437 lines
14 KiB
Python
437 lines
14 KiB
Python
|
"""Betweenness centrality measures."""
|
|||
|
import warnings
|
|||
|
from collections import deque
|
|||
|
from heapq import heappop, heappush
|
|||
|
from itertools import count
|
|||
|
|
|||
|
from networkx.algorithms.shortest_paths.weighted import _weight_function
|
|||
|
from networkx.utils import py_random_state
|
|||
|
from networkx.utils.decorators import not_implemented_for
|
|||
|
|
|||
|
__all__ = ["betweenness_centrality", "edge_betweenness_centrality", "edge_betweenness"]
|
|||
|
|
|||
|
|
|||
|
@py_random_state(5)
|
|||
|
def betweenness_centrality(
|
|||
|
G, k=None, normalized=True, weight=None, endpoints=False, seed=None
|
|||
|
):
|
|||
|
r"""Compute the shortest-path betweenness centrality for nodes.
|
|||
|
|
|||
|
Betweenness centrality of a node $v$ is the sum of the
|
|||
|
fraction of all-pairs shortest paths that pass through $v$
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}
|
|||
|
|
|||
|
where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
|
|||
|
shortest $(s, t)$-paths, and $\sigma(s, t|v)$ is the number of
|
|||
|
those paths passing through some node $v$ other than $s, t$.
|
|||
|
If $s = t$, $\sigma(s, t) = 1$, and if $v \in {s, t}$,
|
|||
|
$\sigma(s, t|v) = 0$ [2]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
G : graph
|
|||
|
A NetworkX graph.
|
|||
|
|
|||
|
k : int, optional (default=None)
|
|||
|
If k is not None use k node samples to estimate betweenness.
|
|||
|
The value of k <= n where n is the number of nodes in the graph.
|
|||
|
Higher values give better approximation.
|
|||
|
|
|||
|
normalized : bool, optional
|
|||
|
If True the betweenness values are normalized by `2/((n-1)(n-2))`
|
|||
|
for graphs, and `1/((n-1)(n-2))` for directed graphs where `n`
|
|||
|
is the number of nodes in G.
|
|||
|
|
|||
|
weight : None or string, optional (default=None)
|
|||
|
If None, all edge weights are considered equal.
|
|||
|
Otherwise holds the name of the edge attribute used as weight.
|
|||
|
Weights are used to calculate weighted shortest paths, so they are
|
|||
|
interpreted as distances.
|
|||
|
|
|||
|
endpoints : bool, optional
|
|||
|
If True include the endpoints in the shortest path counts.
|
|||
|
|
|||
|
seed : integer, random_state, or None (default)
|
|||
|
Indicator of random number generation state.
|
|||
|
See :ref:`Randomness<randomness>`.
|
|||
|
Note that this is only used if k is not None.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
nodes : dictionary
|
|||
|
Dictionary of nodes with betweenness centrality as the value.
|
|||
|
|
|||
|
See Also
|
|||
|
--------
|
|||
|
edge_betweenness_centrality
|
|||
|
load_centrality
|
|||
|
|
|||
|
Notes
|
|||
|
-----
|
|||
|
The algorithm is from Ulrik Brandes [1]_.
|
|||
|
See [4]_ for the original first published version and [2]_ for details on
|
|||
|
algorithms for variations and related metrics.
|
|||
|
|
|||
|
For approximate betweenness calculations set k=#samples to use
|
|||
|
k nodes ("pivots") to estimate the betweenness values. For an estimate
|
|||
|
of the number of pivots needed see [3]_.
|
|||
|
|
|||
|
For weighted graphs the edge weights must be greater than zero.
|
|||
|
Zero edge weights can produce an infinite number of equal length
|
|||
|
paths between pairs of nodes.
|
|||
|
|
|||
|
The total number of paths between source and target is counted
|
|||
|
differently for directed and undirected graphs. Directed paths
|
|||
|
are easy to count. Undirected paths are tricky: should a path
|
|||
|
from "u" to "v" count as 1 undirected path or as 2 directed paths?
