ai-content-maker/.venv/Lib/site-packages/mpmath/functions/elliptic.py

1432 lines
41 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
r"""
Elliptic functions historically comprise the elliptic integrals
and their inverses, and originate from the problem of computing the
arc length of an ellipse. From a more modern point of view,
an elliptic function is defined as a doubly periodic function, i.e.
a function which satisfies
.. math ::
f(z + 2 \omega_1) = f(z + 2 \omega_2) = f(z)
for some half-periods `\omega_1, \omega_2` with
`\mathrm{Im}[\omega_1 / \omega_2] > 0`. The canonical elliptic
functions are the Jacobi elliptic functions. More broadly, this section
includes quasi-doubly periodic functions (such as the Jacobi theta
functions) and other functions useful in the study of elliptic functions.
Many different conventions for the arguments of
elliptic functions are in use. It is even standard to use
different parameterizations for different functions in the same
text or software (and mpmath is no exception).
The usual parameters are the elliptic nome `q`, which usually
must satisfy `|q| < 1`; the elliptic parameter `m` (an arbitrary
complex number); the elliptic modulus `k` (an arbitrary complex
number); and the half-period ratio `\tau`, which usually must
satisfy `\mathrm{Im}[\tau] > 0`.
These quantities can be expressed in terms of each other
using the following relations:
.. math ::
m = k^2
.. math ::
\tau = i \frac{K(1-m)}{K(m)}
.. math ::
q = e^{i \pi \tau}
.. math ::
k = \frac{\vartheta_2^2(q)}{\vartheta_3^2(q)}
In addition, an alternative definition is used for the nome in
number theory, which we here denote by q-bar:
.. math ::
\bar{q} = q^2 = e^{2 i \pi \tau}
For convenience, mpmath provides functions to convert
between the various parameters (:func:`~mpmath.qfrom`, :func:`~mpmath.mfrom`,
:func:`~mpmath.kfrom`, :func:`~mpmath.taufrom`, :func:`~mpmath.qbarfrom`).
**References**
1. [AbramowitzStegun]_
2. [WhittakerWatson]_
"""
from .functions import defun, defun_wrapped
@defun_wrapped
def eta(ctx, tau):
r"""
Returns the Dedekind eta function of tau in the upper half-plane.
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> eta(1j); gamma(0.25) / (2*pi**0.75)
(0.7682254223260566590025942 + 0.0j)
0.7682254223260566590025942
>>> tau = sqrt(2) + sqrt(5)*1j
>>> eta(-1/tau); sqrt(-1j*tau) * eta(tau)
(0.9022859908439376463573294 + 0.07985093673948098408048575j)
(0.9022859908439376463573295 + 0.07985093673948098408048575j)
>>> eta(tau+1); exp(pi*1j/12) * eta(tau)
(0.4493066139717553786223114 + 0.3290014793877986663915939j)
(0.4493066139717553786223114 + 0.3290014793877986663915939j)
>>> f = lambda z: diff(eta, z) / eta(z)
>>> chop(36*diff(f,tau)**2 - 24*diff(f,tau,2)*f(tau) + diff(f,tau,3))
0.0
"""
if ctx.im(tau) <= 0.0:
raise ValueError("eta is only defined in the upper half-plane")
q = ctx.expjpi(tau/12)
return q * ctx.qp(q**24)
def nome(ctx, m):
m = ctx.convert(m)
if not m:
return m
if m == ctx.one:
return m
if ctx.isnan(m):
return m
if ctx.isinf(m):
if m == ctx.ninf:
return type(m)(-1)
else:
return ctx.mpc(-1)
a = ctx.ellipk(ctx.one-m)
b = ctx.ellipk(m)
v = ctx.exp(-ctx.pi*a/b)
if not ctx._im(m) and ctx._re(m) < 1:
if ctx._is_real_type(m):
return v.real
else:
return v.real + 0j
elif m == 2:
v = ctx.mpc(0, v.imag)
return v
@defun_wrapped
def qfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None):
r"""
Returns the elliptic nome `q`, given any of `q, m, k, \tau, \bar{q}`::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> qfrom(q=0.25)
0.25
>>> qfrom(m=mfrom(q=0.25))
0.25
>>> qfrom(k=kfrom(q=0.25))
0.25
>>> qfrom(tau=taufrom(q=0.25))
(0.25 + 0.0j)
>>> qfrom(qbar=qbarfrom(q=0.25))
0.25
"""
if q is not None:
return ctx.convert(q)
if m is not None:
return nome(ctx, m)
if k is not None:
return nome(ctx, ctx.convert(k)**2)
if tau is not None:
return ctx.expjpi(tau)
if qbar is not None:
return ctx.sqrt(qbar)
@defun_wrapped
def qbarfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None):
r"""
Returns the number-theoretic nome `\bar q`, given any of
`q, m, k, \tau, \bar{q}`::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> qbarfrom(qbar=0.25)
0.25
>>> qbarfrom(q=qfrom(qbar=0.25))
0.25
>>> qbarfrom(m=extraprec(20)(mfrom)(qbar=0.25)) # ill-conditioned
0.25
>>> qbarfrom(k=extraprec(20)(kfrom)(qbar=0.25)) # ill-conditioned
0.25
>>> qbarfrom(tau=taufrom(qbar=0.25))
(0.25 + 0.0j)
"""
if qbar is not None:
return ctx.convert(qbar)
if q is not None:
return ctx.convert(q) ** 2
if m is not None:
return nome(ctx, m) ** 2
if k is not None:
return nome(ctx, ctx.convert(k)**2) ** 2
if tau is not None:
return ctx.expjpi(2*tau)
@defun_wrapped
def taufrom(ctx, q=None, m=None, k=None, tau=None, qbar=None):
