ai-content-maker/.venv/Lib/site-packages/mpmath/calculus/differentiation.py

648 lines
20 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from ..libmp.backend import xrange
from .calculus import defun
try:
iteritems = dict.iteritems
except AttributeError:
iteritems = dict.items
#----------------------------------------------------------------------------#
# Differentiation #
#----------------------------------------------------------------------------#
@defun
def difference(ctx, s, n):
r"""
Given a sequence `(s_k)` containing at least `n+1` items, returns the
`n`-th forward difference,
.. math ::
\Delta^n = \sum_{k=0}^{\infty} (-1)^{k+n} {n \choose k} s_k.
"""
n = int(n)
d = ctx.zero
b = (-1) ** (n & 1)
for k in xrange(n+1):
d += b * s[k]
b = (b * (k-n)) // (k+1)
return d
def hsteps(ctx, f, x, n, prec, **options):
singular = options.get('singular')
addprec = options.get('addprec', 10)
direction = options.get('direction', 0)
workprec = (prec+2*addprec) * (n+1)
orig = ctx.prec
try:
ctx.prec = workprec
h = options.get('h')
if h is None:
if options.get('relative'):
hextramag = int(ctx.mag(x))
else:
hextramag = 0
h = ctx.ldexp(1, -prec-addprec-hextramag)
else:
h = ctx.convert(h)
# Directed: steps x, x+h, ... x+n*h
direction = options.get('direction', 0)
if direction:
h *= ctx.sign(direction)
steps = xrange(n+1)
norm = h
# Central: steps x-n*h, x-(n-2)*h ..., x, ..., x+(n-2)*h, x+n*h
else:
steps = xrange(-n, n+1, 2)
norm = (2*h)
# Perturb
if singular:
x += 0.5*h
values = [f(x+k*h) for k in steps]
return values, norm, workprec
finally:
ctx.prec = orig
@defun
def diff(ctx, f, x, n=1, **options):
r"""
Numerically computes the derivative of `f`, `f'(x)`, or generally for
an integer `n \ge 0`, the `n`-th derivative `f^{(n)}(x)`.
A few basic examples are::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> diff(lambda x: x**2 + x, 1.0)
3.0
>>> diff(lambda x: x**2 + x, 1.0, 2)
2.0
>>> diff(lambda x: x**2 + x, 1.0, 3)
0.0
>>> nprint([diff(exp, 3, n) for n in range(5)]) # exp'(x) = exp(x)
[20.0855, 20.0855, 20.0855, 20.0855, 20.0855]
Even more generally, given a tuple of arguments `(x_1, \ldots, x_k)`
and order `(n_1, \ldots, n_k)`, the partial derivative
`f^{(n_1,\ldots,n_k)}(x_1,\ldots,x_k)` is evaluated. For example::
>>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (0,1))
2.75
>>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (1,1))
3.0
**Options**
The following optional keyword arguments are recognized:
``method``
Supported methods are ``'step'`` or ``'quad'``: derivatives may be
computed using either a finite difference with a small step
size `h` (default), or numerical quadrature.
``direction``
Direction of finite difference: can be -1 for a left
difference, 0 for a central difference (default), or +1
for a right difference; more generally can be any complex number.
``addprec``
Extra precision for `h` used to account for the function's
sensitivity to perturbations (default = 10).
``relative``
Choose `h` relative to the magnitude of `x`, rather than an
absolute value; useful for large or tiny `x` (default = False).
``h``
As an alternative to ``addprec`` and ``relative``, manually
select the step size `h`.
``singular``
If True, evaluation exactly at the point `x` is avoided; this is
useful for differentiating functions with removable singularities.
Default = False.
``radius``
Radius of integration contour (with ``method = 'quad'``).
Default = 0.25. A larger radius typically is faster and more
accurate, but it must be chosen so that `f` has no
singularities within the radius from the evaluation point.