|
|||
|
|
|||
|
For betweenness_centrality we report the number of undirected
|
|||
|
paths when G is undirected.
|
|||
|
|
|||
|
For betweenness_centrality_subset the reporting is different.
|
|||
|
If the source and target subsets are the same, then we want
|
|||
|
to count undirected paths. But if the source and target subsets
|
|||
|
differ -- for example, if sources is {0} and targets is {1},
|
|||
|
then we are only counting the paths in one direction. They are
|
|||
|
undirected paths but we are counting them in a directed way.
|
|||
|
To count them as undirected paths, each should count as half a path.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] Ulrik Brandes:
|
|||
|
A Faster Algorithm for Betweenness Centrality.
|
|||
|
Journal of Mathematical Sociology 25(2):163-177, 2001.
|
|||
|
https://doi.org/10.1080/0022250X.2001.9990249
|
|||
|
.. [2] Ulrik Brandes:
|
|||
|
On Variants of Shortest-Path Betweenness
|
|||
|
Centrality and their Generic Computation.
|
|||
|
Social Networks 30(2):136-145, 2008.
|
|||
|
https://doi.org/10.1016/j.socnet.2007.11.001
|
|||
|
.. [3] Ulrik Brandes and Christian Pich:
|
|||
|
Centrality Estimation in Large Networks.
|
|||
|
International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007.
|
|||
|
https://dx.doi.org/10.1142/S0218127407018403
|
|||
|
.. [4] Linton C. Freeman:
|
|||
|
A set of measures of centrality based on betweenness.
|
|||
|
Sociometry 40: 35–41, 1977
|
|||
|
https://doi.org/10.2307/3033543
|
|||
|
"""
|
|||
|
betweenness = dict.fromkeys(G, 0.0) # b[v]=0 for v in G
|
|||
|
if k is None:
|
|||
|
nodes = G
|
|||
|
else:
|
|||
|
nodes = seed.sample(list(G.nodes()), k)
|
|||
|
for s in nodes:
|
|||
|
# single source shortest paths
|
|||
|
if weight is None: # use BFS
|
|||
|
S, P, sigma, _ = _single_source_shortest_path_basic(G, s)
|
|||
|
else: # use Dijkstra's algorithm
|
|||
|
S, P, sigma, _ = _single_source_dijkstra_path_basic(G, s, weight)
|
|||
|
# accumulation
|
|||
|
if endpoints:
|
|||
|
betweenness, _ = _accumulate_endpoints(betweenness, S, P, sigma, s)
|
|||
|
else:
|
|||
|
betweenness, _ = _accumulate_basic(betweenness, S, P, sigma, s)
|
|||
|
# rescaling
|
|||
|
betweenness = _rescale(
|
|||
|
betweenness,
|
|||
|
len(G),
|
|||
|
normalized=normalized,
|
|||
|
directed=G.is_directed(),
|
|||
|
k=k,
|
|||
|
endpoints=endpoints,
|
|||
|
)
|
|||
|
return betweenness
|
|||
|
|
|||
|
|
|||
|
@py_random_state(4)
|
|||
|
def edge_betweenness_centrality(G, k=None, normalized=True, weight=None, seed=None):
|
|||
|
r"""Compute betweenness centrality for edges.
|
|||
|
|
|||
|
Betweenness centrality of an edge $e$ is the sum of the
|
|||
|
fraction of all-pairs shortest paths that pass through $e$
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
c_B(e) =\sum_{s,t \in V} \frac{\sigma(s, t|e)}{\sigma(s, t)}
|
|||
|
|
|||
|
where $V$ is the set of nodes, $\sigma(s, t)$ is the number of
|
|||
|
shortest $(s, t)$-paths, and $\sigma(s, t|e)$ is the number of
|
|||
|
those paths passing through edge $e$ [2]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
G : graph
|
|||
|
A NetworkX graph.
|
|||
|
|
|||
|
k : int, optional (default=None)
|
|||
|
If k is not None use k node samples to estimate betweenness.