r"""
Returns the elliptic half-period ratio `\tau`, given any of
`q, m, k, \tau, \bar{q}`::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> taufrom(tau=0.5j)
(0.0 + 0.5j)
>>> taufrom(q=qfrom(tau=0.5j))
(0.0 + 0.5j)
>>> taufrom(m=mfrom(tau=0.5j))
(0.0 + 0.5j)
>>> taufrom(k=kfrom(tau=0.5j))
(0.0 + 0.5j)
>>> taufrom(qbar=qbarfrom(tau=0.5j))
(0.0 + 0.5j)
"""
if tau is not None:
return ctx.convert(tau)
if m is not None:
m = ctx.convert(m)
return ctx.j*ctx.ellipk(1-m)/ctx.ellipk(m)
if k is not None:
k = ctx.convert(k)
return ctx.j*ctx.ellipk(1-k**2)/ctx.ellipk(k**2)
if q is not None:
return ctx.log(q) / (ctx.pi*ctx.j)
if qbar is not None:
qbar = ctx.convert(qbar)
return ctx.log(qbar) / (2*ctx.pi*ctx.j)
@defun_wrapped
def kfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None):
r"""
Returns the elliptic modulus `k`, given any of
`q, m, k, \tau, \bar{q}`::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> kfrom(k=0.25)
0.25
>>> kfrom(m=mfrom(k=0.25))
0.25
>>> kfrom(q=qfrom(k=0.25))
0.25
>>> kfrom(tau=taufrom(k=0.25))
(0.25 + 0.0j)
>>> kfrom(qbar=qbarfrom(k=0.25))
0.25
As `q \to 1` and `q \to -1`, `k` rapidly approaches
`1` and `i \infty` respectively::
>>> kfrom(q=0.75)
0.9999999999999899166471767
>>> kfrom(q=-0.75)
(0.0 + 7041781.096692038332790615j)
>>> kfrom(q=1)
1
>>> kfrom(q=-1)
(0.0 + +infj)
"""
if k is not None:
return ctx.convert(k)
if m is not None:
return ctx.sqrt(m)
if tau is not None:
q = ctx.expjpi(tau)
if qbar is not None:
q = ctx.sqrt(qbar)
if q == 1:
return q
if q == -1:
return ctx.mpc(0,'inf')
return (ctx.jtheta(2,0,q)/ctx.jtheta(3,0,q))**2
@defun_wrapped
def mfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None):
r"""
Returns the elliptic parameter `m`, given any of
`q, m, k, \tau, \bar{q}`::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> mfrom(m=0.25)
0.25
>>> mfrom(q=qfrom(m=0.25))
0.25
>>> mfrom(k=kfrom(m=0.25))
0.25
>>> mfrom(tau=taufrom(m=0.25))
(0.25 + 0.0j)
>>> mfrom(qbar=qbarfrom(m=0.25))
0.25
As `q \to 1` and `q \to -1`, `m` rapidly approaches
`1` and `-\infty` respectively::
>>> mfrom(q=0.75)
0.9999999999999798332943533
>>> mfrom(q=-0.75)
-49586681013729.32611558353
>>> mfrom(q=1)
1.0
>>> mfrom(q=-1)
-inf
The inverse nome as a function of `q` has an integer
Taylor series expansion::
>>> taylor(lambda q: mfrom(q), 0, 7)
[0.0, 16.0, -128.0, 704.0, -3072.0, 11488.0, -38400.0, 117632.0]
"""
if m is not None:
return m
if k is not None:
return k**2
if tau is not None:
q = ctx.expjpi(tau)
if qbar is not None:
q = ctx.sqrt(qbar)
if q == 1:
return ctx.convert(q)
if q == -1:
return q*ctx.inf
v = (ctx.jtheta(2,0,q)/ctx.jtheta(3,0,q))**4
if ctx._is_real_type(q) and q < 0:
v = v.real
return v
jacobi_spec = {
'sn' : ([3],[2],[1],[4], 'sin', 'tanh'),
'cn' : ([4],[2],[2],[4], 'cos', 'sech'),
'dn' : ([4],[3],[3],[4], '1', 'sech'),
'ns' : ([2],[3],[4],[1], 'csc', 'coth'),
'nc' : ([2],[4],[4],[2], 'sec', 'cosh'),
'nd' : ([3],[4],[4],[3], '1', 'cosh'),
'sc' : ([3],[4],[1],[2], 'tan', 'sinh'),
'sd' : ([3,3],[2,4],[1],[3], 'sin', 'sinh'),
'cd' : ([3],[2],[2],[3], 'cos', '1'),
'cs' : ([4],[3],[2],[1], 'cot', 'csch'),
'dc' : ([2],[3],[3],[2], 'sec', '1'),
'ds' : ([2,4],[3,3],[3],[1], 'csc', 'csch'),
'cc' : None,
'ss' : None,
'nn' : None,
'dd' : None
}
@defun
def ellipfun(ctx, kind, u=None, m=None, q=None, k=None, tau=None):
try:
S = jacobi_spec[kind]
except KeyError:
raise ValueError("First argument must be a two-character string "
"containing 's', 'c', 'd' or 'n', e.g.: 'sn'")
if u is None:
def f(*args, **kwargs):
return ctx.ellipfun(kind, *args, **kwargs)
f.__name__ = kind
return f
prec = ctx.prec
try:
ctx.prec += 10
u = ctx.convert(u)
q = ctx.qfrom(m=m, q=q, k=k, tau=tau)
if S is None:
v = ctx.one + 0*q*u
elif q == ctx.zero:
if S[4] == '1': v = ctx.one
else: v = getattr(ctx, S[4])(u)
v += 0*q*u
elif q == ctx.one:
if S[5] == '1': v = ctx.one
else: v = getattr(ctx, S[5])(u)
v += 0*q*u
else:
t = u / ctx.jtheta(3, 0, q)**2
v = ctx.one
for a in S[0]: v *= ctx.jtheta(a, 0, q)
for b in S[1]: v /= ctx.jtheta(b, 0, q)
for c in S[2]: v *= ctx.jtheta(c, t, q)
for d in S[3]: v /= ctx.jtheta(d, t, q)
finally:
ctx.prec = prec
return +v
@defun_wrapped
def kleinj(ctx, tau=None, **kwargs):
r"""
Evaluates the Klein j-invariant, which is a modular function defined for
`\tau` in the upper half-plane as
.. math ::
J(\tau) = \frac{g_2^3(\tau)}{g_2^3(\tau) - 27 g_3^2(\tau)}
where `g_2` and `g_3` are the modular invariants of the Weierstrass
elliptic function,
.. math ::
g_2(\tau) = 60 \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} (m \tau+n)^{-4}
g_3(\tau) = 140 \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} (m \tau+n)^{-6}.
