs
All other keyword arguments for styling errorbar lines are passed
`~mpl_toolkits.mplot3d.art3d.Line3DCollection`.
Examples
--------
.. plot:: gallery/mplot3d/errorbar3d.py
"""
had_data = self.has_data()
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
# Drop anything that comes in as None to use the default instead.
kwargs = {k: v for k, v in kwargs.items() if v is not None}
kwargs.setdefault('zorder', 2)
self._process_unit_info([("x", x), ("y", y), ("z", z)], kwargs,
convert=False)
# make sure all the args are iterable; use lists not arrays to
# preserve units
x = x if np.iterable(x) else [x]
y = y if np.iterable(y) else [y]
z = z if np.iterable(z) else [z]
if not len(x) == len(y) == len(z):
raise ValueError("'x', 'y', and 'z' must have the same size")
everymask = self._errorevery_to_mask(x, errorevery)
label = kwargs.pop("label", None)
kwargs['label'] = '_nolegend_'
# Create the main line and determine overall kwargs for child artists.
# We avoid calling self.plot() directly, or self._get_lines(), because
# that would call self._process_unit_info again, and do other indirect
# data processing.
(data_line, base_style), = self._get_lines._plot_args(
self, (x, y) if fmt == '' else (x, y, fmt), kwargs, return_kwargs=True)
art3d.line_2d_to_3d(data_line, zs=z)
# Do this after creating `data_line` to avoid modifying `base_style`.
if barsabove:
data_line.set_zorder(kwargs['zorder'] - .1)
else:
data_line.set_zorder(kwargs['zorder'] + .1)
# Add line to plot, or throw it away and use it to determine kwargs.
if fmt.lower() != 'none':
self.add_line(data_line)
else:
data_line = None
# Remove alpha=0 color that _process_plot_format returns.
base_style.pop('color')
if 'color' not in base_style:
base_style['color'] = 'C0'
if ecolor is None:
ecolor = base_style['color']
# Eject any line-specific information from format string, as it's not
# needed for bars or caps.
for key in ['marker', 'markersize', 'markerfacecolor',
'markeredgewidth', 'markeredgecolor', 'markevery',
'linestyle', 'fillstyle', 'drawstyle', 'dash_capstyle',
'dash_joinstyle', 'solid_capstyle', 'solid_joinstyle']:
base_style.pop(key, None)
# Make the style dict for the line collections (the bars).
eb_lines_style = {**base_style, 'color': ecolor}
if elinewidth:
eb_lines_style['linewidth'] = elinewidth
elif 'linewidth' in kwargs:
eb_lines_style['linewidth'] = kwargs['linewidth']
for key in ('transform', 'alpha', 'zorder', 'rasterized'):
if key in kwargs:
eb_lines_style[key] = kwargs[key]
# Make the style dict for caps (the "hats").
eb_cap_style = {**base_style, 'linestyle': 'None'}
if capsize is None:
capsize = mpl.rcParams["errorbar.capsize"]
if capsize > 0:
eb_cap_style['markersize'] = 2. * capsize
if capthick is not None:
eb_cap_style['markeredgewidth'] = capthick
eb_cap_style['color'] = ecolor
def _apply_mask(arrays, mask):
# Return, for each array in *arrays*, the elements for which *mask*
# is True, without using fancy indexing.
return [[*itertools.compress(array, mask)] for array in arrays]
def _extract_errs(err, data, lomask, himask):
# For separate +/- error values we need to unpack err
if len(err.shape) == 2:
low_err, high_err = err
else:
low_err, high_err = err, err
lows = np.where(lomask | ~everymask, data, data - low_err)
highs = np.where(himask | ~everymask, data, data + high_err)
return lows, highs
# collect drawn items while looping over the three coordinates
errlines, caplines, limmarks = [], [], []
# list of endpoint coordinates, used for auto-scaling
coorderrs = []
# define the markers used for errorbar caps and limits below
# the dictionary key is mapped by the `i_xyz` helper dictionary
capmarker = {0: '|', 1: '|', 2: '_'}
i_xyz = {'x': 0, 'y': 1, 'z': 2}
# Calculate marker size from points to quiver length. Because these are
# not markers, and 3D Axes do not use the normal transform stack, this
# is a bit involved. Since the quiver arrows will change size as the
# scene is rotated, they are given a standard size based on viewing
# them directly in planar form.
quiversize = eb_cap_style.get('markersize',
mpl.rcParams['lines.markersize']) ** 2
quiversize *= self.figure.dpi / 72
quiversize = self.transAxes.inverted().transform([
(0, 0), (quiversize, quiversize)])
quiversize = np.mean(np.diff(quiversize, axis=0))