|
|||
|
The value of k <= n where n is the number of nodes in the graph.
|
|||
|
Higher values give better approximation.
|
|||
|
|
|||
|
normalized : bool, optional
|
|||
|
If True the betweenness values are normalized by $2/(n(n-1))$
|
|||
|
for graphs, and $1/(n(n-1))$ for directed graphs where $n$
|
|||
|
is the number of nodes in G.
|
|||
|
|
|||
|
weight : None or string, optional (default=None)
|
|||
|
If None, all edge weights are considered equal.
|
|||
|
Otherwise holds the name of the edge attribute used as weight.
|
|||
|
Weights are used to calculate weighted shortest paths, so they are
|
|||
|
interpreted as distances.
|
|||
|
|
|||
|
seed : integer, random_state, or None (default)
|
|||
|
Indicator of random number generation state.
|
|||
|
See :ref:`Randomness<randomness>`.
|
|||
|
Note that this is only used if k is not None.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
edges : dictionary
|
|||
|
Dictionary of edges with betweenness centrality as the value.
|
|||
|
|
|||
|
See Also
|
|||
|
--------
|
|||
|
betweenness_centrality
|
|||
|
edge_load
|
|||
|
|
|||
|
Notes
|
|||
|
-----
|
|||
|
The algorithm is from Ulrik Brandes [1]_.
|
|||
|
|
|||
|
For weighted graphs the edge weights must be greater than zero.
|
|||
|
Zero edge weights can produce an infinite number of equal length
|
|||
|
paths between pairs of nodes.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] A Faster Algorithm for Betweenness Centrality. Ulrik Brandes,
|
|||
|
Journal of Mathematical Sociology 25(2):163-177, 2001.
|
|||
|
https://doi.org/10.1080/0022250X.2001.9990249
|
|||
|
.. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness
|
|||
|
Centrality and their Generic Computation.
|
|||
|
Social Networks 30(2):136-145, 2008.
|
|||
|
https://doi.org/10.1016/j.socnet.2007.11.001
|
|||
|
"""
|
|||
|
betweenness = dict.fromkeys(G, 0.0) # b[v]=0 for v in G
|
|||
|
# b[e]=0 for e in G.edges()
|
|||
|
betweenness.update(dict.fromkeys(G.edges(), 0.0))
|
|||
|
if k is None:
|
|||
|
nodes = G
|
|||
|
else:
|
|||
|
nodes = seed.sample(G.nodes(), k)
|
|||
|
for s in nodes:
|
|||
|
# single source shortest paths
|
|||
|
if weight is None: # use BFS
|
|||
|
S, P, sigma, _ = _single_source_shortest_path_basic(G, s)
|
|||
|
else: # use Dijkstra's algorithm
|
|||
|
S, P, sigma, _ = _single_source_dijkstra_path_basic(G, s, weight)
|
|||
|
# accumulation
|
|||
|
betweenness = _accumulate_edges(betweenness, S, P, sigma, s)
|
|||
|
# rescaling
|
|||
|
for n in G: # remove nodes to only return edges
|
|||
|
del betweenness[n]
|
|||
|
betweenness = _rescale_e(
|
|||
|
betweenness, len(G), normalized=normalized, directed=G.is_directed()
|
|||
|
)
|
|||
|
if G.is_multigraph():
|
|||
|
betweenness = _add_edge_keys(G, betweenness, weight=weight)
|
|||
|
return betweenness
|
|||
|
|
|||
|
|
|||
|
# obsolete name
|
|||
|