An alternative, common notation is that of the j-function
`j(\tau) = 1728 J(\tau)`.
**Plots**
.. literalinclude :: /plots/kleinj.py
.. image :: /plots/kleinj.png
.. literalinclude :: /plots/kleinj2.py
.. image :: /plots/kleinj2.png
**Examples**
Verifying the functional equation `J(\tau) = J(\tau+1) = J(-\tau^{-1})`::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> tau = 0.625+0.75*j
>>> tau = 0.625+0.75*j
>>> kleinj(tau)
(-0.1507492166511182267125242 + 0.07595948379084571927228948j)
>>> kleinj(tau+1)
(-0.1507492166511182267125242 + 0.07595948379084571927228948j)
>>> kleinj(-1/tau)
(-0.1507492166511182267125242 + 0.07595948379084571927228946j)
The j-function has a famous Laurent series expansion in terms of the nome
`\bar{q}`, `j(\tau) = \bar{q}^{-1} + 744 + 196884\bar{q} + \ldots`::
>>> mp.dps = 15
>>> taylor(lambda q: 1728*q*kleinj(qbar=q), 0, 5, singular=True)
[1.0, 744.0, 196884.0, 21493760.0, 864299970.0, 20245856256.0]
The j-function admits exact evaluation at special algebraic points
related to the Heegner numbers 1, 2, 3, 7, 11, 19, 43, 67, 163::
>>> @extraprec(10)
... def h(n):
... v = (1+sqrt(n)*j)
... if n > 2:
... v *= 0.5
... return v
...
>>> mp.dps = 25
>>> for n in [1,2,3,7,11,19,43,67,163]:
... n, chop(1728*kleinj(h(n)))
...
(1, 1728.0)
(2, 8000.0)
(3, 0.0)
(7, -3375.0)
(11, -32768.0)
(19, -884736.0)
(43, -884736000.0)
(67, -147197952000.0)
(163, -262537412640768000.0)
Also at other special points, the j-function assumes explicit
algebraic values, e.g.::
>>> chop(1728*kleinj(j*sqrt(5)))
1264538.909475140509320227
>>> identify(cbrt(_)) # note: not simplified
'((100+sqrt(13520))/2)'
>>> (50+26*sqrt(5))**3
1264538.909475140509320227
"""
q = ctx.qfrom(tau=tau, **kwargs)
t2 = ctx.jtheta(2,0,q)
t3 = ctx.jtheta(3,0,q)
t4 = ctx.jtheta(4,0,q)
P = (t2**8 + t3**8 + t4**8)**3
Q = 54*(t2*t3*t4)**8
return P/Q
def RF_calc(ctx, x, y, z, r):
if y == z: return RC_calc(ctx, x, y, r)
if x == z: return RC_calc(ctx, y, x, r)
if x == y: return RC_calc(ctx, z, x, r)
if not (ctx.isnormal(x) and ctx.isnormal(y) and ctx.isnormal(z)):
if ctx.isnan(x) or ctx.isnan(y) or ctx.isnan(z):
return x*y*z
if ctx.isinf(x) or ctx.isinf(y) or ctx.isinf(z):
return ctx.zero
xm,ym,zm = x,y,z
A0 = Am = (x+y+z)/3
Q = ctx.root(3*r, -6) * max(abs(A0-x),abs(A0-y),abs(A0-z))
g = ctx.mpf(0.25)
pow4 = ctx.one
while 1:
xs = ctx.sqrt(xm)
ys = ctx.sqrt(ym)
zs = ctx.sqrt(zm)
lm = xs*ys + xs*zs + ys*zs
Am1 = (Am+lm)*g
xm, ym, zm = (xm+lm)*g, (ym+lm)*g, (zm+lm)*g
if pow4 * Q < abs(Am):
break
Am = Am1
pow4 *= g
t = pow4/Am
X = (A0-x)*t
Y = (A0-y)*t
Z = -X-Y
E2 = X*Y-Z**2
E3 = X*Y*Z
return ctx.power(Am,-0.5) * (9240-924*E2+385*E2**2+660*E3-630*E2*E3)/9240
def RC_calc(ctx, x, y, r, pv=True):
if not (ctx.isnormal(x) and ctx.isnormal(y)):
if ctx.isinf(x) or ctx.isinf(y):
return 1/(x*y)
if y == 0:
return ctx.inf
if x == 0:
return ctx.pi / ctx.sqrt(y) / 2
raise ValueError
# Cauchy principal value
if pv and ctx._im(y) == 0 and ctx._re(y) < 0:
return ctx.sqrt(x/(x-y)) * RC_calc(ctx, x-y, -y, r)
if x == y:
return 1/ctx.sqrt(x)
extraprec = 2*max(0,-ctx.mag(x-y)+ctx.mag(x))
ctx.prec += extraprec
if ctx._is_real_type(x) and ctx._is_real_type(y):
x = ctx._re(x)
y = ctx._re(y)
a = ctx.sqrt(x/y)
if x < y:
b = ctx.sqrt(y-x)
v = ctx.acos(a)/b
else:
b = ctx.sqrt(x-y)
v = ctx.acosh(a)/b
else:
sx = ctx.sqrt(x)
sy = ctx.sqrt(y)
v = ctx.acos(sx/sy)/(ctx.sqrt((1-x/y))*sy)
ctx.prec -= extraprec
return v
def RJ_calc(ctx, x, y, z, p, r, integration):
"""
With integration == 0, computes RJ only using Carlson's algorithm
(may be wrong for some values).