A finite difference requires `n+1` function evaluations and must be
performed at `(n+1)` times the target precision. Accordingly, `f` must
support fast evaluation at high precision.
With integration, a larger number of function evaluations is
required, but not much extra precision is required. For high order
derivatives, this method may thus be faster if f is very expensive to
evaluate at high precision.
**Further examples**
The direction option is useful for computing left- or right-sided
derivatives of nonsmooth functions::
>>> diff(abs, 0, direction=0)
0.0
>>> diff(abs, 0, direction=1)
1.0
>>> diff(abs, 0, direction=-1)
-1.0
More generally, if the direction is nonzero, a right difference
is computed where the step size is multiplied by sign(direction).
For example, with direction=+j, the derivative from the positive
imaginary direction will be computed::
>>> diff(abs, 0, direction=j)
(0.0 - 1.0j)
With integration, the result may have a small imaginary part
even even if the result is purely real::
>>> diff(sqrt, 1, method='quad') # doctest:+ELLIPSIS
(0.5 - 4.59...e-26j)
>>> chop(_)
0.5
Adding precision to obtain an accurate value::
>>> diff(cos, 1e-30)
0.0
>>> diff(cos, 1e-30, h=0.0001)
-9.99999998328279e-31
>>> diff(cos, 1e-30, addprec=100)
-1.0e-30
"""
partial = False
try:
orders = list(n)
x = list(x)
partial = True
except TypeError:
pass
if partial:
x = [ctx.convert(_) for _ in x]
return _partial_diff(ctx, f, x, orders, options)
method = options.get('method', 'step')
if n == 0 and method != 'quad' and not options.get('singular'):
return f(ctx.convert(x))
prec = ctx.prec
try:
if method == 'step':
values, norm, workprec = hsteps(ctx, f, x, n, prec, **options)
ctx.prec = workprec
v = ctx.difference(values, n) / norm**n
elif method == 'quad':
ctx.prec += 10
radius = ctx.convert(options.get('radius', 0.25))
def g(t):
rei = radius*ctx.expj(t)
z = x + rei
return f(z) / rei**n
d = ctx.quadts(g, [0, 2*ctx.pi])
v = d * ctx.factorial(n) / (2*ctx.pi)
else:
raise ValueError("unknown method: %r" % method)
finally:
ctx.prec = prec
return +v
def _partial_diff(ctx, f, xs, orders, options):
if not orders:
return f()
if not sum(orders):
return f(*xs)
i = 0
for i in range(len(orders)):
if orders[i]:
break
order = orders[i]
def fdiff_inner(*f_args):
def inner(t):
return f(*(f_args[:i] + (t,) + f_args[i+1:]))
return ctx.diff(inner, f_args[i], order, **options)
orders[i] = 0
return _partial_diff(ctx, fdiff_inner, xs, orders, options)
@defun
def diffs(ctx, f, x, n=None, **options):
r"""
Returns a generator that yields the sequence of derivatives
.. math ::
f(x), f'(x), f''(x), \ldots, f^{(k)}(x), \ldots
With ``method='step'``, :func:`~mpmath.diffs` uses only `O(k)`
function evaluations to generate the first `k` derivatives,
rather than the roughly `O(k^2)` evaluations
required if one calls :func:`~mpmath.diff` `k` separate times.
With `n < \infty`, the generator stops as soon as the
`n`-th derivative has been generated. If the exact number of
needed derivatives is known in advance, this is further
slightly more efficient.
Options are the same as for :func:`~mpmath.diff`.
**Examples**
>>> from mpmath import *
>>> mp.dps = 15
>>> nprint(list(diffs(cos, 1, 5)))
[0.540302, -0.841471, -0.540302, 0.841471, 0.540302, -0.841471]
>>> for i, d in zip(range(6), diffs(cos, 1)):
... print("%s %s" % (i, d))
...