def edge_betweenness(G, k=None, normalized=True, weight=None, seed=None):
|
|||
|
warnings.warn(
|
|||
|
"edge_betweeness is replaced by edge_betweenness_centrality", DeprecationWarning
|
|||
|
)
|
|||
|
return edge_betweenness_centrality(G, k, normalized, weight, seed)
|
|||
|
|
|||
|
|
|||
|
# helpers for betweenness centrality
|
|||
|
|
|||
|
|
|||
|
def _single_source_shortest_path_basic(G, s):
|
|||
|
S = []
|
|||
|
P = {}
|
|||
|
for v in G:
|
|||
|
P[v] = []
|
|||
|
sigma = dict.fromkeys(G, 0.0) # sigma[v]=0 for v in G
|
|||
|
D = {}
|
|||
|
sigma[s] = 1.0
|
|||
|
D[s] = 0
|
|||
|
Q = deque([s])
|
|||
|
while Q: # use BFS to find shortest paths
|
|||
|
v = Q.popleft()
|
|||
|
S.append(v)
|
|||
|
Dv = D[v]
|
|||
|
sigmav = sigma[v]
|
|||
|
for w in G[v]:
|
|||
|
if w not in D:
|
|||
|
Q.append(w)
|
|||
|
D[w] = Dv + 1
|
|||
|
if D[w] == Dv + 1: # this is a shortest path, count paths
|
|||
|
sigma[w] += sigmav
|
|||
|
P[w].append(v) # predecessors
|
|||
|
return S, P, sigma, D
|
|||
|
|
|||
|
|
|||
|
def _single_source_dijkstra_path_basic(G, s, weight):
|
|||
|
weight = _weight_function(G, weight)
|
|||
|
# modified from Eppstein
|
|||
|
S = []
|
|||
|
P = {}
|
|||
|
for v in G:
|
|||
|
P[v] = []
|
|||
|
sigma = dict.fromkeys(G, 0.0) # sigma[v]=0 for v in G
|
|||
|
D = {}
|
|||
|
sigma[s] = 1.0
|
|||
|
push = heappush
|
|||
|
pop = heappop
|
|||
|
seen = {s: 0}
|
|||
|
c = count()
|
|||
|
Q = [] # use Q as heap with (distance,node id) tuples
|
|||
|
push(Q, (0, next(c), s, s))
|
|||
|
while Q:
|
|||
|
(dist, _, pred, v) = pop(Q)
|
|||
|
if v in D:
|
|||
|
continue # already searched this node.
|
|||
|
sigma[v] += sigma[pred] # count paths
|
|||
|
S.append(v)
|
|||
|
D[v] = dist
|
|||
|
for w, edgedata in G[v].items():
|
|||
|
vw_dist = dist + weight(v, w, edgedata)
|
|||
|
if w not in D and (w not in seen or vw_dist < seen[w]):
|
|||
|
seen[w] = vw_dist
|
|||
|
push(Q, (vw_dist, next(c), v, w))
|
|||
|
sigma[w] = 0.0
|
|||
|
P[w] = [v]
|
|||
|
elif vw_dist == seen[w]: # handle equal paths
|
|||
|
sigma[w] += sigma[v]
|
|||
|
P[w].append(v)
|
|||
|
return S, P, sigma, D
|
|||
|
|
|||
|
|
|||
|
def _accumulate_basic(betweenness, S, P, sigma, s):
|
|||
|
delta = dict.fromkeys(S, 0)
|
|||
|
while S:
|
|||
|
w = S.pop()
|
|||
|
coeff = (1 + delta[w]) / sigma[w]
|
|||
|
for v in P[w]:
|
|||
|
delta[v] += sigma[v] * coeff
|
|||
|
if w != s:
|
|||
|
betweenness[w] += delta[w]
|
|||
|
return betweenness, delta
|
|||
|
|
|||
|
|
|||
|
def _accumulate_endpoints(betweenness, S, P, sigma, s):
|
|||
|
betweenness[s] += len(S) - 1
|
|||
|
delta = dict.fromkeys(S, 0)
|
|||
|
while S:
|
|||
|
w = S.pop()
|
|||
|
coeff = (1 + delta[w]) / sigma[w]
|
|||
|
for v in P[w]:
|
|||
|
delta[v] += sigma[v] * coeff
|
|||
|
if w != s:
|
|||
|
betweenness[w] += delta[w] + 1
|
|||
|
return betweenness, delta
|
|||
|
|
|||
|
|
|||
|