With integration == 1, uses an initial integration to make sure
Carlson's algorithm is correct.
With integration == 2, uses only integration.
"""
if not (ctx.isnormal(x) and ctx.isnormal(y) and \
ctx.isnormal(z) and ctx.isnormal(p)):
if ctx.isnan(x) or ctx.isnan(y) or ctx.isnan(z) or ctx.isnan(p):
return x*y*z
if ctx.isinf(x) or ctx.isinf(y) or ctx.isinf(z) or ctx.isinf(p):
return ctx.zero
if not p:
return ctx.inf
if (not x) + (not y) + (not z) > 1:
return ctx.inf
# Check conditions and fall back on integration for argument
# reduction if needed. The following conditions might be needlessly
# restrictive.
initial_integral = ctx.zero
if integration >= 1:
ok = (x.real >= 0 and y.real >= 0 and z.real >= 0 and p.real > 0)
if not ok:
if x == p or y == p or z == p:
ok = True
if not ok:
if p.imag != 0 or p.real >= 0:
if (x.imag == 0 and x.real >= 0 and ctx.conj(y) == z):
ok = True
if (y.imag == 0 and y.real >= 0 and ctx.conj(x) == z):
ok = True
if (z.imag == 0 and z.real >= 0 and ctx.conj(x) == y):
ok = True
if not ok or (integration == 2):
N = ctx.ceil(-min(x.real, y.real, z.real, p.real)) + 1
# Integrate around any singularities
if all((t.imag >= 0 or t.real > 0) for t in [x, y, z, p]):
margin = ctx.j
elif all((t.imag < 0 or t.real > 0) for t in [x, y, z, p]):
margin = -ctx.j
else:
margin = 1
# Go through the upper half-plane, but low enough that any
# parameter starting in the lower plane doesn't cross the
# branch cut
for t in [x, y, z, p]:
if t.imag >= 0 or t.real > 0:
continue
margin = min(margin, abs(t.imag) * 0.5)
margin *= ctx.j
N += margin
F = lambda t: 1/(ctx.sqrt(t+x)*ctx.sqrt(t+y)*ctx.sqrt(t+z)*(t+p))
if integration == 2:
return 1.5 * ctx.quadsubdiv(F, [0, N, ctx.inf])
initial_integral = 1.5 * ctx.quadsubdiv(F, [0, N])
x += N; y += N; z += N; p += N
xm,ym,zm,pm = x,y,z,p
A0 = Am = (x + y + z + 2*p)/5
delta = (p-x)*(p-y)*(p-z)
Q = ctx.root(0.25*r, -6) * max(abs(A0-x),abs(A0-y),abs(A0-z),abs(A0-p))
g = ctx.mpf(0.25)
pow4 = ctx.one
S = 0
while 1:
sx = ctx.sqrt(xm)
sy = ctx.sqrt(ym)
sz = ctx.sqrt(zm)
sp = ctx.sqrt(pm)
lm = sx*sy + sx*sz + sy*sz
Am1 = (Am+lm)*g
xm = (xm+lm)*g; ym = (ym+lm)*g; zm = (zm+lm)*g; pm = (pm+lm)*g
dm = (sp+sx) * (sp+sy) * (sp+sz)
em = delta * pow4**3 / dm**2
if pow4 * Q < abs(Am):
break
T = RC_calc(ctx, ctx.one, ctx.one+em, r) * pow4 / dm
S += T
pow4 *= g
Am = Am1
t = pow4 / Am
X = (A0-x)*t
Y = (A0-y)*t
Z = (A0-z)*t
P = (-X-Y-Z)/2
E2 = X*Y + X*Z + Y*Z - 3*P**2
E3 = X*Y*Z + 2*E2*P + 4*P**3
E4 = (2*X*Y*Z + E2*P + 3*P**3)*P
E5 = X*Y*Z*P**2
P = 24024 - 5148*E2 + 2457*E2**2 + 4004*E3 - 4158*E2*E3 - 3276*E4 + 2772*E5
Q = 24024
v1 = pow4 * ctx.power(Am, -1.5) * P/Q
v2 = 6*S
return initial_integral + v1 + v2
@defun
def elliprf(ctx, x, y, z):
r"""
Evaluates the Carlson symmetric elliptic integral of the first kind
.. math ::
R_F(x,y,z) = \frac{1}{2}
\int_0^{\infty} \frac{dt}{\sqrt{(t+x)(t+y)(t+z)}}
which is defined for `x,y,z \notin (-\infty,0)`, and with
at most one of `x,y,z` being zero.
For real `x,y,z \ge 0`, the principal square root is taken in the integrand.
For complex `x,y,z`, the principal square root is taken as `t \to \infty`
and as `t \to 0` non-principal branches are chosen as necessary so as to
make the integrand continuous.