0 0.54030230586814
1 -0.841470984807897
2 -0.54030230586814
3 0.841470984807897
4 0.54030230586814
5 -0.841470984807897
"""
if n is None:
n = ctx.inf
else:
n = int(n)
if options.get('method', 'step') != 'step':
k = 0
while k < n + 1:
yield ctx.diff(f, x, k, **options)
k += 1
return
singular = options.get('singular')
if singular:
yield ctx.diff(f, x, 0, singular=True)
else:
yield f(ctx.convert(x))
if n < 1:
return
if n == ctx.inf:
A, B = 1, 2
else:
A, B = 1, n+1
while 1:
callprec = ctx.prec
y, norm, workprec = hsteps(ctx, f, x, B, callprec, **options)
for k in xrange(A, B):
try:
ctx.prec = workprec
d = ctx.difference(y, k) / norm**k
finally:
ctx.prec = callprec
yield +d
if k >= n:
return
A, B = B, int(A*1.4+1)
B = min(B, n)
def iterable_to_function(gen):
gen = iter(gen)
data = []
def f(k):
for i in xrange(len(data), k+1):
data.append(next(gen))
return data[k]
return f
@defun
def diffs_prod(ctx, factors):
r"""
Given a list of `N` iterables or generators yielding
`f_k(x), f'_k(x), f''_k(x), \ldots` for `k = 1, \ldots, N`,
generate `g(x), g'(x), g''(x), \ldots` where
`g(x) = f_1(x) f_2(x) \cdots f_N(x)`.
At high precision and for large orders, this is typically more efficient
than numerical differentiation if the derivatives of each `f_k(x)`
admit direct computation.
Note: This function does not increase the working precision internally,
so guard digits may have to be added externally for full accuracy.
**Examples**
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> f = lambda x: exp(x)*cos(x)*sin(x)
>>> u = diffs(f, 1)
>>> v = mp.diffs_prod([diffs(exp,1), diffs(cos,1), diffs(sin,1)])
>>> next(u); next(v)
1.23586333600241
1.23586333600241
>>> next(u); next(v)
0.104658952245596
0.104658952245596
>>> next(u); next(v)
-5.96999877552086
-5.96999877552086
>>> next(u); next(v)
-12.4632923122697
-12.4632923122697
"""
N = len(factors)
if N == 1:
for c in factors[0]:
yield c
else:
u = iterable_to_function(ctx.diffs_prod(factors[:N//2]))
v = iterable_to_function(ctx.diffs_prod(factors[N//2:]))
n = 0
while 1:
#yield sum(binomial(n,k)*u(n-k)*v(k) for k in xrange(n+1))
s = u(n) * v(0)
a = 1
for k in xrange(1,n+1):
a = a * (n-k+1) // k
s += a * u(n-k) * v(k)
yield s
n += 1
def dpoly(n, _cache={}):
"""
nth differentiation polynomial for exp (Faa di Bruno's formula).
TODO: most exponents are zero, so maybe a sparse representation
would be better.
"""
if n in _cache:
return _cache[n]
if not _cache:
_cache[0] = {(0,):1}
R = dpoly(n-1)
R = dict((c+(0,),v) for (c,v) in iteritems(R))
Ra = {}
for powers, count in iteritems(R):
powers1 = (powers[0]+1,) + powers[1:]
if powers1 in Ra:
Ra[powers1] += count
else:
Ra[powers1] = count
for powers, count in iteritems(R):
if not sum(powers):
continue
for k,p in enumerate(powers):
if p:
powers2 = powers[:k] + (p-1,powers[k+1]+1) + powers[k+2:]
if powers2 in Ra:
Ra[powers2] += p*count
else:
Ra[powers2] = p*count
_cache[n] = Ra
return _cache[n]
@defun
def diffs_exp(ctx, fdiffs):
r"""
Given an iterable or generator yielding `f(x), f'(x), f''(x), \ldots`
generate `g(x), g'(x), g''(x), \ldots` where `g(x) = \exp(f(x))`.
