ai-content-maker/.venv/Lib/site-packages/networkx/classes/tests/test_multigraph.py

529 lines
18 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from collections import UserDict
import pytest
import networkx as nx
from networkx.utils import edges_equal
from .test_graph import BaseAttrGraphTester
from .test_graph import TestGraph as _TestGraph
class BaseMultiGraphTester(BaseAttrGraphTester):
def test_has_edge(self):
G = self.K3
assert G.has_edge(0, 1)
assert not G.has_edge(0, -1)
assert G.has_edge(0, 1, 0)
assert not G.has_edge(0, 1, 1)
def test_get_edge_data(self):
G = self.K3
assert G.get_edge_data(0, 1) == {0: {}}
assert G[0][1] == {0: {}}
assert G[0][1][0] == {}
assert G.get_edge_data(10, 20) is None
assert G.get_edge_data(0, 1, 0) == {}
def test_adjacency(self):
G = self.K3
assert dict(G.adjacency()) == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
def deepcopy_edge_attr(self, H, G):
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
G[1][2][0]["foo"].append(1)
assert G[1][2][0]["foo"] != H[1][2][0]["foo"]
def shallow_copy_edge_attr(self, H, G):
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
G[1][2][0]["foo"].append(1)
assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
def graphs_equal(self, H, G):
assert G._adj == H._adj
assert G._node == H._node
assert G.graph == H.graph
assert G.name == H.name
if not G.is_directed() and not H.is_directed():
assert H._adj[1][2][0] is H._adj[2][1][0]
assert G._adj[1][2][0] is G._adj[2][1][0]
else: # at least one is directed
if not G.is_directed():
G._pred = G._adj
G._succ = G._adj
if not H.is_directed():
H._pred = H._adj
H._succ = H._adj
assert G._pred == H._pred
assert G._succ == H._succ
assert H._succ[1][2][0] is H._pred[2][1][0]
assert G._succ[1][2][0] is G._pred[2][1][0]
def same_attrdict(self, H, G):
# same attrdict in the edgedata
old_foo = H[1][2][0]["foo"]
H.adj[1][2][0]["foo"] = "baz"
assert G._adj == H._adj
H.adj[1][2][0]["foo"] = old_foo
assert G._adj == H._adj
old_foo = H.nodes[0]["foo"]
H.nodes[0]["foo"] = "baz"
assert G._node == H._node
H.nodes[0]["foo"] = old_foo
assert G._node == H._node
def different_attrdict(self, H, G):
# used by graph_equal_but_different
old_foo = H[1][2][0]["foo"]
H.adj[1][2][0]["foo"] = "baz"
assert G._adj != H._adj
H.adj[1][2][0]["foo"] = old_foo
assert G._adj == H._adj
old_foo = H.nodes[0]["foo"]
H.nodes[0]["foo"] = "baz"
assert G._node != H._node
H.nodes[0]["foo"] = old_foo
assert G._node == H._node
def test_to_undirected(self):
G = self.K3
self.add_attributes(G)
H = nx.MultiGraph(G)
self.is_shallow_copy(H, G)
H = G.to_undirected()
self.is_deepcopy(H, G)
def test_to_directed(self):
G = self.K3
self.add_attributes(G)
H = nx.MultiDiGraph(G)
self.is_shallow_copy(H, G)
H = G.to_directed()
self.is_deepcopy(H, G)
def test_number_of_edges_selfloops(self):
G = self.K3
G.add_edge(0, 0)
G.add_edge(0, 0)
G.add_edge(0, 0, key="parallel edge")
G.remove_edge(0, 0, key="parallel edge")
assert G.number_of_edges(0, 0) == 2
G.remove_edge(0, 0)
assert G.number_of_edges(0, 0) == 1
def test_edge_lookup(self):
G = self.Graph()
G.add_edge(1, 2, foo="bar")
G.add_edge(1, 2, "key", foo="biz")
assert edges_equal(G.edges[1, 2, 0], {"foo": "bar"})
assert edges_equal(G.edges[1, 2, "key"], {"foo": "biz"})
def test_edge_attr(self):
G = self.Graph()
G.add_edge(1, 2, key="k1", foo="bar")
G.add_edge(1, 2, key="k2", foo="baz")
assert isinstance(G.get_edge_data(1, 2), G.edge_key_dict_factory)
assert all(
isinstance(d, G.edge_attr_dict_factory) for u, v, d in G.edges(data=True)
)
assert edges_equal(
G.edges(keys=True, data=True),
[(1, 2, "k1", {"foo": "bar"}), (1, 2, "k2", {"foo": "baz"})],
)
assert edges_equal(
G.edges(keys=True, data="foo"), [(1, 2, "k1", "bar"), (1, 2, "k2", "baz")]
)
def test_edge_attr4(self):
G = self.Graph()