**Examples**
Some basic values and limits::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> elliprf(0,1,1); pi/2
1.570796326794896619231322
1.570796326794896619231322
>>> elliprf(0,1,inf)
0.0
>>> elliprf(1,1,1)
1.0
>>> elliprf(2,2,2)**2
0.5
>>> elliprf(1,0,0); elliprf(0,0,1); elliprf(0,1,0); elliprf(0,0,0)
+inf
+inf
+inf
+inf
Representing complete elliptic integrals in terms of `R_F`::
>>> m = mpf(0.75)
>>> ellipk(m); elliprf(0,1-m,1)
2.156515647499643235438675
2.156515647499643235438675
>>> ellipe(m); elliprf(0,1-m,1)-m*elliprd(0,1-m,1)/3
1.211056027568459524803563
1.211056027568459524803563
Some symmetries and argument transformations::
>>> x,y,z = 2,3,4
>>> elliprf(x,y,z); elliprf(y,x,z); elliprf(z,y,x)
0.5840828416771517066928492
0.5840828416771517066928492
0.5840828416771517066928492
>>> k = mpf(100000)
>>> elliprf(k*x,k*y,k*z); k**(-0.5) * elliprf(x,y,z)
0.001847032121923321253219284
0.001847032121923321253219284
>>> l = sqrt(x*y) + sqrt(y*z) + sqrt(z*x)
>>> elliprf(x,y,z); 2*elliprf(x+l,y+l,z+l)
0.5840828416771517066928492
0.5840828416771517066928492
>>> elliprf((x+l)/4,(y+l)/4,(z+l)/4)
0.5840828416771517066928492
Comparing with numerical integration::
>>> x,y,z = 2,3,4
>>> elliprf(x,y,z)
0.5840828416771517066928492
>>> f = lambda t: 0.5*((t+x)*(t+y)*(t+z))**(-0.5)
>>> q = extradps(25)(quad)
>>> q(f, [0,inf])
0.5840828416771517066928492
With the following arguments, the square root in the integrand becomes
discontinuous at `t = 1/2` if the principal branch is used. To obtain
the right value, `-\sqrt{r}` must be taken instead of `\sqrt{r}`
on `t \in (0, 1/2)`::
>>> x,y,z = j-1,j,0
>>> elliprf(x,y,z)
(0.7961258658423391329305694 - 1.213856669836495986430094j)
>>> -q(f, [0,0.5]) + q(f, [0.5,inf])
(0.7961258658423391329305694 - 1.213856669836495986430094j)
The so-called *first lemniscate constant*, a transcendental number::
>>> elliprf(0,1,2)
1.31102877714605990523242
>>> extradps(25)(quad)(lambda t: 1/sqrt(1-t**4), [0,1])
1.31102877714605990523242
>>> gamma('1/4')**2/(4*sqrt(2*pi))
1.31102877714605990523242
**References**
1. [Carlson]_
2. [DLMF]_ Chapter 19. Elliptic Integrals
"""
x = ctx.convert(x)
y = ctx.convert(y)
z = ctx.convert(z)
prec = ctx.prec
try:
ctx.prec += 20
tol = ctx.eps * 2**10
v = RF_calc(ctx, x, y, z, tol)
finally:
ctx.prec = prec
return +v
@defun
def elliprc(ctx, x, y, pv=True):
r"""
Evaluates the degenerate Carlson symmetric elliptic integral
of the first kind
.. math ::
R_C(x,y) = R_F(x,y,y) =
\frac{1}{2} \int_0^{\infty} \frac{dt}{(t+y) \sqrt{(t+x)}}.
If `y \in (-\infty,0)`, either a value defined by continuity,
or with *pv=True* the Cauchy principal value, can be computed.
If `x \ge 0, y > 0`, the value can be expressed in terms of
elementary functions as
.. math ::
R_C(x,y) =
\begin{cases}
\dfrac{1}{\sqrt{y-x}}
\cos^{-1}\left(\sqrt{\dfrac{x}{y}}\right), & x < y \\
\dfrac{1}{\sqrt{y}}, & x = y \\
\dfrac{1}{\sqrt{x-y}}
\cosh^{-1}\left(\sqrt{\dfrac{x}{y}}\right), & x > y \\
\end{cases}.
**Examples**
Some special values and limits::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> elliprc(1,2)*4; elliprc(0,1)*2; +pi
3.141592653589793238462643
3.141592653589793238462643
3.141592653589793238462643
>>> elliprc(1,0)
+inf
>>> elliprc(5,5)**2
0.2
>>> elliprc(1,inf); elliprc(inf,1); elliprc(inf,inf)
0.0
0.0
0.0
Comparing with the elementary closed-form solution::
>>> elliprc('1/3', '1/5'); sqrt(7.5)*acosh(sqrt('5/3'))
2.041630778983498390751238
2.041630778983498390751238
>>> elliprc('1/5', '1/3'); sqrt(7.5)*acos(sqrt('3/5'))
1.875180765206547065111085
1.875180765206547065111085
Comparing with numerical integration::
>>> q = extradps(25)(quad)
>>> elliprc(2, -3, pv=True)
0.3333969101113672670749334
>>> elliprc(2, -3, pv=False)
(0.3333969101113672670749334 + 0.7024814731040726393156375j)
>>> 0.5*q(lambda t: 1/(sqrt(t+2)*(t-3)), [0,3-j,6,inf])
(0.3333969101113672670749334 + 0.7024814731040726393156375j)
"""
x = ctx.convert(x)
y = ctx.convert(y)
prec = ctx.prec
try:
ctx.prec += 20
tol = ctx.eps * 2**10
v = RC_calc(ctx, x, y, tol, pv)
finally:
ctx.prec = prec
return +v
@defun
def elliprj(ctx, x, y, z, p, integration=1):
r"""
Evaluates the Carlson symmetric elliptic integral of the third kind
.. math ::
R_J(x,y,z,p) = \frac{3}{2}
\int_0^{\infty} \frac{dt}{(t+p)\sqrt{(t+x)(t+y)(t+z)}}.
Like :func:`~mpmath.elliprf`, the branch of the square root in the integrand
is defined so as to be continuous along the path of integration for
complex values of the arguments.