def _accumulate_edges(betweenness, S, P, sigma, s):
|
|||
|
delta = dict.fromkeys(S, 0)
|
|||
|
while S:
|
|||
|
w = S.pop()
|
|||
|
coeff = (1 + delta[w]) / sigma[w]
|
|||
|
for v in P[w]:
|
|||
|
c = sigma[v] * coeff
|
|||
|
if (v, w) not in betweenness:
|
|||
|
betweenness[(w, v)] += c
|
|||
|
else:
|
|||
|
betweenness[(v, w)] += c
|
|||
|
delta[v] += c
|
|||
|
if w != s:
|
|||
|
betweenness[w] += delta[w]
|
|||
|
return betweenness
|
|||
|
|
|||
|
|
|||
|
def _rescale(betweenness, n, normalized, directed=False, k=None, endpoints=False):
|
|||
|
if normalized:
|
|||
|
if endpoints:
|
|||
|
if n < 2:
|
|||
|
scale = None # no normalization
|
|||
|
else:
|
|||
|
# Scale factor should include endpoint nodes
|
|||
|
scale = 1 / (n * (n - 1))
|
|||
|
elif n <= 2:
|
|||
|
scale = None # no normalization b=0 for all nodes
|
|||
|
else:
|
|||
|
scale = 1 / ((n - 1) * (n - 2))
|
|||
|
else: # rescale by 2 for undirected graphs
|
|||
|
if not directed:
|
|||
|
scale = 0.5
|
|||
|
else:
|
|||
|
scale = None
|
|||
|
if scale is not None:
|
|||
|
if k is not None:
|
|||
|
scale = scale * n / k
|
|||
|
for v in betweenness:
|
|||
|
betweenness[v] *= scale
|
|||
|
return betweenness
|
|||
|
|
|||
|
|
|||
|
def _rescale_e(betweenness, n, normalized, directed=False, k=None):
|
|||
|
if normalized:
|
|||
|
if n <= 1:
|
|||
|
scale = None # no normalization b=0 for all nodes
|
|||
|
else:
|
|||
|
scale = 1 / (n * (n - 1))
|
|||
|
else: # rescale by 2 for undirected graphs
|
|||
|
if not directed:
|
|||
|
scale = 0.5
|
|||
|
else:
|
|||
|
scale = None
|
|||
|
if scale is not None:
|
|||
|
if k is not None:
|
|||
|
scale = scale * n / k
|
|||
|
for v in betweenness:
|
|||
|
betweenness[v] *= scale
|
|||
|
return betweenness
|
|||
|
|
|||
|
|
|||
|
@not_implemented_for("graph")
|
|||
|
def _add_edge_keys(G, betweenness, weight=None):
|
|||
|
r"""Adds the corrected betweenness centrality (BC) values for multigraphs.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
G : NetworkX graph.
|
|||
|
|
|||
|
betweenness : dictionary
|
|||
|
Dictionary mapping adjacent node tuples to betweenness centrality values.
|
|||
|
|
|||
|
weight : string or function
|
|||
|
See `_weight_function` for details. Defaults to `None`.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
edges : dictionary
|
|||
|
The parameter `betweenness` including edges with keys and their
|
|||
|
betweenness centrality values.
|
|||
|
|
|||
|
The BC value is divided among edges of equal weight.
|
|||
|
"""
|
|||
|
_weight = _weight_function(G, weight)
|
|||
|
|
|||
|
edge_bc = dict.fromkeys(G.edges, 0.0)
|
|||
|
for u, v in betweenness:
|
|||
|
d = G[u][v]
|
|||
|
wt = _weight(u, v, d)
|
|||
|
keys = [k for k in d if _weight(u, v, {k: d[k]}) == wt]
|
|||
|
bc = betweenness[(u, v)] / len(keys)
|
|||
|
for k in keys:
|
|||
|
edge_bc[(u, v, k)] = bc
|
|||
|
|
|||
|
return edge_bc
|