At high precision and for large orders, this is typically more efficient
than numerical differentiation if the derivatives of `f(x)`
admit direct computation.
Note: This function does not increase the working precision internally,
so guard digits may have to be added externally for full accuracy.
**Examples**
The derivatives of the gamma function can be computed using
logarithmic differentiation::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>>
>>> def diffs_loggamma(x):
... yield loggamma(x)
... i = 0
... while 1:
... yield psi(i,x)
... i += 1
...
>>> u = diffs_exp(diffs_loggamma(3))
>>> v = diffs(gamma, 3)
>>> next(u); next(v)
2.0
2.0
>>> next(u); next(v)
1.84556867019693
1.84556867019693
>>> next(u); next(v)
2.49292999190269
2.49292999190269
>>> next(u); next(v)
3.44996501352367
3.44996501352367
"""
fn = iterable_to_function(fdiffs)
f0 = ctx.exp(fn(0))
yield f0
i = 1
while 1:
s = ctx.mpf(0)
for powers, c in iteritems(dpoly(i)):
s += c*ctx.fprod(fn(k+1)**p for (k,p) in enumerate(powers) if p)
yield s * f0
i += 1
@defun
def differint(ctx, f, x, n=1, x0=0):
r"""
Calculates the Riemann-Liouville differintegral, or fractional
derivative, defined by
.. math ::
\,_{x_0}{\mathbb{D}}^n_xf(x) = \frac{1}{\Gamma(m-n)} \frac{d^m}{dx^m}
\int_{x_0}^{x}(x-t)^{m-n-1}f(t)dt
where `f` is a given (presumably well-behaved) function,
`x` is the evaluation point, `n` is the order, and `x_0` is
the reference point of integration (`m` is an arbitrary
parameter selected automatically).
With `n = 1`, this is just the standard derivative `f'(x)`; with `n = 2`,
the second derivative `f''(x)`, etc. With `n = -1`, it gives
`\int_{x_0}^x f(t) dt`, with `n = -2`
it gives `\int_{x_0}^x \left( \int_{x_0}^t f(u) du \right) dt`, etc.
As `n` is permitted to be any number, this operator generalizes
iterated differentiation and iterated integration to a single
operator with a continuous order parameter.
**Examples**
There is an exact formula for the fractional derivative of a
monomial `x^p`, which may be used as a reference. For example,
the following gives a half-derivative (order 0.5)::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> x = mpf(3); p = 2; n = 0.5
>>> differint(lambda t: t**p, x, n)
7.81764019044672
>>> gamma(p+1)/gamma(p-n+1) * x**(p-n)
7.81764019044672
Another useful test function is the exponential function, whose
integration / differentiation formula easy generalizes
to arbitrary order. Here we first compute a third derivative,
and then a triply nested integral. (The reference point `x_0`
is set to `-\infty` to avoid nonzero endpoint terms.)::
>>> differint(lambda x: exp(pi*x), -1.5, 3)
0.278538406900792
>>> exp(pi*-1.5) * pi**3
0.278538406900792
>>> differint(lambda x: exp(pi*x), 3.5, -3, -inf)
1922.50563031149
>>> exp(pi*3.5) / pi**3
1922.50563031149
However, for noninteger `n`, the differentiation formula for the
exponential function must be modified to give the same result as the
Riemann-Liouville differintegral::
>>> x = mpf(3.5)
>>> c = pi
>>> n = 1+2*j
>>> differint(lambda x: exp(c*x), x, n)
(-123295.005390743 + 140955.117867654j)
>>> x**(-n) * exp(c)**x * (x*c)**n * gammainc(-n, 0, x*c) / gamma(-n)
(-123295.005390743 + 140955.117867654j)
"""
m = max(int(ctx.ceil(ctx.re(n)))+1, 1)
r = m-n-1
g = lambda x: ctx.quad(lambda t: (x-t)**r * f(t), [x0, x])
return ctx.diff(g, x, m) / ctx.gamma(m-n)
@defun
def diffun(ctx, f, n=1, **options):
r"""
Given a function `f`, returns a function `g(x)` that evaluates the nth
derivative `f^{(n)}(x)`::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> cos2 = diffun(sin)
>>> sin2 = diffun(sin, 4)
>>> cos(1.3), cos2(1.3)
(0.267498828624587, 0.267498828624587)
>>> sin(1.3), sin2(1.3)
(0.963558185417193, 0.963558185417193)
The function `f` must support arbitrary precision evaluation.