**Examples**
Some values and limits::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> elliprj(1,1,1,1)
1.0
>>> elliprj(2,2,2,2); 1/(2*sqrt(2))
0.3535533905932737622004222
0.3535533905932737622004222
>>> elliprj(0,1,2,2)
1.067937989667395702268688
>>> 3*(2*gamma('5/4')**2-pi**2/gamma('1/4')**2)/(sqrt(2*pi))
1.067937989667395702268688
>>> elliprj(0,1,1,2); 3*pi*(2-sqrt(2))/4
1.380226776765915172432054
1.380226776765915172432054
>>> elliprj(1,3,2,0); elliprj(0,1,1,0); elliprj(0,0,0,0)
+inf
+inf
+inf
>>> elliprj(1,inf,1,0); elliprj(1,1,1,inf)
0.0
0.0
>>> chop(elliprj(1+j, 1-j, 1, 1))
0.8505007163686739432927844
Scale transformation::
>>> x,y,z,p = 2,3,4,5
>>> k = mpf(100000)
>>> elliprj(k*x,k*y,k*z,k*p); k**(-1.5)*elliprj(x,y,z,p)
4.521291677592745527851168e-9
4.521291677592745527851168e-9
Comparing with numerical integration::
>>> elliprj(1,2,3,4)
0.2398480997495677621758617
>>> f = lambda t: 1/((t+4)*sqrt((t+1)*(t+2)*(t+3)))
>>> 1.5*quad(f, [0,inf])
0.2398480997495677621758617
>>> elliprj(1,2+1j,3,4-2j)
(0.216888906014633498739952 + 0.04081912627366673332369512j)
>>> f = lambda t: 1/((t+4-2j)*sqrt((t+1)*(t+2+1j)*(t+3)))
>>> 1.5*quad(f, [0,inf])
(0.216888906014633498739952 + 0.04081912627366673332369511j)
"""
x = ctx.convert(x)
y = ctx.convert(y)
z = ctx.convert(z)
p = ctx.convert(p)
prec = ctx.prec
try:
ctx.prec += 20
tol = ctx.eps * 2**10
v = RJ_calc(ctx, x, y, z, p, tol, integration)
finally:
ctx.prec = prec
return +v
@defun
def elliprd(ctx, x, y, z):
r"""
Evaluates the degenerate Carlson symmetric elliptic integral
of the third kind or Carlson elliptic integral of the
second kind `R_D(x,y,z) = R_J(x,y,z,z)`.
See :func:`~mpmath.elliprj` for additional information.
**Examples**
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> elliprd(1,2,3)
0.2904602810289906442326534
>>> elliprj(1,2,3,3)
0.2904602810289906442326534
The so-called *second lemniscate constant*, a transcendental number::
>>> elliprd(0,2,1)/3
0.5990701173677961037199612
>>> extradps(25)(quad)(lambda t: t**2/sqrt(1-t**4), [0,1])
0.5990701173677961037199612
>>> gamma('3/4')**2/sqrt(2*pi)
0.5990701173677961037199612
"""
return ctx.elliprj(x,y,z,z)
@defun
def elliprg(ctx, x, y, z):
r"""
Evaluates the Carlson completely symmetric elliptic integral
of the second kind
.. math ::
R_G(x,y,z) = \frac{1}{4} \int_0^{\infty}
\frac{t}{\sqrt{(t+x)(t+y)(t+z)}}
\left( \frac{x}{t+x} + \frac{y}{t+y} + \frac{z}{t+z}\right) dt.
**Examples**
Evaluation for real and complex arguments::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> elliprg(0,1,1)*4; +pi
3.141592653589793238462643
3.141592653589793238462643
>>> elliprg(0,0.5,1)
0.6753219405238377512600874
>>> chop(elliprg(1+j, 1-j, 2))
1.172431327676416604532822
A double integral that can be evaluated in terms of `R_G`::
>>> x,y,z = 2,3,4
>>> def f(t,u):
... st = fp.sin(t); ct = fp.cos(t)
... su = fp.sin(u); cu = fp.cos(u)
... return (x*(st*cu)**2 + y*(st*su)**2 + z*ct**2)**0.5 * st
...
>>> nprint(mpf(fp.quad(f, [0,fp.pi], [0,2*fp.pi])/(4*fp.pi)), 13)
1.725503028069
>>> nprint(elliprg(x,y,z), 13)
1.725503028069
"""
x = ctx.convert(x)
y = ctx.convert(y)
z = ctx.convert(z)
zeros = (not x) + (not y) + (not z)
if zeros == 3:
return (x+y+z)*0
if zeros == 2:
if x: return 0.5*ctx.sqrt(x)
if y: return 0.5*ctx.sqrt(y)
return 0.5*ctx.sqrt(z)
if zeros == 1:
if not z:
x, z = z, x
def terms():
T1 = 0.5*z*ctx.elliprf(x,y,z)
T2 = -0.5*(x-z)*(y-z)*ctx.elliprd(x,y,z)/3
T3 = 0.5*ctx.sqrt(x)*ctx.sqrt(y)/ctx.sqrt(z)
return T1,T2,T3
return ctx.sum_accurately(terms)
@defun_wrapped
def ellipf(ctx, phi, m):
r"""
Evaluates the Legendre incomplete elliptic integral of the first kind
.. math ::
F(\phi,m) = \int_0^{\phi} \frac{dt}{\sqrt{1-m \sin^2 t}}
or equivalently
.. math ::
F(\phi,m) = \int_0^{\sin \phi}
\frac{dt}{\left(\sqrt{1-t^2}\right)\left(\sqrt{1-mt^2}\right)}.
The function reduces to a complete elliptic integral of the first kind
(see :func:`~mpmath.ellipk`) when `\phi = \frac{\pi}{2}`; that is,
.. math ::
F\left(\frac{\pi}{2}, m\right) = K(m).
In the defining integral, it is assumed that the principal branch
of the square root is taken and that the path of integration avoids
crossing any branch cuts. Outside `-\pi/2 \le \Re(\phi) \le \pi/2`,
the function extends quasi-periodically as
.. math ::
F(\phi + n \pi, m) = 2 n K(m) + F(\phi,m), n \in \mathbb{Z}.