G.add_edge(1, 2, key=0, data=7, spam="bar", bar="foo")
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
)
G[1][2][0]["data"] = 10 # OK to set data like this
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 10, "spam": "bar", "bar": "foo"})]
)
G.adj[1][2][0]["data"] = 20
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 20, "spam": "bar", "bar": "foo"})]
)
G.edges[1, 2, 0]["data"] = 21 # another spelling, "edge"
assert edges_equal(
G.edges(data=True), [(1, 2, {"data": 21, "spam": "bar", "bar": "foo"})]
)
G.adj[1][2][0]["listdata"] = [20, 200]
G.adj[1][2][0]["weight"] = 20
assert edges_equal(
G.edges(data=True),
[
(
1,
2,
{
"data": 21,
"spam": "bar",
"bar": "foo",
"listdata": [20, 200],
"weight": 20,
},
)
],
)
class TestMultiGraph(BaseMultiGraphTester, _TestGraph):
def setup_method(self):
self.Graph = nx.MultiGraph
# build K3
ed1, ed2, ed3 = ({0: {}}, {0: {}}, {0: {}})
self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}}
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._adj = self.k3adj
self.K3._node = {}
self.K3._node[0] = {}
self.K3._node[1] = {}
self.K3._node[2] = {}
def test_data_input(self):
G = self.Graph({1: [2], 2: [1]}, name="test")
assert G.name == "test"
expected = [(1, {2: {0: {}}}), (2, {1: {0: {}}})]
assert sorted(G.adj.items()) == expected
def test_data_multigraph_input(self):
# standard case with edge keys and edge data
edata0 = dict(w=200, s="foo")
edata1 = dict(w=201, s="bar")
keydict = {0: edata0, 1: edata1}
dododod = {"a": {"b": keydict}}
multiple_edge = [("a", "b", 0, edata0), ("a", "b", 1, edata1)]
single_edge = [("a", "b", 0, keydict)]
G = self.Graph(dododod, multigraph_input=True)
assert list(G.edges(keys=True, data=True)) == multiple_edge
G = self.Graph(dododod, multigraph_input=None)
assert list(G.edges(keys=True, data=True)) == multiple_edge
G = self.Graph(dododod, multigraph_input=False)
assert list(G.edges(keys=True, data=True)) == single_edge
# test round-trip to_dict_of_dict and MultiGraph constructor
G = self.Graph(dododod, multigraph_input=True)
H = self.Graph(nx.to_dict_of_dicts(G))
assert nx.is_isomorphic(G, H) is True # test that default is True
for mgi in [True, False]:
H = self.Graph(nx.to_dict_of_dicts(G), multigraph_input=mgi)
assert nx.is_isomorphic(G, H) == mgi
# Set up cases for when incoming_graph_data is not multigraph_input
etraits = {"w": 200, "s": "foo"}
egraphics = {"color": "blue", "shape": "box"}
edata = {"traits": etraits, "graphics": egraphics}
dodod1 = {"a": {"b": edata}}
dodod2 = {"a": {"b": etraits}}
dodod3 = {"a": {"b": {"traits": etraits, "s": "foo"}}}
dol = {"a": ["b"]}
multiple_edge = [("a", "b", "traits", etraits), ("a", "b", "graphics", egraphics)]
single_edge = [("a", "b", 0, {})] # type: ignore
single_edge1 = [("a", "b", 0, edata)]
single_edge2 = [("a", "b", 0, etraits)]
single_edge3 = [("a", "b", 0, {"traits": etraits, "s": "foo"})]
cases = [ # (dod, mgi, edges)
(dodod1, True, multiple_edge),
(dodod1, False, single_edge1),
(dodod2, False, single_edge2),
(dodod3, False, single_edge3),
(dol, False, single_edge),
]
@pytest.mark.parametrize("dod, mgi, edges", cases)
def test_non_multigraph_input(self, dod, mgi, edges):
G = self.Graph(dod, multigraph_input=mgi)
assert list(G.edges(keys=True, data=True)) == edges
G = nx.to_networkx_graph(dod, create_using=self.Graph, multigraph_input=mgi)
assert list(G.edges(keys=True, data=True)) == edges
mgi_none_cases = [
(dodod1, multiple_edge),
(dodod2, single_edge2),
(dodod3, single_edge3),
]
@pytest.mark.parametrize("dod, edges", mgi_none_cases)
def test_non_multigraph_input_mgi_none(self, dod, edges):
# test constructor without to_networkx_graph for mgi=None
G = self.Graph(dod)
assert list(G.edges(keys=True, data=True)) == edges
raise_cases = [dodod2, dodod3, dol]