See :func:`~mpmath.diff` for additional details and supported
keyword options.
"""
if n == 0:
return f
def g(x):
return ctx.diff(f, x, n, **options)
return g
@defun
def taylor(ctx, f, x, n, **options):
r"""
Produces a degree-`n` Taylor polynomial around the point `x` of the
given function `f`. The coefficients are returned as a list.
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> nprint(chop(taylor(sin, 0, 5)))
[0.0, 1.0, 0.0, -0.166667, 0.0, 0.00833333]
The coefficients are computed using high-order numerical
differentiation. The function must be possible to evaluate
to arbitrary precision. See :func:`~mpmath.diff` for additional details
and supported keyword options.
Note that to evaluate the Taylor polynomial as an approximation
of `f`, e.g. with :func:`~mpmath.polyval`, the coefficients must be reversed,
and the point of the Taylor expansion must be subtracted from
the argument:
>>> p = taylor(exp, 2.0, 10)
>>> polyval(p[::-1], 2.5 - 2.0)
12.1824939606092
>>> exp(2.5)
12.1824939607035
"""
gen = enumerate(ctx.diffs(f, x, n, **options))
if options.get("chop", True):
return [ctx.chop(d)/ctx.factorial(i) for i, d in gen]
else:
return [d/ctx.factorial(i) for i, d in gen]
@defun
def pade(ctx, a, L, M):
r"""
Computes a Pade approximation of degree `(L, M)` to a function.
Given at least `L+M+1` Taylor coefficients `a` approximating
a function `A(x)`, :func:`~mpmath.pade` returns coefficients of
polynomials `P, Q` satisfying
.. math ::
P = \sum_{k=0}^L p_k x^k
Q = \sum_{k=0}^M q_k x^k
Q_0 = 1
A(x) Q(x) = P(x) + O(x^{L+M+1})
`P(x)/Q(x)` can provide a good approximation to an analytic function
beyond the radius of convergence of its Taylor series (example
from G.A. Baker 'Essentials of Pade Approximants' Academic Press,
Ch.1A)::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> one = mpf(1)
>>> def f(x):
... return sqrt((one + 2*x)/(one + x))
...
>>> a = taylor(f, 0, 6)
>>> p, q = pade(a, 3, 3)
>>> x = 10
>>> polyval(p[::-1], x)/polyval(q[::-1], x)
1.38169105566806
>>> f(x)
1.38169855941551
"""
# To determine L+1 coefficients of P and M coefficients of Q
# L+M+1 coefficients of A must be provided
if len(a) < L+M+1:
raise ValueError("L+M+1 Coefficients should be provided")
if M == 0:
if L == 0:
return [ctx.one], [ctx.one]
else:
return a[:L+1], [ctx.one]
# Solve first
# a[L]*q[1] + ... + a[L-M+1]*q[M] = -a[L+1]
# ...
# a[L+M-1]*q[1] + ... + a[L]*q[M] = -a[L+M]
A = ctx.matrix(M)
for j in range(M):
for i in range(min(M, L+j+1)):
A[j, i] = a[L+j-i]
v = -ctx.matrix(a[(L+1):(L+M+1)])
x = ctx.lu_solve(A, v)
q = [ctx.one] + list(x)
# compute p
p = [0]*(L+1)
for i in range(L+1):
s = a[i]
for j in range(1, min(M,i) + 1):
s += q[j]*a[i-j]
p[i] = s
return p, q