**Plots**
.. literalinclude :: /plots/ellipf.py
.. image :: /plots/ellipf.png
**Examples**
Basic values and limits::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> ellipf(0,1)
0.0
>>> ellipf(0,0)
0.0
>>> ellipf(1,0); ellipf(2+3j,0)
1.0
(2.0 + 3.0j)
>>> ellipf(1,1); log(sec(1)+tan(1))
1.226191170883517070813061
1.226191170883517070813061
>>> ellipf(pi/2, -0.5); ellipk(-0.5)
1.415737208425956198892166
1.415737208425956198892166
>>> ellipf(pi/2+eps, 1); ellipf(-pi/2-eps, 1)
+inf
+inf
>>> ellipf(1.5, 1)
3.340677542798311003320813
Comparing with numerical integration::
>>> z,m = 0.5, 1.25
>>> ellipf(z,m)
0.5287219202206327872978255
>>> quad(lambda t: (1-m*sin(t)**2)**(-0.5), [0,z])
0.5287219202206327872978255
The arguments may be complex numbers::
>>> ellipf(3j, 0.5)
(0.0 + 1.713602407841590234804143j)
>>> ellipf(3+4j, 5-6j)
(1.269131241950351323305741 - 0.3561052815014558335412538j)
>>> z,m = 2+3j, 1.25
>>> k = 1011
>>> ellipf(z+pi*k,m); ellipf(z,m) + 2*k*ellipk(m)
(4086.184383622179764082821 - 3003.003538923749396546871j)
(4086.184383622179764082821 - 3003.003538923749396546871j)
For `|\Re(z)| < \pi/2`, the function can be expressed as a
hypergeometric series of two variables
(see :func:`~mpmath.appellf1`)::
>>> z,m = 0.5, 0.25
>>> ellipf(z,m)
0.5050887275786480788831083
>>> sin(z)*appellf1(0.5,0.5,0.5,1.5,sin(z)**2,m*sin(z)**2)
0.5050887275786480788831083
"""
z = phi
if not (ctx.isnormal(z) and ctx.isnormal(m)):
if m == 0:
return z + m
if z == 0:
return z * m
if m == ctx.inf or m == ctx.ninf: return z/m
raise ValueError
x = z.real
ctx.prec += max(0, ctx.mag(x))
pi = +ctx.pi
away = abs(x) > pi/2
if m == 1:
if away:
return ctx.inf
if away:
d = ctx.nint(x/pi)
z = z-pi*d
P = 2*d*ctx.ellipk(m)
else:
P = 0
c, s = ctx.cos_sin(z)
return s * ctx.elliprf(c**2, 1-m*s**2, 1) + P
@defun_wrapped
def ellipe(ctx, *args):
r"""
Called with a single argument `m`, evaluates the Legendre complete
elliptic integral of the second kind, `E(m)`, defined by
.. math :: E(m) = \int_0^{\pi/2} \sqrt{1-m \sin^2 t} \, dt \,=\,
\frac{\pi}{2}
\,_2F_1\left(\frac{1}{2}, -\frac{1}{2}, 1, m\right).
Called with two arguments `\phi, m`, evaluates the incomplete elliptic
integral of the second kind
.. math ::
E(\phi,m) = \int_0^{\phi} \sqrt{1-m \sin^2 t} \, dt =
\int_0^{\sin z}
\frac{\sqrt{1-mt^2}}{\sqrt{1-t^2}} \, dt.
The incomplete integral reduces to a complete integral when
`\phi = \frac{\pi}{2}`; that is,
.. math ::
E\left(\frac{\pi}{2}, m\right) = E(m).
In the defining integral, it is assumed that the principal branch
of the square root is taken and that the path of integration avoids
crossing any branch cuts. Outside `-\pi/2 \le \Re(z) \le \pi/2`,
the function extends quasi-periodically as
.. math ::
E(\phi + n \pi, m) = 2 n E(m) + E(\phi,m), n \in \mathbb{Z}.
**Plots**
.. literalinclude :: /plots/ellipe.py
.. image :: /plots/ellipe.png
**Examples for the complete integral**
Basic values and limits::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> ellipe(0)
1.570796326794896619231322
>>> ellipe(1)
1.0
>>> ellipe(-1)
1.910098894513856008952381
>>> ellipe(2)
(0.5990701173677961037199612 + 0.5990701173677961037199612j)
>>> ellipe(inf)
(0.0 + +infj)
>>> ellipe(-inf)
+inf
Verifying the defining integral and hypergeometric
representation::
>>> ellipe(0.5)
1.350643881047675502520175
>>> quad(lambda t: sqrt(1-0.5*sin(t)**2), [0, pi/2])
1.350643881047675502520175
>>> pi/2*hyp2f1(0.5,-0.5,1,0.5)
1.350643881047675502520175
Evaluation is supported for arbitrary complex `m`::
>>> ellipe(0.5+0.25j)
(1.360868682163129682716687 - 0.1238733442561786843557315j)
>>> ellipe(3+4j)
(1.499553520933346954333612 - 1.577879007912758274533309j)
A definite integral::
>>> quad(ellipe, [0,1])
1.333333333333333333333333
**Examples for the incomplete integral**
Basic values and limits::
>>> ellipe(0,1)
0.0
>>> ellipe(0,0)
0.0
>>> ellipe(1,0)
1.0
>>> ellipe(2+3j,0)
(2.0 + 3.0j)
>>> ellipe(1,1); sin(1)
0.8414709848078965066525023
0.8414709848078965066525023
>>> ellipe(pi/2, -0.5); ellipe(-0.5)
1.751771275694817862026502
1.751771275694817862026502
>>> ellipe(pi/2, 1); ellipe(-pi/2, 1)
1.0
-1.0
>>> ellipe(1.5, 1)
0.9974949866040544309417234
Comparing with numerical integration::
>>> z,m = 0.5, 1.25
>>> ellipe(z,m)
0.4740152182652628394264449
>>> quad(lambda t: sqrt(1-m*sin(t)**2), [0,z])
0.4740152182652628394264449
The arguments may be complex numbers::
>>> ellipe(3j, 0.5)
(0.0 + 7.551991234890371873502105j)
>>> ellipe(3+4j, 5-6j)
(24.15299022574220502424466 + 75.2503670480325997418156j)
>>> k = 35
>>> z,m = 2+3j, 1.25
>>> ellipe(z+pi*k,m); ellipe(z,m) + 2*k*ellipe(m)
(48.30138799412005235090766 + 17.47255216721987688224357j)
(48.30138799412005235090766 + 17.47255216721987688224357j)
For `|\Re(z)| < \pi/2`, the function can be expressed as a
hypergeometric series of two variables
(see :func:`~mpmath.appellf1`)::
>>> z,m = 0.5, 0.25
>>> ellipe(z,m)
0.4950017030164151928870375
>>> sin(z)*appellf1(0.5,0.5,-0.5,1.5,sin(z)**2,m*sin(z)**2)
0.4950017030164151928870376
"""
if len(args) == 1:
return ctx._ellipe(args[0])
else:
phi, m = args
z = phi
if not (ctx.isnormal(z) and ctx.isnormal(m)):
if m == 0:
return z + m
if z == 0:
return z * m
if m == ctx.inf or m == ctx.ninf:
return ctx.inf
raise ValueError
x = z.real
ctx.prec += max(0, ctx.mag(x))
pi = +ctx.pi
away = abs(x) > pi/2
if away:
d = ctx.nint(x/pi)
z = z-pi*d
P = 2*d*ctx.ellipe(m)
else:
P = 0
def terms():
c, s = ctx.cos_sin(z)
x = c**2
y = 1-m*s**2
RF = ctx.elliprf(x, y, 1)
RD = ctx.elliprd(x, y, 1)
return s*RF, -m*s**3*RD/3
return ctx.sum_accurately(terms) + P
@defun_wrapped
def ellippi(ctx, *args):
r"""
Called with three arguments `n, \phi, m`, evaluates the Legendre
incomplete elliptic integral of the third kind
.. math ::
\Pi(n; \phi, m) = \int_0^{\phi}
\frac{dt}{(1-n \sin^2 t) \sqrt{1-m \sin^2 t}} =
\int_0^{\sin \phi}
\frac{dt}{(1-nt^2) \sqrt{1-t^2} \sqrt{1-mt^2}}.