@pytest.mark.parametrize("dod", raise_cases)
def test_non_multigraph_input_raise(self, dod):
# cases where NetworkXError is raised
pytest.raises(nx.NetworkXError, self.Graph, dod, multigraph_input=True)
pytest.raises(
nx.NetworkXError,
nx.to_networkx_graph,
dod,
create_using=self.Graph,
multigraph_input=True,
)
def test_getitem(self):
G = self.K3
assert G[0] == {1: {0: {}}, 2: {0: {}}}
with pytest.raises(KeyError):
G.__getitem__("j")
with pytest.raises(TypeError):
G.__getitem__(["A"])
def test_remove_node(self):
G = self.K3
G.remove_node(0)
assert G.adj == {1: {2: {0: {}}}, 2: {1: {0: {}}}}
with pytest.raises(nx.NetworkXError):
G.remove_node(-1)
def test_add_edge(self):
G = self.Graph()
G.add_edge(0, 1)
assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
G = self.Graph()
G.add_edge(*(0, 1))
assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
G = self.Graph()
with pytest.raises(ValueError):
G.add_edge(None, "anything")
def test_add_edge_conflicting_key(self):
G = self.Graph()
G.add_edge(0, 1, key=1)
G.add_edge(0, 1)
assert G.number_of_edges() == 2
G = self.Graph()
G.add_edges_from([(0, 1, 1, {})])
G.add_edges_from([(0, 1)])
assert G.number_of_edges() == 2
def test_add_edges_from(self):
G = self.Graph()
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})])
assert G.adj == {
0: {1: {0: {}, 1: {"weight": 3}}},
1: {0: {0: {}, 1: {"weight": 3}}},
}
G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2)
assert G.adj == {
0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
}
G = self.Graph()
edges = [
(0, 1, {"weight": 3}),
(0, 1, (("weight", 2),)),
(0, 1, 5),
(0, 1, "s"),
]
G.add_edges_from(edges)
keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}}
assert G._adj == {0: {1: keydict}, 1: {0: keydict}}
# too few in tuple
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0,)])
# too many in tuple
with pytest.raises(nx.NetworkXError):
G.add_edges_from([(0, 1, 2, 3, 4)])
# not a tuple
with pytest.raises(TypeError):
G.add_edges_from([0])
def test_multigraph_add_edges_from_four_tuple_misordered(self):
"""add_edges_from expects 4-tuples of the format (u, v, key, data_dict).
Ensure 4-tuples of form (u, v, data_dict, key) raise exception.
"""
G = nx.MultiGraph()
with pytest.raises(TypeError):
# key/data values flipped in 4-tuple
G.add_edges_from([(0, 1, {"color": "red"}, 0)])
def test_remove_edge(self):
G = self.K3
G.remove_edge(0, 1)
assert G.adj == {0: {2: {0: {}}}, 1: {2: {0: {}}}, 2: {0: {0: {}}, 1: {0: {}}}}
with pytest.raises(nx.NetworkXError):
G.remove_edge(-1, 0)
with pytest.raises(nx.NetworkXError):
G.remove_edge(0, 2, key=1)
def test_remove_edges_from(self):
G = self.K3.copy()
G.remove_edges_from([(0, 1)])
kd = {0: {}}
assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
G.remove_edges_from([(0, 0)]) # silent fail
self.K3.add_edge(0, 1)
G = self.K3.copy()
G.remove_edges_from(list(G.edges(data=True, keys=True)))
assert G.adj == {0: {}, 1: {}, 2: {}}
G = self.K3.copy()
G.remove_edges_from(list(G.edges(data=False, keys=True)))
assert G.adj == {0: {}, 1: {}, 2: {}}
G = self.K3.copy()
G.remove_edges_from(list(G.edges(data=False, keys=False)))
assert G.adj == {0: {}, 1: {}, 2: {}}
G = self.K3.copy()
G.remove_edges_from([(0, 1, 0), (0, 2, 0, {}), (1, 2)])
assert G.adj == {0: {1: {1: {}}}, 1: {0: {1: {}}}, 2: {}}
def test_remove_multiedge(self):
G = self.K3
G.add_edge(0, 1, key="parallel edge")
G.remove_edge(0, 1, key="parallel edge")
assert G.adj == {
0: {1: {0: {}}, 2: {0: {}}},
1: {0: {0: {}}, 2: {0: {}}},
2: {0: {0: {}}, 1: {0: {}}},
}
G.remove_edge(0, 1)
kd = {0: {}}
assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
with pytest.raises(nx.NetworkXError):
G.remove_edge(-1, 0)
class TestEdgeSubgraph:
"""Unit tests for the :meth:`MultiGraph.edge_subgraph` method."""