# quiversize is now in Axes coordinates, and to convert back to data
# coordinates, we need to run it through the inverse 3D transform. For
# consistency, this uses a fixed elevation, azimuth, and roll.
with cbook._setattr_cm(self, elev=0, azim=0, roll=0):
invM = np.linalg.inv(self.get_proj())
# elev=azim=roll=0 produces the Y-Z plane, so quiversize in 2D 'x' is
# 'y' in 3D, hence the 1 index.
quiversize = np.dot(invM, [quiversize, 0, 0, 0])[1]
# Quivers use a fixed 15-degree arrow head, so scale up the length so
# that the size corresponds to the base. In other words, this constant
# corresponds to the equation tan(15) = (base / 2) / (arrow length).
quiversize *= 1.8660254037844388
eb_quiver_style = {**eb_cap_style,
'length': quiversize, 'arrow_length_ratio': 1}
eb_quiver_style.pop('markersize', None)
# loop over x-, y-, and z-direction and draw relevant elements
for zdir, data, err, lolims, uplims in zip(
['x', 'y', 'z'], [x, y, z], [xerr, yerr, zerr],
[xlolims, ylolims, zlolims], [xuplims, yuplims, zuplims]):
dir_vector = art3d.get_dir_vector(zdir)
i_zdir = i_xyz[zdir]
if err is None:
continue
if not np.iterable(err):
err = [err] * len(data)
err = np.atleast_1d(err)
# arrays fine here, they are booleans and hence not units
lolims = np.broadcast_to(lolims, len(data)).astype(bool)
uplims = np.broadcast_to(uplims, len(data)).astype(bool)
# a nested list structure that expands to (xl,xh),(yl,yh),(zl,zh),
# where x/y/z and l/h correspond to dimensions and low/high
# positions of errorbars in a dimension we're looping over
coorderr = [
_extract_errs(err * dir_vector[i], coord, lolims, uplims)
for i, coord in enumerate([x, y, z])]
(xl, xh), (yl, yh), (zl, zh) = coorderr
# draws capmarkers - flat caps orthogonal to the error bars
nolims = ~(lolims | uplims)
if nolims.any() and capsize > 0:
lo_caps_xyz = _apply_mask([xl, yl, zl], nolims & everymask)
hi_caps_xyz = _apply_mask([xh, yh, zh], nolims & everymask)
# setting '_' for z-caps and '|' for x- and y-caps;
# these markers will rotate as the viewing angle changes
cap_lo = art3d.Line3D(*lo_caps_xyz, ls='',
marker=capmarker[i_zdir],
**eb_cap_style)
cap_hi = art3d.Line3D(*hi_caps_xyz, ls='',
marker=capmarker[i_zdir],
**eb_cap_style)
self.add_line(cap_lo)
self.add_line(cap_hi)
caplines.append(cap_lo)
caplines.append(cap_hi)
if lolims.any():
xh0, yh0, zh0 = _apply_mask([xh, yh, zh], lolims & everymask)
self.quiver(xh0, yh0, zh0, *dir_vector, **eb_quiver_style)
if uplims.any():
xl0, yl0, zl0 = _apply_mask([xl, yl, zl], uplims & everymask)
self.quiver(xl0, yl0, zl0, *-dir_vector, **eb_quiver_style)
errline = art3d.Line3DCollection(np.array(coorderr).T,
**eb_lines_style)
self.add_collection(errline)
errlines.append(errline)
coorderrs.append(coorderr)
coorderrs = np.array(coorderrs)
def _digout_minmax(err_arr, coord_label):
return (np.nanmin(err_arr[:, i_xyz[coord_label], :, :]),
np.nanmax(err_arr[:, i_xyz[coord_label], :, :]))
minx, maxx = _digout_minmax(coorderrs, 'x')
miny, maxy = _digout_minmax(coorderrs, 'y')
minz, maxz = _digout_minmax(coorderrs, 'z')
self.auto_scale_xyz((minx, maxx), (miny, maxy), (minz, maxz), had_data)
# Adapting errorbar containers for 3d case, assuming z-axis points "up"
errorbar_container = mcontainer.ErrorbarContainer(
(data_line, tuple(caplines), tuple(errlines)),
has_xerr=(xerr is not None or yerr is not None),
has_yerr=(zerr is not None),
label=label)
self.containers.append(errorbar_container)
return errlines, caplines, limmarks
@_api.make_keyword_only("3.8", "call_axes_locator")
def get_tightbbox(self, renderer=None, call_axes_locator=True,
bbox_extra_artists=None, *, for_layout_only=False):
ret = super().get_tightbbox(renderer,
call_axes_locator=call_axes_locator,
bbox_extra_artists=bbox_extra_artists,
for_layout_only=for_layout_only)
batch = [ret]
if self._axis3don:
for axis in self._axis_map.values():
if axis.get_visible():
axis_bb = martist._get_tightbbox_for_layout_only(
axis, renderer)
if axis_bb:
batch.append(axis_bb)
return mtransforms.Bbox.union(batch)
@_preprocess_data()
def stem(self, x, y, z, *, linefmt='C0-', markerfmt='C0o', basefmt='C3-',
bottom=0, label=None, orientation='z'):
"""
Create a 3D stem plot.