Called with two arguments `n, m`, evaluates the complete
elliptic integral of the third kind
`\Pi(n,m) = \Pi(n; \frac{\pi}{2},m)`.
In the defining integral, it is assumed that the principal branch
of the square root is taken and that the path of integration avoids
crossing any branch cuts. Outside `-\pi/2 \le \Re(\phi) \le \pi/2`,
the function extends quasi-periodically as
.. math ::
\Pi(n,\phi+k\pi,m) = 2k\Pi(n,m) + \Pi(n,\phi,m), k \in \mathbb{Z}.
**Plots**
.. literalinclude :: /plots/ellippi.py
.. image :: /plots/ellippi.png
**Examples for the complete integral**
Some basic values and limits::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> ellippi(0,-5); ellipk(-5)
0.9555039270640439337379334
0.9555039270640439337379334
>>> ellippi(inf,2)
0.0
>>> ellippi(2,inf)
0.0
>>> abs(ellippi(1,5))
+inf
>>> abs(ellippi(0.25,1))
+inf
Evaluation in terms of simpler functions::
>>> ellippi(0.25,0.25); ellipe(0.25)/(1-0.25)
1.956616279119236207279727
1.956616279119236207279727
>>> ellippi(3,0); pi/(2*sqrt(-2))
(0.0 - 1.11072073453959156175397j)
(0.0 - 1.11072073453959156175397j)
>>> ellippi(-3,0); pi/(2*sqrt(4))
0.7853981633974483096156609
0.7853981633974483096156609
**Examples for the incomplete integral**
Basic values and limits::
>>> ellippi(0.25,-0.5); ellippi(0.25,pi/2,-0.5)
1.622944760954741603710555
1.622944760954741603710555
>>> ellippi(1,0,1)
0.0
>>> ellippi(inf,0,1)
0.0
>>> ellippi(0,0.25,0.5); ellipf(0.25,0.5)
0.2513040086544925794134591
0.2513040086544925794134591
>>> ellippi(1,1,1); (log(sec(1)+tan(1))+sec(1)*tan(1))/2
2.054332933256248668692452
2.054332933256248668692452
>>> ellippi(0.25, 53*pi/2, 0.75); 53*ellippi(0.25,0.75)
135.240868757890840755058
135.240868757890840755058
>>> ellippi(0.5,pi/4,0.5); 2*ellipe(pi/4,0.5)-1/sqrt(3)
0.9190227391656969903987269
0.9190227391656969903987269
Complex arguments are supported::
>>> ellippi(0.5, 5+6j-2*pi, -7-8j)
(-0.3612856620076747660410167 + 0.5217735339984807829755815j)
Some degenerate cases::
>>> ellippi(1,1)
+inf
>>> ellippi(1,0)
+inf
>>> ellippi(1,2,0)
+inf
>>> ellippi(1,2,1)
+inf
>>> ellippi(1,0,1)
0.0
"""
if len(args) == 2:
n, m = args
complete = True
z = phi = ctx.pi/2
else:
n, phi, m = args
complete = False
z = phi
if not (ctx.isnormal(n) and ctx.isnormal(z) and ctx.isnormal(m)):
if ctx.isnan(n) or ctx.isnan(z) or ctx.isnan(m):
raise ValueError
if complete:
if m == 0:
if n == 1:
return ctx.inf
return ctx.pi/(2*ctx.sqrt(1-n))
if n == 0: return ctx.ellipk(m)
if ctx.isinf(n) or ctx.isinf(m): return ctx.zero
else:
if z == 0: return z
if ctx.isinf(n): return ctx.zero
if ctx.isinf(m): return ctx.zero
if ctx.isinf(n) or ctx.isinf(z) or ctx.isinf(m):
raise ValueError
if complete:
if m == 1:
if n == 1:
return ctx.inf
return -ctx.inf/ctx.sign(n-1)
away = False
else:
x = z.real
ctx.prec += max(0, ctx.mag(x))
pi = +ctx.pi
away = abs(x) > pi/2
if away:
d = ctx.nint(x/pi)
z = z-pi*d
P = 2*d*ctx.ellippi(n,m)
if ctx.isinf(P):
return ctx.inf
else:
P = 0
def terms():
if complete:
c, s = ctx.zero, ctx.one
else:
c, s = ctx.cos_sin(z)
x = c**2
y = 1-m*s**2
RF = ctx.elliprf(x, y, 1)
RJ = ctx.elliprj(x, y, 1, 1-n*s**2)
return s*RF, n*s**3*RJ/3
return ctx.sum_accurately(terms) + P