def setup_method(self):
# Create a doubly-linked path graph on five nodes.
G = nx.MultiGraph()
nx.add_path(G, range(5))
nx.add_path(G, range(5))
# Add some node, edge, and graph attributes.
for i in range(5):
G.nodes[i]["name"] = f"node{i}"
G.adj[0][1][0]["name"] = "edge010"
G.adj[0][1][1]["name"] = "edge011"
G.adj[3][4][0]["name"] = "edge340"
G.adj[3][4][1]["name"] = "edge341"
G.graph["name"] = "graph"
# Get the subgraph induced by one of the first edges and one of
# the last edges.
self.G = G
self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)])
def test_correct_nodes(self):
"""Tests that the subgraph has the correct nodes."""
assert [0, 1, 3, 4] == sorted(self.H.nodes())
def test_correct_edges(self):
"""Tests that the subgraph has the correct edges."""
assert [(0, 1, 0, "edge010"), (3, 4, 1, "edge341")] == sorted(
self.H.edges(keys=True, data="name")
)
def test_add_node(self):
"""Tests that adding a node to the original graph does not
affect the nodes of the subgraph.
"""
self.G.add_node(5)
assert [0, 1, 3, 4] == sorted(self.H.nodes())
def test_remove_node(self):
"""Tests that removing a node in the original graph does
affect the nodes of the subgraph.
"""
self.G.remove_node(0)
assert [1, 3, 4] == sorted(self.H.nodes())
def test_node_attr_dict(self):
"""Tests that the node attribute dictionary of the two graphs is
the same object.
"""
for v in self.H:
assert self.G.nodes[v] == self.H.nodes[v]
# Making a change to G should make a change in H and vice versa.
self.G.nodes[0]["name"] = "foo"
assert self.G.nodes[0] == self.H.nodes[0]
self.H.nodes[1]["name"] = "bar"
assert self.G.nodes[1] == self.H.nodes[1]
def test_edge_attr_dict(self):
"""Tests that the edge attribute dictionary of the two graphs is
the same object.
"""
for u, v, k in self.H.edges(keys=True):
assert self.G._adj[u][v][k] == self.H._adj[u][v][k]
# Making a change to G should make a change in H and vice versa.
self.G._adj[0][1][0]["name"] = "foo"
assert self.G._adj[0][1][0]["name"] == self.H._adj[0][1][0]["name"]
self.H._adj[3][4][1]["name"] = "bar"
assert self.G._adj[3][4][1]["name"] == self.H._adj[3][4][1]["name"]
def test_graph_attr_dict(self):
"""Tests that the graph attribute dictionary of the two graphs
is the same object.
"""
assert self.G.graph is self.H.graph
class CustomDictClass(UserDict):
pass
class MultiGraphSubClass(nx.MultiGraph):
node_dict_factory = CustomDictClass # type: ignore
node_attr_dict_factory = CustomDictClass # type: ignore
adjlist_outer_dict_factory = CustomDictClass # type: ignore
adjlist_inner_dict_factory = CustomDictClass # type: ignore
edge_key_dict_factory = CustomDictClass # type: ignore
edge_attr_dict_factory = CustomDictClass # type: ignore
graph_attr_dict_factory = CustomDictClass # type: ignore
class TestMultiGraphSubclass(TestMultiGraph):
def setup_method(self):
self.Graph = MultiGraphSubClass
# build K3
self.k3edges = [(0, 1), (0, 2), (1, 2)]
self.k3nodes = [0, 1, 2]
self.K3 = self.Graph()
self.K3._adj = self.K3.adjlist_outer_dict_factory(
{
0: self.K3.adjlist_inner_dict_factory(),
1: self.K3.adjlist_inner_dict_factory(),
2: self.K3.adjlist_inner_dict_factory(),
}
)
self.K3._pred = {0: {}, 1: {}, 2: {}}
for u in self.k3nodes:
for v in self.k3nodes:
if u != v:
d = {0: {}}
self.K3._adj[u][v] = d
self.K3._adj[v][u] = d
self.K3._node = self.K3.node_dict_factory()
self.K3._node[0] = self.K3.node_attr_dict_factory()
self.K3._node[1] = self.K3.node_attr_dict_factory()
self.K3._node[2] = self.K3.node_attr_dict_factory()