A stem plot draws lines perpendicular to a baseline, and places markers
at the heads. By default, the baseline is defined by *x* and *y*, and
stems are drawn vertically from *bottom* to *z*.
Parameters
----------
x, y, z : array-like
The positions of the heads of the stems. The stems are drawn along
the *orientation*-direction from the baseline at *bottom* (in the
*orientation*-coordinate) to the heads. By default, the *x* and *y*
positions are used for the baseline and *z* for the head position,
but this can be changed by *orientation*.
linefmt : str, default: 'C0-'
A string defining the properties of the vertical lines. Usually,
this will be a color or a color and a linestyle:
========= =============
Character Line Style
========= =============
``'-'`` solid line
``'--'`` dashed line
``'-.'`` dash-dot line
``':'`` dotted line
========= =============
Note: While it is technically possible to specify valid formats
other than color or color and linestyle (e.g. 'rx' or '-.'), this
is beyond the intention of the method and will most likely not
result in a reasonable plot.
markerfmt : str, default: 'C0o'
A string defining the properties of the markers at the stem heads.
basefmt : str, default: 'C3-'
A format string defining the properties of the baseline.
bottom : float, default: 0
The position of the baseline, in *orientation*-coordinates.
label : str, default: None
The label to use for the stems in legends.
orientation : {'x', 'y', 'z'}, default: 'z'
The direction along which stems are drawn.
data : indexable object, optional
DATA_PARAMETER_PLACEHOLDER
Returns
-------
`.StemContainer`
The container may be treated like a tuple
(*markerline*, *stemlines*, *baseline*)
Examples
--------
.. plot:: gallery/mplot3d/stem3d_demo.py
"""
from matplotlib.container import StemContainer
had_data = self.has_data()
_api.check_in_list(['x', 'y', 'z'], orientation=orientation)
xlim = (np.min(x), np.max(x))
ylim = (np.min(y), np.max(y))
zlim = (np.min(z), np.max(z))
# Determine the appropriate plane for the baseline and the direction of
# stemlines based on the value of orientation.
if orientation == 'x':
basex, basexlim = y, ylim
basey, baseylim = z, zlim
lines = [[(bottom, thisy, thisz), (thisx, thisy, thisz)]
for thisx, thisy, thisz in zip(x, y, z)]
elif orientation == 'y':
basex, basexlim = x, xlim
basey, baseylim = z, zlim
lines = [[(thisx, bottom, thisz), (thisx, thisy, thisz)]
for thisx, thisy, thisz in zip(x, y, z)]
else:
basex, basexlim = x, xlim
basey, baseylim = y, ylim
lines = [[(thisx, thisy, bottom), (thisx, thisy, thisz)]
for thisx, thisy, thisz in zip(x, y, z)]
# Determine style for stem lines.
linestyle, linemarker, linecolor = _process_plot_format(linefmt)
if linestyle is None:
linestyle = mpl.rcParams['lines.linestyle']
# Plot everything in required order.
baseline, = self.plot(basex, basey, basefmt, zs=bottom,
zdir=orientation, label='_nolegend_')
stemlines = art3d.Line3DCollection(
lines, linestyles=linestyle, colors=linecolor, label='_nolegend_')
self.add_collection(stemlines)
markerline, = self.plot(x, y, z, markerfmt, label='_nolegend_')
stem_container = StemContainer((markerline, stemlines, baseline),
label=label)
self.add_container(stem_container)
jx, jy, jz = art3d.juggle_axes(basexlim, baseylim, [bottom, bottom],
orientation)
self.auto_scale_xyz([*jx, *xlim], [*jy, *ylim], [*jz, *zlim], had_data)
return stem_container
stem3D = stem
def get_test_data(delta=0.05):
"""Return a tuple X, Y, Z with a test data set."""
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-(X**2 + Y**2) / 2) / (2 * np.pi)
Z2 = (np.exp(-(((X - 1) / 1.5)**2 + ((Y - 1) / 0.5)**2) / 2) /
(2 * np.pi * 0.5 * 1.5))
Z = Z2 - Z1
X = X * 10
Y = Y * 10
Z = Z * 500
return X, Y, Z